
E·XFL

Intel - EPF10K30EFC256-2N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	216
Number of Logic Elements/Cells	1728
Total RAM Bits	24576
Number of I/O	176
Number of Gates	119000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k30efc256-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 5. FLEX 10KE Perform	nance					
Application	Resource	es Used	Performance			
	LEs	EABs	-1 Speed Grade	-2 Speed Grade	-3 Speed Grade	
16-bit loadable counter	16	0	285	250	200	MHz
16-bit accumulator	16	0	285	250	200	MHz
16-to-1 multiplexer (1)	10	0	3.5	4.9	7.0	ns
16-bit multiplier with 3-stage pipeline (2)	592	0	156	131	93	MHz
256×16 RAM read cycle speed (2)	0	1	196	154	118	MHz
256×16 RAM write cycle speed (2)	0	1	185	143	106	MHz

Table 5. FLEX 10KE Performance

Notes:

(1) This application uses combinatorial inputs and outputs.

(2) This application uses registered inputs and outputs.

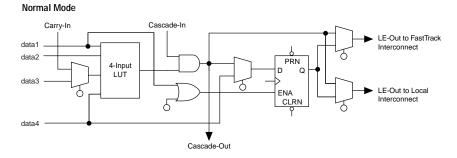
Table 6 shows FLEX 10KE performance for more complex designs. These designs are available as Altera MegaCore $^{\circ}$ functions.

Table 6. FLEX 10KE Performanc	e for Complex	Designs				
Application	LEs Used		Performance			
		-1 Speed Grade	-2 Speed Grade	-3 Speed Grade		
8-bit, 16-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS	
8-bit, 512-point fast Fourier	1,854	23.4	28.7	38.9	µs (1)	
transform (FFT) function		113	92	68	MHz	
a16450 universal asynchronous receiver/transmitter (UART)	342	36	28	20.5	MHz	

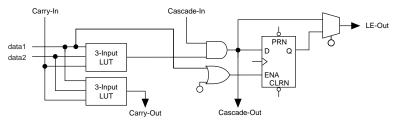
Note:

(1) These values are for calculation time. Calculation time = number of clocks required / f_{max} . Number of clocks required = ceiling [log 2 (points)/2] × [points +14 + ceiling]

EABs provide flexible options for driving and controlling clock signals. Different clocks and clock enables can be used for reading and writing to the EAB. Registers can be independently inserted on the data input, EAB output, write address, write enable signals, read address, and read enable signals. The global signals and the EAB local interconnect can drive write enable, read enable, and clock enable signals. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control write enable, read enable, clear, clock, and clock enable signals.


An EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs (see Figures 2 and 4). The column interconnect, which is adjacent to the EAB, has twice as many channels as other columns in the device.

Logic Array Block


An LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the FLEX 10KE architecture, facilitating efficient routing with optimum device utilization and high performance (see Figure 7).

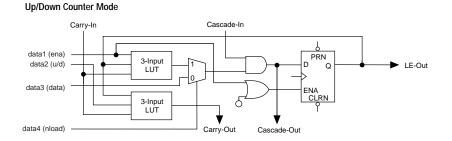
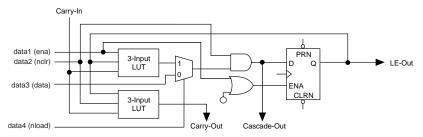
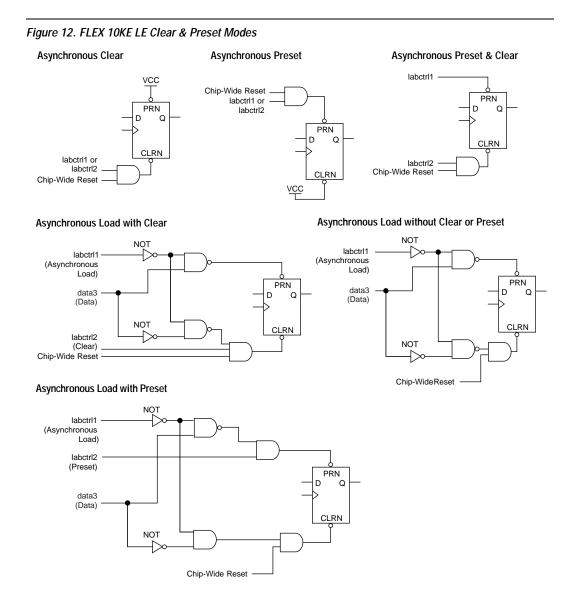


Figure 11. FLEX 10KE LE Operating Modes





Clearable Counter Mode

In addition to the six clear and preset modes, FLEX 10KE devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality.

Altera Corporation

ClockLock & ClockBoost Features

To support high-speed designs, FLEX 10KE devices offer optional ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) used to increase design speed and reduce resource usage. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by resource sharing within the device. The ClockBoost feature allows the designer to distribute a low-speed clock and multiply that clock on-device. Combined, the ClockLock and ClockBoost features provide significant improvements in system performance and bandwidth.

All FLEX 10KE devices, except EPF10K50E and EPF10K200E devices, support ClockLock and ClockBoost circuitry. EPF10K50S and EPF10K200S devices support this circuitry. Devices that support Clock-Lock and ClockBoost circuitry are distinguished with an "X" suffix in the ordering code; for instance, the EPF10K200SFC672-1X device supports this circuit.

The ClockLock and ClockBoost features in FLEX 10KE devices are enabled through the Altera software. External devices are not required to use these features. The output of the ClockLock and ClockBoost circuits is not available at any of the device pins.

The ClockLock and ClockBoost circuitry locks onto the rising edge of the incoming clock. The circuit output can drive the clock inputs of registers only; the generated clock cannot be gated or inverted.

The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and ClockBoost circuitry. When the dedicated clock pin is driving the ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to the GCLK1 pin. In the Altera software, the GCLK1 pin can feed both the ClockLock and ClockBoost circuitry in the FLEX 10KE device. However, when both circuits are used, the other clock pin cannot be used.

Tables 12 and 13 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _R	Input rise time				5	ns
t _F	Input fall time				5	ns
t _{INDUTY}	Input duty cycle		40		60	%
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		180	MHz
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		90	MHz
f _{CLKDEV}	Input deviation from user specification in the MAX+PLUS II software (1)				25,000 (2)	PPM
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs
t _{JITTER}	Jitter on ClockLock or ClockBoost-	$t_{INCLKSTB} < 100$			250	ps
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost-generated clock		40	50	60	%

Table 17. 32-	Bit IDCOD	E for FLEX 10KE Devices	Note (1)					
Device		IDCODE (32 Bits)						
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)				
EPF10K30E	0001	0001 0000 0011 0000	00001101110	1				
EPF10K50E EPF10K50S	0001	0001 0000 0101 0000	00001101110	1				
EPF10K100E	0010	0000 0001 0000 0000	00001101110	1				
EPF10K130E	0001	0000 0001 0011 0000	00001101110	1				
EPF10K200E EPF10K200S	0001	0000 0010 0000 0000	00001101110	1				

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

FLEX 10KE devices include weak pull-up resistors on the JTAG pins.

For more information, see the following documents:

- Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- Jam Programming & Test Language Specification

Figure 20 shows the timing requirements for the JTAG signals.

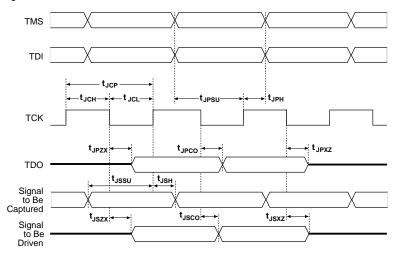


Figure 20. FLEX 10KE JTAG Waveforms

Table 18 shows the timing parameters and values for FLEX 10KE devices.

Sumbol	Parameter	Min	Max	Unit
Symbol	Parameter	IVIIII	IVIAX	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		35	ns
t _{JSZX}	Update register high impedance to valid output		35	ns
t _{JSXZ}	Update register valid output to high impedance		35	ns

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level input voltage		$1.7, 0.5 \times V_{CCIO}$ (8)		5.75	V
V _{IL}	Low-level input voltage		-0.5		0.8, 0.3 × V _{CCIO} (8)	V
V _{OH}	3.3-V high-level TTL output voltage	I _{OH} = -8 mA DC, V _{CCIO} = 3.00 V <i>(9)</i>	2.4			V
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V <i>(9)</i>	V _{CCIO} -0.2			V
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V} (9)$	$0.9 imes V_{CCIO}$			V
	2.5-V high-level output voltage	$I_{OH} = -0.1 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (9)$	2.1			V
		I _{OH} = –1 mA DC, V _{CCIO} = 2.30 V <i>(9)</i>	2.0			V
		$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V } (9)$	1.7			V
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (10)			0.45	V
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V} (10)$			0.2	V
	3.3-V low-level PCI output voltage	I _{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (10)			$0.1 imes V_{CCIO}$	V
	2.5-V low-level output voltage	$I_{OL} = 0.1 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (10)$			0.2	V
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (10)			0.4	V
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (10)			0.7	V
I _I	Input pin leakage current	$V_{I} = V_{CCIOmax}$ to 0 V (11)	-10		10	μA
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = V_{CCIOmax}$ to 0 V (11)	-10		10	μ A
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load, no toggling inputs		5		mA
		V _I = ground, no load, no toggling inputs <i>(12)</i>		10		mA
R _{CONF}	Value of I/O pin pull-	V _{CCIO} = 3.0 V (13)	20		50	k¾
	up resistor before and during configuration	$V_{CCIO} = 2.3 V (13)$	30		80	k¾

Table 2	3. FLEX 10KE Device Capacit	ance Note (14)			
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V.
- (7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21.
 (8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS
- signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22.
- (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (11) This value is specified for normal device operation. The value may vary during power-up.
- (12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial temperature devices.
- (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source.
- (14) Capacitance is sample-tested only.

Figure 22 shows the required relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance.

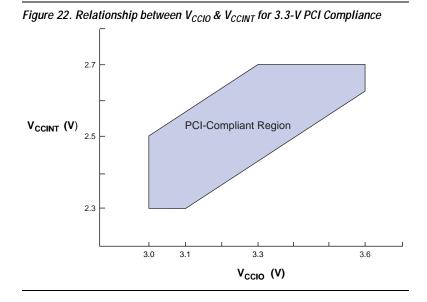


Figure 23 shows the typical output drive characteristics of FLEX 10KE devices with 3.3-V and 2.5-V V_{CCIO}. The output driver is compliant to the 3.3-V *PCI Local Bus Specification*, *Revision 2.2* (when VCCIO pins are connected to 3.3 V). FLEX 10KE devices with a -1 speed grade also comply with the drive strength requirements of the *PCI Local Bus Specification*, *Revision 2.2* (when VCCINT pins are powered with a minimum supply of 2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices can be used in open 5.0-V PCI systems.

Altera Corporation

Symbol	Parameter					
t _{DIN2IOE}	Delay from dedicated input pin to IOE control input	(7)				
t _{DIN2LE}	Delay from dedicated input pin to LE or EAB control input	(7)				
t _{DCLK2IOE}	Delay from dedicated clock pin to IOE clock	(7)				
t _{DCLK2LE}	Delay from dedicated clock pin to LE or EAB clock	(7)				
t _{DIN2DATA}	Delay from dedicated input or clock to LE or EAB data	(7)				
t _{SAMELAB}	Routing delay for an LE driving another LE in the same LAB					
t _{SAMEROW}	Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row	(7)				
t _{SAMECOLUMN}	Routing delay for an LE driving an IOE in the same column	(7)				
t _{DIFFROW}	Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row	(7)				
t _{TWOROWS}	Routing delay for a row IOE or EAB driving an LE or EAB in a different row	(7)				
t _{LEPERIPH}	Routing delay for an LE driving a control signal of an IOE via the peripheral control bus	(7)				
t _{LABCARRY}	Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB					
t _{LABCASC}	Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB					

Table 29. Ex	ternal Timing Parameters	
Symbol	Parameter	Conditions
t _{DRR}	Register-to-register delay via four LEs, three row interconnects, and four local interconnects	(8)
t _{INSU}	Setup time with global clock at IOE register	(9)
t _{INH}	Hold time with global clock at IOE register	(9)
t _{outco}	Clock-to-output delay with global clock at IOE register	(9)
t _{PCISU}	Setup time with global clock for registers used in PCI designs	(9),(10)
t _{PCIH}	Hold time with global clock for registers used in PCI designs	(9),(10)
t _{PCICO}	Clock-to-output delay with global clock for registers used in PCI designs	(9),(10)

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		1.8		2.4		2.9	ns
t _{DIN2LE}		1.5		1.8		2.4	ns
t _{DIN2DATA}		1.5		1.8		2.2	ns
t _{DCLK2IOE}		2.2		2.6		3.0	ns
t _{DCLK2LE}		1.5		1.8		2.4	ns
t _{SAMELAB}		0.1		0.2		0.3	ns
t _{SAMEROW}		2.0		2.4		2.7	ns
t _{SAMECOLUMN}		0.7		1.0		0.8	ns
t _{DIFFROW}		2.7		3.4		3.5	ns
t _{TWOROWS}		4.7		5.8		6.2	ns
t _{LEPERIPH}		2.7		3.4		3.8	ns
t _{LABCARRY}		0.3		0.4		0.5	ns
t _{LABCASC}		0.8		0.8		1.1	ns

Symbol	-1 Spee	ed Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DRR}		8.0		9.5		12.5	ns
t _{INSU} (3)	2.1		2.5		3.9		ns
t _{INH} (3)	0.0		0.0		0.0		ns
^t оитсо ⁽³⁾	2.0	4.9	2.0	5.9	2.0	7.6	ns
t _{INSU} (4)	1.1		1.5		-		ns
t _{INH} (4)	0.0		0.0		-		ns
t _{оитсо} (4)	0.5	3.9	0.5	4.9	-	-	ns
t _{PCISU}	3.0		4.2		-		ns
t _{PCIH}	0.0		0.0		-		ns
t _{PCICO}	2.0	6.0	2.0	7.5	-	-	ns

Table 38. EPF10K	50E Device	LE Timing N	licroparame	eters (Part 2	? of 2) No	te (1)	
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _H	0.9		1.0		1.4		ns
t _{PRE}		0.5		0.6		0.8	ns
t _{CLR}		0.5		0.6		0.8	ns
t _{CH}	2.0		2.5		3.0		ns
t _{CL}	2.0		2.5		3.0		ns

Table 39. EPF10	1		- I		te (1)	i	
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{IOD}		2.2		2.4		3.3	ns
t _{IOC}		0.3		0.3		0.5	ns
t _{IOCO}		1.0		1.0		1.4	ns
t _{IOCOMB}		0.0		0.0		0.2	ns
t _{IOSU}	1.0		1.2		1.7		ns
t _{IOH}	0.3		0.3		0.5		ns
t _{IOCLR}		0.9		1.0		1.4	ns
t _{OD1}		0.8		0.9		1.2	ns
t _{OD2}		0.3		0.4		0.7	ns
t _{OD3}		3.0		3.5		3.5	ns
t _{XZ}		1.4		1.7		2.3	ns
t _{ZX1}		1.4		1.7		2.3	ns
t _{ZX2}		0.9		1.2		1.8	ns
t _{ZX3}		3.6		4.3		4.6	ns
t _{INREG}		4.9		5.8		7.8	ns
t _{IOFD}		2.8		3.3		4.5	ns
t _{INCOMB}		2.8		3.3		4.5	ns

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	d Grade	Unit
	Min	Мах	Min	Max	Min	Max	
t _{EABAA}		6.4		7.6		10.2	ns
t _{EABRCOMB}	6.4		7.6		10.2		ns
t _{EABRCREG}	4.4		5.1		7.0		ns
t _{EABWP}	2.5		2.9		3.9		ns
t _{EABWCOMB}	6.0		7.0		9.5		ns
t _{EABWCREG}	6.8		7.8		10.6		ns
t _{EABDD}		5.7		6.7		9.0	ns
t _{EABDATACO}		0.8		0.9		1.3	ns
t _{EABDATASU}	1.5		1.7		2.3		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	1.3		1.4		2.0		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.5		1.7		2.3		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.0		3.6		4.8		ns
t _{EABWAH}	0.5		0.5		0.8		ns
t _{EABWO}		5.1		6.0		8.1	ns

Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		3.5		4.3		5.6	ns
t _{DIN2LE}		2.1		2.5		3.4	ns
t _{DIN2DATA}		2.2		2.4		3.1	ns
t _{DCLK2IOE}		2.9		3.5		4.7	ns
t _{DCLK2LE}		2.1		2.5		3.4	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.1		1.1		1.5	ns
t _{SAME} COLUMN		0.8		1.0		1.3	ns
t _{DIFFROW}		1.9		2.1		2.8	ns
t _{TWOROWS}		3.0		3.2		4.3	ns
t _{LEPERIPH}		3.1		3.3		3.7	ns
t _{LABCARRY}		0.1		0.1		0.2	ns
t _{LABCASC}		0.3		0.3		0.5	ns

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DRR}		9.0		12.0		16.0	ns
t _{INSU} (3)	2.0		2.5		3.3		ns
t _{INH} (3)	0.0		0.0		0.0		ns
t _{оитсо} (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns
t _{INSU} (4)	2.0		2.2		-		ns
t _{INH} (4)	0.0		0.0		-		ns
t _{оитсо} (4)	0.5	3.0	0.5	4.6	-	-	ns
t _{PCISU}	3.0		6.2		-		ns
t _{PCIH}	0.0		0.0		-		ns
t _{PCICO}	2.0	6.0	2.0	6.9	-	_	ns

 Table 51. EPF10K100E External Bidirectional Timing Parameters
 Notes (1), (2)

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR} (3)	1.7		2.5		3.3		ns	
t _{inhbidir} (3)	0.0		0.0		0.0		ns	
t _{INSUBIDIR} (4)	2.0		2.8		-		ns	
t _{INHBIDIR} (4)	0.0		0.0		-		ns	
toutcobidir (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns	
t _{XZBIDIR} (3)		5.6		7.5		10.1	ns	
t _{ZXBIDIR} (3)		5.6		7.5		10.1	ns	
toutcobidir (4)	0.5	3.0	0.5	4.6	-	-	ns	
t _{XZBIDIR} (4)		4.6		6.5		-	ns	
t _{ZXBIDIR} (4)		4.6		6.5		-	ns	

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		2.8		3.5		4.4	ns
t _{DIN2LE}		0.7		1.2		1.6	ns
t _{DIN2DATA}		1.6		1.9		2.2	ns
t _{DCLK2IOE}		1.6		2.1		2.7	ns
t _{DCLK2LE}		0.7		1.2		1.6	ns
t _{SAMELAB}		0.1		0.2		0.2	ns
t _{SAMEROW}		1.9		3.4		5.1	ns
t _{SAMECOLUMN}		0.9		2.6		4.4	ns
t _{DIFFROW}		2.8		6.0		9.5	ns
t _{TWOROWS}		4.7		9.4		14.6	ns
t _{LEPERIPH}		3.1		4.7		6.9	ns
t _{LABCARRY}		0.6		0.8		1.0	ns
t _{LABCASC}		0.9		1.2		1.6	ns

Table 57. EPF10	K130E Extern	130E External Timing Parameters Notes (1), (2)								
Symbol	-1 Spee	-1 Speed Grade		ed Grade	-3 Spee	d Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{DRR}		9.0		12.0		16.0	ns			
t _{INSU} (3)	1.9		2.1		3.0		ns			
t _{INH} (3)	0.0		0.0		0.0		ns			
t оитсо (3)	2.0	5.0	2.0	7.0	2.0	9.2	ns			
t _{INSU} (4)	0.9		1.1		-		ns			
t _{INH} (4)	0.0		0.0		-		ns			
tоитсо <i>(4)</i>	0.5	4.0	0.5	6.0	-	-	ns			
t _{PCISU}	3.0		6.2		-		ns			
t _{PCIH}	0.0		0.0		-		ns			
t _{PCICO}	2.0	6.0	2.0	6.9	-	-	ns			

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		3.7		5.2		7.0	ns
t _{EABRCCOMB}	3.7		5.2		7.0		ns
t _{EABRCREG}	3.5		4.9		6.6		ns
t _{EABWP}	2.0		2.8		3.8		ns
t _{EABWCCOMB}	4.5		6.3		8.6		ns
t _{EABWCREG}	5.6		7.8		10.6		ns
t _{EABDD}		3.8		5.3		7.2	ns
t _{EABDATACO}		0.8		1.1		1.5	ns
t _{EABDATASU}	1.1		1.6		2.1		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	0.7		1.0		1.3		ns
t _{EABWEH}	0.4		0.6		0.8		ns
t _{EABWDSU}	1.2		1.7		2.2		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	1.6		2.3		3.0		ns
t _{EABWAH}	0.9		1.2		1.8		ns
t _{EABWO}		3.1		4.3		5.9	ns

Table 70. EPF10	K50S Device	Interconnec	t Timing Mi	croparamete	e rs Note	e (1)	
Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		3.1		3.7		4.6	ns
t _{DIN2LE}		1.7		2.1		2.7	ns
t _{DIN2DATA}		2.7		3.1		5.1	ns
t _{DCLK2IOE}		1.6		1.9		2.6	ns
t _{DCLK2LE}		1.7		2.1		2.7	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.5		1.7		2.4	ns
t _{SAMECOLUMN}		1.0		1.3		2.1	ns
t _{DIFFROW}		2.5		3.0		4.5	ns
t _{TWOROWS}		4.0		4.7		6.9	ns
t _{LEPERIPH}		2.6		2.9		3.4	ns
t _{LABCARRY}		0.1		0.2		0.2	ns
t _{LABCASC}		0.8		1.0		1.3	ns

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		3.9		6.4		8.4	ns
t _{EABRCOMB}	3.9		6.4		8.4		ns
t _{EABRCREG}	3.6		5.7		7.6		ns
t _{EABWP}	2.1		4.0		5.3		ns
t _{EABWCOMB}	4.8		8.1		10.7		ns
t _{EABWCREG}	5.4		8.0		10.6		ns
t _{EABDD}		3.8		5.1		6.7	ns
t _{EABDATACO}		0.8		1.0		1.3	ns
t _{EABDATASU}	1.1		1.6		2.1		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	0.7		1.1		1.5		ns
t _{EABWEH}	0.4		0.5		0.6		ns
t _{EABWDSU}	1.2		1.8		2.4		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	1.9		3.6		4.7		ns
t _{EABWAH}	0.8		0.5		0.7		ns
t _{EABWO}		3.1		4.4		5.8	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Мах	Min	Мах	Min	Max	
t _{DIN2IOE}		4.4		4.8		5.5	ns
t _{DIN2LE}		0.6		0.6		0.9	ns
t _{DIN2DATA}		1.8		2.1		2.8	ns
t _{DCLK2IOE}		1.7		2.0		2.8	ns
t _{DCLK2LE}		0.6		0.6		0.9	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		3.0		4.6		5.7	ns
t _{SAME} COLUMN		3.5		4.9		6.4	ns
t _{DIFFROW}		6.5		9.5		12.1	ns
t _{TWOROWS}		9.5		14.1		17.8	ns
t _{LEPERIPH}		5.5		6.2		7.2	ns
t _{LABCARRY}		0.3		0.1		0.2	ns

During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

SRAM configuration elements allow FLEX 10KE devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 85 ms and can be used to reconfigure an entire system dynamically. In-field upgrades can be performed by distributing new configuration files.

Before and during configuration, all I/O pins (except dedicated inputs, clock, or configuration pins) are pulled high by a weak pull-up resistor.

Programming Files

Despite being function- and pin-compatible, FLEX 10KE devices are not programming- or configuration file-compatible with FLEX 10K or FLEX 10KA devices. A design therefore must be recompiled before it is transferred from a FLEX 10K or FLEX 10KA device to an equivalent FLEX 10KE device. This recompilation should be performed both to create a new programming or configuration file and to check design timing in FLEX 10KE devices, which has different timing characteristics than FLEX 10K or FLEX 10KA devices.

FLEX 10KE devices are generally pin-compatible with equivalent FLEX 10KA devices. In some cases, FLEX 10KE devices have fewer I/O pins than the equivalent FLEX 10KA devices. Table 81 shows which FLEX 10KE devices have fewer I/O pins than equivalent FLEX 10KA devices. However, power, ground, JTAG, and configuration pins are the same on FLEX 10KA and FLEX 10KE devices, enabling migration from a FLEX 10KA design to a FLEX 10KE design.