E·XFL

Altera - EPF10K30EFC256-2 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2000	
Product Status	Active
Number of LABs/CLBs	216
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	176
Number of Gates	-
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf10k30efc256-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The EAB can also use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3.

The FLEX 10KE EAB can be used in a single-port mode, which is useful for backward-compatibility with FLEX 10K designs (see Figure 4).

EABs provide flexible options for driving and controlling clock signals. Different clocks and clock enables can be used for reading and writing to the EAB. Registers can be independently inserted on the data input, EAB output, write address, write enable signals, read address, and read enable signals. The global signals and the EAB local interconnect can drive write enable, read enable, and clock enable signals. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control write enable, read enable, clear, clock, and clock enable signals.

An EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs (see Figures 2 and 4). The column interconnect, which is adjacent to the EAB, has twice as many channels as other columns in the device.

Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the FLEX 10KE architecture, facilitating efficient routing with optimum device utilization and high performance (see Figure 7).

Figure 7. FLEX 10KE LAB

Notes:

- (1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26.
- (2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 34.

Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear.

Figure 13. FLEX 10KE LAB Connections to Row & Column Interconnect

For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the fulllength channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row.

Table 7 summarizes the FastTrack Interconnect routing structure resources available in each FLEX 10KE device.

Table 7. FLEX 10KE FastTrack Interconnect Resources								
Device	Rows	Channels per Row	Columns	Channels per Column				
EPF10K30E	6	216	36	24				
EPF10K50E EPF10K50S	10	216	36	24				
EPF10K100E	12	312	52	24				
EPF10K130E	16	312	52	32				
EPF10K200E EPF10K200S	24	312	52	48				

In addition to general-purpose I/O pins, FLEX 10KE devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output enable and clock enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3.

SameFrame Pin-Outs FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ballcount packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K30E device in a 256-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 18).

Printed Circuit Board Designed for 672-Pin FineLine BGA Package

 256-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements)
 672-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements)

Figure 20 shows the timing requirements for the JTAG signals.

Figure 20. FLEX 10KE JTAG Waveforms

Table 18 shows the timing parameters and values for FLEX 10KE devices.

Table 18. FLEX 10KE JTAG Timing Parameters & Values								
Symbol	Parameter	Min	Мах	Unit				
t _{JCP}	TCK clock period	100		ns				
t _{JCH}	TCK clock high time	50		ns				
t _{JCL}	TCK clock low time	50		ns				
t _{JPSU}	JTAG port setup time	20		ns				
t _{JPH}	JTAG port hold time	45		ns				
t _{JPCO}	JTAG port clock to output		25	ns				
t _{JPZX}	JTAG port high impedance to valid output		25	ns				
t _{JPXZ}	JTAG port valid output to high impedance		25	ns				
t _{JSSU}	Capture register setup time	20		ns				
t _{JSH}	Capture register hold time	45		ns				
t _{JSCO}	Update register clock to output		35	ns				
t _{JSZX}	Update register high impedance to valid output		35	ns				
t _{JSXZ}	Update register valid output to high impedance		35	ns				

Figure 22 shows the required relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance.

Figure 23 shows the typical output drive characteristics of FLEX 10KE devices with 3.3-V and 2.5-V V_{CCIO}. The output driver is compliant to the 3.3-V *PCI Local Bus Specification*, *Revision 2.2* (when VCCIO pins are connected to 3.3 V). FLEX 10KE devices with a -1 speed grade also comply with the drive strength requirements of the *PCI Local Bus Specification*, *Revision 2.2* (when VCCINT pins are powered with a minimum supply of 2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices can be used in open 5.0-V PCI systems.

Figure 26. FLEX 10KE Device IOE Timing Model

Figure 27. FLEX 10KE Device EAB Timing Model

Figure 28. Synchronous Bidirectional Pin External Timing Model

Tables 24 through 28 describe the FLEX 10KE device internal timing parameters. Tables 29 through 30 describe the FLEX 10KE external timing parameters and their symbols.

Table 24. LE Timing Microparameters (Part 1 of 2) Note (1)						
Symbol	Parameter	Condition				
t _{LUT}	LUT delay for data-in					
t _{CLUT}	LUT delay for carry-in					
t _{RLUT}	LUT delay for LE register feedback					
t _{PACKED}	Data-in to packed register delay					
t _{EN}	LE register enable delay					
t _{CICO}	Carry-in to carry-out delay					
t _{CGEN}	Data-in to carry-out delay					
t _{CGENR}	LE register feedback to carry-out delay					
t _{CASC}	Cascade-in to cascade-out delay					
t _C	LE register control signal delay					
t _{CO}	LE register clock-to-output delay					
t _{COMB}	Combinatorial delay					
t _{SU}	LE register setup time for data and enable signals before clock; LE register					
	recovery time after asynchronous clear, preset, or load					
t _H	LE register hold time for data and enable signals after clock					
t _{PRE}	LE register preset delay					

Table 24. LE Timing Microparameters (Part 2 of 2) Note (1)						
Symbol	Condition					
t _{CLR}	LE register clear delay					
t _{CH}	Minimum clock high time from clock pin					
t _{CL}	Minimum clock low time from clock pin					

Table 25. IOE Timing Microparameters Note (1)							
Symbol	Parameter	Conditions					
t _{IOD}	IOE data delay						
t _{IOC}	IOE register control signal delay						
t _{IOCO}	IOE register clock-to-output delay						
t _{IOCOMB}	IOE combinatorial delay						
t _{IOSU}	IOE register setup time for data and enable signals before clock; IOE register recovery time after asynchronous clear						
t _{IOH}	IOE register hold time for data and enable signals after clock						
t _{IOCLR}	IOE register clear time						
t _{OD1}	Output buffer and pad delay, slow slew rate = off, V_{CCIO} = 3.3 V	C1 = 35 pF (2)					
t _{OD2}	Output buffer and pad delay, slow slew rate = off, V_{CCIO} = 2.5 V	C1 = 35 pF (3)					
t _{OD3}	Output buffer and pad delay, slow slew rate = on	C1 = 35 pF (4)					
t _{XZ}	IOE output buffer disable delay						
t _{ZX1}	IOE output buffer enable delay, slow slew rate = off, V_{CCIO} = 3.3 V	C1 = 35 pF (2)					
t _{ZX2}	IOE output buffer enable delay, slow slew rate = off, V_{CCIO} = 2.5 V	C1 = 35 pF (3)					
t _{ZX3}	IOE output buffer enable delay, slow slew rate = on	C1 = 35 pF (4)					
t _{INREG}	IOE input pad and buffer to IOE register delay						
t _{IOFD}	IOE register feedback delay						
t _{INCOMB}	IOE input pad and buffer to FastTrack Interconnect delay						

Table 26. EAB Timing Microparameters Note (1)						
Symbol	Parameter	Conditions				
t _{EABDATA1}	Data or address delay to EAB for combinatorial input					
t _{EABDATA2}	Data or address delay to EAB for registered input					
t _{EABWE1}	Write enable delay to EAB for combinatorial input					
t _{EABWE2}	Write enable delay to EAB for registered input					
t _{EABRE1}	Read enable delay to EAB for combinatorial input					
t _{EABRE2}	Read enable delay to EAB for registered input					
t _{EABCLK}	EAB register clock delay					
t _{EABCO}	EAB register clock-to-output delay					
t _{EABBYPASS}	Bypass register delay					
t _{EABSU}	EAB register setup time before clock					
t _{EABH}	EAB register hold time after clock					
t _{EABCLR}	EAB register asynchronous clear time to output delay					
t _{AA}	Address access delay (including the read enable to output delay)					
t _{WP}	Write pulse width					
t _{RP}	Read pulse width					
t _{WDSU}	Data setup time before falling edge of write pulse	(5)				
t _{WDH}	Data hold time after falling edge of write pulse	(5)				
t _{WASU}	Address setup time before rising edge of write pulse	(5)				
t _{WAH}	Address hold time after falling edge of write pulse	(5)				
t _{RASU}	Address setup time with respect to the falling edge of the read enable					
t _{RAH}	Address hold time with respect to the falling edge of the read enable					
t _{WO}	Write enable to data output valid delay					
t _{DD}	Data-in to data-out valid delay					
t _{EABOUT}	Data-out delay					
t _{EABCH}	Clock high time					
t _{EABCL}	Clock low time					

Table 31. EPF10K30E Device LE Timing Microparameters (Part 2 of 2) Note (1)								
Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{CGENR}		0.1		0.1		0.2	ns	
t _{CASC}		0.6		0.8		1.0	ns	
t _C		0.0		0.0		0.0	ns	
t _{CO}		0.3		0.4		0.5	ns	
t _{COMB}		0.4		0.4		0.6	ns	
t _{SU}	0.4		0.6		0.6		ns	
t _H	0.7		1.0		1.3		ns	
t _{PRE}		0.8		0.9		1.2	ns	
t _{CLR}		0.8		0.9		1.2	ns	
t _{CH}	2.0		2.5		2.5		ns	
t _{CL}	2.0		2.5		2.5		ns	

Table 32. EPF10K30E Device IOE Timing Microparameters Note (1)							
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Мах	
t _{IOD}		2.4		2.8		3.8	ns
t _{IOC}		0.3		0.4		0.5	ns
t _{IOCO}		1.0		1.1		1.6	ns
t _{IOCOMB}		0.0		0.0		0.0	ns
t _{IOSU}	1.2		1.4		1.9		ns
t _{IOH}	0.3		0.4		0.5		ns
t _{IOCLR}		1.0		1.1		1.6	ns
t _{OD1}		1.9		2.3		3.0	ns
t _{OD2}		1.4		1.8		2.5	ns
t _{OD3}		4.4		5.2		7.0	ns
t _{XZ}		2.7		3.1		4.3	ns
t _{ZX1}		2.7		3.1		4.3	ns
t _{ZX2}		2.2		2.6		3.8	ns
t _{ZX3}		5.2		6.0		8.3	ns
t _{INREG}		3.4		4.1		5.5	ns
t _{IOFD}		0.8		1.3		2.4	ns
t _{INCOMB}		0.8		1.3		2.4	ns

Table 38. EPF10K50E Device LE Timing Microparameters (Part 2 of 2) Note (1)								
Symbol	-1 Speed Grade -2 Speed Grade -3 Speed Grade		-2 Speed Grade		d Grade	Unit		
	Min	Max	Min	Max	Min	Max		
t _H	0.9		1.0		1.4		ns	
t _{PRE}		0.5		0.6		0.8	ns	
t _{CLR}		0.5		0.6		0.8	ns	
t _{CH}	2.0		2.5		3.0		ns	
t _{CL}	2.0		2.5		3.0		ns	

Table 39. EPF10K50E Device IOE Timing Microparameters Note (1)							
Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{IOD}		2.2		2.4		3.3	ns
t _{IOC}		0.3		0.3		0.5	ns
t _{IOCO}		1.0		1.0		1.4	ns
t _{IOCOMB}		0.0		0.0		0.2	ns
t _{IOSU}	1.0		1.2		1.7		ns
t _{IOH}	0.3		0.3		0.5		ns
t _{IOCLR}		0.9		1.0		1.4	ns
t _{OD1}		0.8		0.9		1.2	ns
t _{OD2}		0.3		0.4		0.7	ns
t _{OD3}		3.0		3.5		3.5	ns
t _{XZ}		1.4		1.7		2.3	ns
t _{ZX1}		1.4		1.7		2.3	ns
t _{ZX2}		0.9		1.2		1.8	ns
t _{ZX3}		3.6		4.3		4.6	ns
t _{INREG}		4.9		5.8		7.8	ns
t _{IOFD}		2.8		3.3		4.5	ns
t _{INCOMB}		2.8		3.3		4.5	ns

Table 40. EPF10K50E Device EAB Internal Microparameters Note (1)							
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.0		2.7	ns
t _{EABDATA1}		0.6		0.7		0.9	ns
t _{EABWE1}		1.1		1.3		1.8	ns
t _{EABWE2}		0.4		0.4		0.6	ns
t _{EABRE1}		0.8		0.9		1.2	ns
t _{EABRE2}		0.4		0.4		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.3		0.5	ns
t _{EABBYPASS}		0.5		0.6		0.8	ns
t _{EABSU}	0.9		1.0		1.4		ns
t _{EABH}	0.4		0.4		0.6		ns
t _{EABCLR}	0.3		0.3		0.5		ns
t _{AA}		3.2		3.8		5.1	ns
t _{WP}	2.5		2.9		3.9		ns
t _{RP}	0.9		1.1		1.5		ns
t _{WDSU}	0.9		1.0		1.4		ns
t _{WDH}	0.1		0.1		0.2		ns
t _{WASU}	1.7		2.0		2.7		ns
t _{WAH}	1.8		2.1		2.9		ns
t _{RASU}	3.1		3.7		5.0		ns
t _{RAH}	0.2		0.2		0.3		ns
t _{WO}		2.5		2.9		3.9	ns
t _{DD}		2.5		2.9		3.9	ns
t _{EABOUT}		0.5		0.6		0.8	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.5		2.9		3.9		ns

Table 56. EPF10K130E Device Interconnect Timing Microparameters Note (1)								
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		ed Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{DIN2IOE}		2.8		3.5		4.4	ns	
t _{DIN2LE}		0.7		1.2		1.6	ns	
t _{DIN2DATA}		1.6		1.9		2.2	ns	
t _{DCLK2IOE}		1.6		2.1		2.7	ns	
t _{DCLK2LE}		0.7		1.2		1.6	ns	
t _{SAMELAB}		0.1		0.2		0.2	ns	
t _{SAMEROW}		1.9		3.4		5.1	ns	
t _{SAMECOLUMN}		0.9		2.6		4.4	ns	
t _{DIFFROW}		2.8		6.0		9.5	ns	
t _{TWOROWS}		4.7		9.4		14.6	ns	
t _{LEPERIPH}		3.1		4.7		6.9	ns	
t _{LABCARRY}		0.6		0.8		1.0	ns	
t _{LABCASC}		0.9		1.2		1.6	ns	

Table 57. EPF10K130E External Timing Parameters Notes (1), (2)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{DRR}		9.0		12.0		16.0	ns		
t _{INSU} (3)	1.9		2.1		3.0		ns		
t _{INH} (3)	0.0		0.0		0.0		ns		
t _{оитсо} (3)	2.0	5.0	2.0	7.0	2.0	9.2	ns		
t _{INSU} (4)	0.9		1.1		-		ns		
t _{INH} (4)	0.0		0.0		-		ns		
t _{OUTCO} (4)	0.5	4.0	0.5	6.0	-	-	ns		
t _{PCISU}	3.0		6.2		-		ns		
t _{PCIH}	0.0		0.0		-		ns		
t _{PCICO}	2.0	6.0	2.0	6.9	-	-	ns		

Table 59. EPF10K200E Device LE Timing Microparameters (Part 2 of 2) Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Мах	Min	Max	Min	Max			
t _H	0.9		1.1		1.5		ns		
t _{PRE}		0.5		0.6		0.8	ns		
t _{CLR}		0.5		0.6		0.8	ns		
t _{CH}	2.0		2.5		3.0		ns		
t _{CL}	2.0		2.5		3.0		ns		

Table 60. EPF10K200E Device IOE Timing Microparameters Note (1)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{IOD}		1.6		1.9		2.6	ns	
t _{IOC}		0.3		0.3		0.5	ns	
t _{IOCO}		1.6		1.9		2.6	ns	
t _{IOCOMB}		0.5		0.6		0.8	ns	
t _{IOSU}	0.8		0.9		1.2		ns	
t _{IOH}	0.7		0.8		1.1		ns	
t _{IOCLR}		0.2		0.2		0.3	ns	
t _{OD1}		0.6		0.7		0.9	ns	
t _{OD2}		0.1		0.2		0.7	ns	
t _{OD3}		2.5		3.0		3.9	ns	
t _{XZ}		4.4		5.3		7.1	ns	
t _{ZX1}		4.4		5.3		7.1	ns	
t _{ZX2}		3.9		4.8		6.9	ns	
t _{ZX3}		6.3		7.6		10.1	ns	
t _{INREG}		4.8		5.7		7.7	ns	
t _{IOFD}		1.5		1.8		2.4	ns	
t _{INCOMB}		1.5		1.8		2.4	ns	

Table 66. EPF10K50S Device LE Timing Microparameters (Part 2 of 2) Note (1)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{CGENR}		0.1		0.1		0.1	ns	
t _{CASC}		0.5		0.8		1.0	ns	
t _C		0.5		0.6		0.8	ns	
t _{CO}		0.6		0.6		0.7	ns	
t _{COMB}		0.3		0.4		0.5	ns	
t _{SU}	0.5		0.6		0.7		ns	
t _H	0.5		0.6		0.8		ns	
t _{PRE}		0.4		0.5		0.7	ns	
t _{CLR}		0.8		1.0		1.2	ns	
t _{CH}	2.0		2.5		3.0		ns	
t _{CL}	2.0		2.5		3.0		ns	

Table 67. EPF10K50S Device IOE Timing Microparameters Note (1)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{IOD}		1.3		1.3		1.9	ns
t _{IOC}		0.3		0.4		0.4	ns
t _{IOCO}		1.7		2.1		2.6	ns
t _{IOCOMB}		0.5		0.6		0.8	ns
t _{IOSU}	0.8		1.0		1.3		ns
t _{IOH}	0.4		0.5		0.6		ns
t _{IOCLR}		0.2		0.2		0.4	ns
t _{OD1}		1.2		1.2		1.9	ns
t _{OD2}		0.7		0.8		1.7	ns
t _{OD3}		2.7		3.0		4.3	ns
t _{XZ}		4.7		5.7		7.5	ns
t _{ZX1}		4.7		5.7		7.5	ns
t _{ZX2}		4.2		5.3		7.3	ns
t _{ZX3}		6.2		7.5		9.9	ns
t _{INREG}		3.5		4.2		5.6	ns
t _{IOFD}		1.1		1.3		1.8	ns
t _{INCOMB}		1.1		1.3		1.8	ns

Table 69. EPF10K50S Device EAB Internal Timing Macroparameters Note (1)								
Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Мах	Min	Max		
t _{EABAA}		3.7		5.2		7.0	ns	
t _{EABRCCOMB}	3.7		5.2		7.0		ns	
t _{EABRCREG}	3.5		4.9		6.6		ns	
t _{EABWP}	2.0		2.8		3.8		ns	
t _{EABWCCOMB}	4.5		6.3		8.6		ns	
t _{EABWCREG}	5.6		7.8		10.6		ns	
t _{EABDD}		3.8		5.3		7.2	ns	
t _{EABDATACO}		0.8		1.1		1.5	ns	
t _{EABDATASU}	1.1		1.6		2.1		ns	
t _{EABDATAH}	0.0		0.0		0.0		ns	
t _{EABWESU}	0.7		1.0		1.3		ns	
t _{EABWEH}	0.4		0.6		0.8		ns	
t _{EABWDSU}	1.2		1.7		2.2		ns	
t _{EABWDH}	0.0		0.0		0.0		ns	
t _{EABWASU}	1.6		2.3		3.0		ns	
t _{EABWAH}	0.9		1.2		1.8		ns	
t _{EABWO}		3.1		4.3		5.9	ns	

Table 70. EPF10K50S Device Interconnect Timing Microparameters Note (1)									
Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Мах			
t _{DIN2IOE}		3.1		3.7		4.6	ns		
t _{DIN2LE}		1.7		2.1		2.7	ns		
t _{DIN2DATA}		2.7		3.1		5.1	ns		
t _{DCLK2IOE}		1.6		1.9		2.6	ns		
t _{DCLK2LE}		1.7		2.1		2.7	ns		
t _{SAMELAB}		0.1		0.1		0.2	ns		
t _{SAMEROW}		1.5		1.7		2.4	ns		
t _{SAMECOLUMN}		1.0		1.3		2.1	ns		
t _{DIFFROW}		2.5		3.0		4.5	ns		
t _{TWOROWS}		4.0		4.7		6.9	ns		
t _{LEPERIPH}		2.6		2.9		3.4	ns		
t _{LABCARRY}		0.1		0.2		0.2	ns		
t _{LABCASC}		0.8		1.0		1.3	ns		