E·XFL

Intel - EPF10K30EFC256-3N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	216
Number of Logic Elements/Cells	1728
Total RAM Bits	24576
Number of I/O	176
Number of Gates	119000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k30efc256-3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 7. FLEX 10KE LAB

Notes:

- (1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26.
- (2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 34.

Figure 11. FLEX 10KE LE Operating Modes

Clearable Counter Mode

Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is AND ed with a synchronous clear signal.

Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control

Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register.

During compilation, the Altera Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

The clear and preset logic is implemented in one of the following six modes chosen during design entry:

- Asynchronous clear
- Asynchronous preset
- Asynchronous clear and preset
- Asynchronous load with clear
- Asynchronous load with preset
- Asynchronous load without clear or preset

Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear.

For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the fulllength channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row.

Table 7 summarizes the FastTrack Interconnect routing structure resources available in each FLEX 10KE device.

Table 7. FLEX 10KE FastTrack Interconnect Resources								
Device	Rows	Channels per Row	Columns	Channels per Column				
EPF10K30E	6	216	36	24				
EPF10K50E EPF10K50S	10	216	36	24				
EPF10K100E	12	312	52	24				
EPF10K130E	16	312	52	32				
EPF10K200E EPF10K200S	24	312	52	48				

In addition to general-purpose I/O pins, FLEX 10KE devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output enable and clock enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3. Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row channels. The signal is accessible by all LEs within that row. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the row channels. Up to eight IOEs connect to each side of each row channel (see Figure 16).

Figure 16. FLEX 10KE Row-to-IOE Connections The values for m and n are provided in Table 10.

IOE1 m Row FastTrack

Table 10 lists the	FLEX 10KE row-to	o-IOE interconnect resources.
--------------------	------------------	-------------------------------

Table 10. FLEX 10KE Row-to-IOE Interconnect Resources							
Device	Channels per Row (n)	Row Channels per Pin (m)					
EPF10K30E	216	27					
EPF10K50E	216	27					
EPF10K50S							
EPF10K100E	312	39					
EPF10K130E	312	39					
EPF10K200E EPF10K200S	312	39					

 \bigcirc

Tables 12 and 13 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively.

Table 12. ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices									
Symbol	Parameter	Condition	Min	Тур	Max	Unit			
t _R	Input rise time				5	ns			
t _F	Input fall time				5	ns			
t _{INDUTY}	Input duty cycle		40		60	%			
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		180	MHz			
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		90	MHz			
f _{CLKDEV}	Input deviation from user specification in the MAX+PLUS II software (1)				25,000 (2)	PPM			
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps			
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs			
t _{JITTER}	Jitter on ClockLock or ClockBoost-	$t_{INCLKSTB} < 100$			250	ps			
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps			
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost-generated clock		40	50	60	%			

Table 13. ClockLock & ClockBoost Parameters for -2 Speed-Grade Devices									
Symbol	Parameter	Condition	Min	Тур	Max	Unit			
t _R	Input rise time				5	ns			
t _F	Input fall time				5	ns			
t _{INDUTY}	Input duty cycle		40		60	%			
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		75	MHz			
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		37.5	MHz			
f _{CLKDEV}	Input deviation from user specification in the MAX+PLUS II software (1)				25,000 (2)	PPM			
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps			
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs			
t _{JITTER}	Jitter on ClockLock or ClockBoost-	$t_{INCLKSTB} < 100$			250	ps			
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps			
toutduty	Duty cycle for ClockLock or ClockBoost-generated clock		40	50	60	%			

Notes to tables:

- (1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{ITTER} specification is measured under long-term observation. The maximum value for t_{ITTER} is 200 ps if t_{INCLKSTB} is lower than 50 ps.

I/O Configuration

This section discusses the peripheral component interconnect (PCI) pull-up clamping diode option, slew-rate control, open-drain output option, and MultiVolt I/O interface for FLEX 10KE devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera software logic options. The MultiVolt I/O interface is controlled by connecting V_{CCIO} to a different voltage than V_{CCINT} . Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu).

Generic Testing

Each FLEX 10KE device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for FLEX 10KE devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 21. FLEX 10KE AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V. devices or outputs.

Operating Conditions

Tables 19 through 23 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V FLEX 10KE devices.

Table 19. FLEX 10KE 2.5-V Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit				
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	3.6	V				
V _{CCIO}			-0.5	4.6	V				
VI	DC input voltage		-2.0	5.75	V				
IOUT	DC output current, per pin		-25	25	mA				
T _{STG}	Storage temperature	No bias	-65	150	°C				
T _{AMB}	Ambient temperature	Under bias	-65	135	°C				
TJ	Junction temperature	PQFP, TQFP, BGA, and FineLine BGA		135	°C				
		packages, under blas							
		Ceramic PGA packages, under bias		150	°C				

Table 23. FLEX 10KE Device Capacitance Note (14)									
Symbol	Parameter	Conditions	Min	Max	Unit				
CIN	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF				
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF				
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF				

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V.
- (7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21.
 (8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS
- signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22.
- (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (11) This value is specified for normal device operation. The value may vary during power-up.
- (12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial temperature devices.
- (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source.
- (14) Capacitance is sample-tested only.

Table 26. EAB Timing Microparameters Note (1)						
Symbol	Parameter	Conditions				
t _{EABDATA1}	Data or address delay to EAB for combinatorial input					
t _{EABDATA2}	Data or address delay to EAB for registered input					
t _{EABWE1}	Write enable delay to EAB for combinatorial input					
t _{EABWE2}	Write enable delay to EAB for registered input					
t _{EABRE1}	Read enable delay to EAB for combinatorial input					
t _{EABRE2}	Read enable delay to EAB for registered input					
t _{EABCLK}	EAB register clock delay					
t _{EABCO}	EAB register clock-to-output delay					
t _{EABBYPASS}	Bypass register delay					
t _{EABSU}	EAB register setup time before clock					
t _{EABH}	EAB register hold time after clock					
t _{EABCLR}	EAB register asynchronous clear time to output delay					
t _{AA}	Address access delay (including the read enable to output delay)					
t _{WP}	Write pulse width					
t _{RP}	Read pulse width					
t _{WDSU}	Data setup time before falling edge of write pulse	(5)				
t _{WDH}	Data hold time after falling edge of write pulse	(5)				
t _{WASU}	Address setup time before rising edge of write pulse	(5)				
t _{WAH}	Address hold time after falling edge of write pulse	(5)				
t _{RASU}	Address setup time with respect to the falling edge of the read enable					
t _{RAH}	Address hold time with respect to the falling edge of the read enable					
t _{WO}	Write enable to data output valid delay					
t _{DD}	Data-in to data-out valid delay					
t _{EABOUT}	Data-out delay					
t _{EABCH}	Clock high time					
t _{EABCL}	Clock low time					

Table 34. EPF10K30E Device EAB Internal Timing Macroparameters Note (1)							
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Мах	
t _{EABAA}		6.4		7.6		8.8	ns
t _{EABRCOMB}	6.4		7.6		8.8		ns
t _{EABRCREG}	4.4		5.1		6.0		ns
t _{EABWP}	2.5		2.9		3.3		ns
t _{EABWCOMB}	6.0		7.0		8.0		ns
t _{EABWCREG}	6.8		7.8		9.0		ns
t _{EABDD}		5.7		6.7		7.7	ns
t _{EABDATACO}		0.8		0.9		1.1	ns
t _{EABDATASU}	1.5		1.7		2.0		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	1.3		1.4		1.7		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.5		1.7		2.0		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.0		3.6		4.3		ns
t _{EABWAH}	0.5		0.5		0.4		ns
t _{EABWO}		5.1		6.0		6.8	ns

Table 35. EPF10K30E Device Interconnect Timing Microparameters Note (1)							
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		1.8		2.4		2.9	ns
t _{DIN2LE}		1.5		1.8		2.4	ns
t _{DIN2DATA}		1.5		1.8		2.2	ns
t _{DCLK2IOE}		2.2		2.6		3.0	ns
t _{DCLK2LE}		1.5		1.8		2.4	ns
t _{SAMELAB}		0.1		0.2		0.3	ns
t _{SAMEROW}		2.0		2.4		2.7	ns
t _{SAMECOLUMN}		0.7		1.0		0.8	ns
t _{DIFFROW}		2.7		3.4		3.5	ns
t _{TWOROWS}		4.7		5.8		6.2	ns
t _{LEPERIPH}		2.7		3.4		3.8	ns
t _{LABCARRY}		0.3		0.4		0.5	ns
t _{LABCASC}		0.8		0.8		1.1	ns

Table 36. EPF10K30E External Timing Parameters Notes (1), (2)								
Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{DRR}		8.0		9.5		12.5	ns	
t _{INSU} (3)	2.1		2.5		3.9		ns	
t _{INH} (3)	0.0		0.0		0.0		ns	
t _{оитсо} (3)	2.0	4.9	2.0	5.9	2.0	7.6	ns	
t _{INSU} (4)	1.1		1.5		-		ns	
t _{INH} (4)	0.0		0.0		-		ns	
t _{оитсо} (4)	0.5	3.9	0.5	4.9	-	-	ns	
t _{PCISU}	3.0		4.2		-		ns	
t _{PCIH}	0.0		0.0		-		ns	
t _{PCICO}	2.0	6.0	2.0	7.5	-	-	ns	

Table 38. EPF10K50E Device LE Timing Microparameters (Part 2 of 2) Note (1)											
Symbol	-1 Spee	d Grade -2 Spee		d Grade	-3 Speed Grade		Unit				
	Min	Max	Min	Max	Min	Max					
t _H	0.9		1.0		1.4		ns				
t _{PRE}		0.5		0.6		0.8	ns				
t _{CLR}		0.5		0.6		0.8	ns				
t _{CH}	2.0		2.5		3.0		ns				
t _{CL}	2.0		2.5		3.0		ns				

Table 39. EPF10	Table 39. EPF10K50E Device IOE Timing Microparameters Note (1)									
Symbol	-1 Speed Grade		-2 Spee	ed Grade	-3 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max				
t _{IOD}		2.2		2.4		3.3	ns			
t _{IOC}		0.3		0.3		0.5	ns			
t _{IOCO}		1.0		1.0		1.4	ns			
t _{IOCOMB}		0.0		0.0		0.2	ns			
t _{IOSU}	1.0		1.2		1.7		ns			
t _{IOH}	0.3		0.3		0.5		ns			
t _{IOCLR}		0.9		1.0		1.4	ns			
t _{OD1}		0.8		0.9		1.2	ns			
t _{OD2}		0.3		0.4		0.7	ns			
t _{OD3}		3.0		3.5		3.5	ns			
t _{XZ}		1.4		1.7		2.3	ns			
t _{ZX1}		1.4		1.7		2.3	ns			
t _{ZX2}		0.9		1.2		1.8	ns			
t _{ZX3}		3.6		4.3		4.6	ns			
t _{INREG}		4.9		5.8		7.8	ns			
t _{IOFD}		2.8		3.3		4.5	ns			
t _{INCOMB}		2.8		3.3		4.5	ns			

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)											
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit				
	Min	Мах	Min	Max	Min	Max					
t _{DRR}		8.5		10.0		13.5	ns				
t _{INSU}	2.7		3.2		4.3		ns				
t _{INH}	0.0		0.0		0.0		ns				
t _{оитсо}	2.0	4.5	2.0	5.2	2.0	7.3	ns				
t _{PCISU}	3.0		4.2		-		ns				
t _{PCIH}	0.0		0.0		-		ns				
t _{PCICO}	2.0	6.0	2.0	7.7	-	-	ns				

 Table 44. EPF10K50E External Bidirectional Timing Parameters
 Notes (1), (2)

					-		
Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	2.7		3.2		4.3		ns
t _{INHBIDIR}	0.0		0.0		0.0		ns
t _{OUTCOBIDIR}	2.0	4.5	2.0	5.2	2.0	7.3	ns
t _{XZBIDIR}		6.8		7.8		10.1	ns
tZXBIDIR		6.8		7.8		10.1	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external timing parameters.

Table 45. EPF10K100E Device LE Timing Microparameters Note (1)										
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{LUT}		0.7		1.0		1.5	ns			
t _{CLUT}		0.5		0.7		0.9	ns			
t _{RLUT}		0.6		0.8		1.1	ns			
t _{PACKED}		0.3		0.4		0.5	ns			
t _{EN}		0.2		0.3		0.3	ns			
t _{CICO}		0.1		0.1		0.2	ns			
t _{CGEN}		0.4		0.5		0.7	ns			

Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
CGENR		0.1		0.1		0.2	ns
CASC		0.6		0.9		1.2	ns
С		0.8		1.0		1.4	ns
со		0.6		0.8		1.1	ns
СОМВ		0.4		0.5		0.7	ns
SU	0.4		0.6		0.7		ns
Н	0.5		0.7		0.9		ns
PRE		0.8		1.0		1.4	ns
CLR		0.8		1.0		1.4	ns
СН	1.5		2.0		2.5		ns
	1.5		2.0		2.5		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Мах	
IOD		1.7		2.0		2.6	ns
tioc		0.0		0.0		0.0	ns
tioco		1.4		1.6		2.1	ns
t _{IOCOMB}		0.5		0.7		0.9	ns
t _{IOSU}	0.8		1.0		1.3		ns
t _{іон}	0.7		0.9		1.2		ns
t _{IOCLR}		0.5		0.7		0.9	ns
t _{OD1}		3.0		4.2		5.6	ns
t _{OD2}		3.0		4.2		5.6	ns
t _{OD3}		4.0		5.5		7.3	ns
t _{XZ}		3.5		4.6		6.1	ns
t _{ZX1}		3.5		4.6		6.1	ns
tzx2		3.5		4.6		6.1	ns
t _{ZX3}		4.5		5.9		7.8	ns
INREG		2.0		2.6		3.5	ns
t _{IOFD}		0.5		0.8		1.2	ns
t _{INCOMB}		0.5		0.8		1.2	ns

Г

Table 53. EPF10K130E Device IOE Timing Microparameters Note (1)										
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max				
t _{OD3}		4.0		5.6		7.5	ns			
t _{XZ}		2.8		4.1		5.5	ns			
t _{ZX1}		2.8		4.1		5.5	ns			
t _{ZX2}		2.8		4.1		5.5	ns			
t _{ZX3}		4.0		5.6		7.5	ns			
t _{INREG}		2.5		3.0		4.1	ns			
t _{IOFD}		0.4		0.5		0.6	ns			
t _{INCOMB}		0.4		0.5		0.6	ns			

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Мах	-
t _{EABDATA1}		1.5		2.0		2.6	ns
t _{EABDATA2}		0.0		0.0		0.0	ns
t _{EABWE1}		1.5		2.0		2.6	ns
t _{EABWE2}		0.3		0.4		0.5	ns
t _{EABRE1}		0.3		0.4		0.5	ns
t _{EABRE2}		0.0		0.0		0.0	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.4		0.5	ns
t _{EABBYPASS}		0.1		0.1		0.2	ns
t _{EABSU}	0.8		1.0		1.4		ns
t _{EABH}	0.1		0.2		0.2		ns
t _{EABCLR}	0.3		0.4		0.5		ns
t _{AA}		4.0		5.0		6.6	ns
t _{WP}	2.7		3.5		4.7		ns
t _{RP}	1.0		1.3		1.7		ns
t _{WDSU}	1.0		1.3		1.7		ns
t _{WDH}	0.2		0.2		0.3		ns
t _{WASU}	1.6		2.1		2.8		ns
t _{WAH}	1.6		2.1		2.8		ns
t _{RASU}	3.0		3.9		5.2		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{WO}		1.5		2.0		2.6	ns

Table 73. EPF10K200S Device Internal & External Timing Parameters Note (1)									
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		ed Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{LUT}		0.7		0.8		1.2	ns		
t _{CLUT}		0.4		0.5		0.6	ns		
t _{RLUT}		0.5		0.7		0.9	ns		
t _{PACKED}		0.4		0.5		0.7	ns		
t _{EN}		0.6		0.5		0.6	ns		
t _{CICO}		0.1		0.2		0.3	ns		
t _{CGEN}		0.3		0.4		0.6	ns		
t _{CGENR}		0.1		0.2		0.3	ns		
t _{CASC}		0.7		0.8		1.2	ns		
t _C		0.5		0.6		0.8	ns		
t _{CO}		0.5		0.6		0.8	ns		
t _{COMB}		0.3		0.6		0.8	ns		
t _{SU}	0.4		0.6		0.7		ns		
t _H	1.0		1.1		1.5		ns		
t _{PRE}		0.4		0.6		0.8	ns		
t _{CLR}		0.5		0.6		0.8	ns		
t _{CH}	2.0		2.5		3.0		ns		
t _{CL}	2.0		2.5		3.0		ns		

 Table 74. EPF10K200S Device IOE Timing Microparameters (Part 1 of 2)
 Note (1)

Symbol	-1 Spee	ed Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{IOD}		1.8		1.9		2.6	ns	
t _{IOC}		0.3		0.3		0.5	ns	
t _{IOCO}		1.7		1.9		2.6	ns	
t _{IOCOMB}		0.5		0.6		0.8	ns	
t _{IOSU}	0.8		0.9		1.2		ns	
t _{IOH}	0.4		0.8		1.1		ns	
t _{IOCLR}		0.2		0.2		0.3	ns	
t _{OD1}		1.3		0.7		0.9	ns	
t _{OD2}		0.8		0.2		0.4	ns	
t _{OD3}		2.9		3.0		3.9	ns	
t _{XZ}		5.0		5.3		7.1	ns	
t _{ZX1}		5.0		5.3		7.1	ns	

Table 76. EPF10K200S Device EAB Internal Timing Macroparameters Note (1)									
Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Spee	ed Grade	Unit		
	Min	Max	Min	Мах	Min	Max			
t _{EABAA}		3.9		6.4		8.4	ns		
t _{EABRCOMB}	3.9		6.4		8.4		ns		
t _{EABRCREG}	3.6		5.7		7.6		ns		
t _{EABWP}	2.1		4.0		5.3		ns		
t _{EABWCOMB}	4.8		8.1		10.7		ns		
t _{EABWCREG}	5.4		8.0		10.6		ns		
t _{EABDD}		3.8		5.1		6.7	ns		
t _{EABDATACO}		0.8		1.0		1.3	ns		
t _{EABDATASU}	1.1		1.6		2.1		ns		
t _{EABDATAH}	0.0		0.0		0.0		ns		
t _{EABWESU}	0.7		1.1		1.5		ns		
t _{EABWEH}	0.4		0.5		0.6		ns		
t _{EABWDSU}	1.2		1.8		2.4		ns		
t _{EABWDH}	0.0		0.0		0.0		ns		
t _{EABWASU}	1.9		3.6		4.7		ns		
t _{EABWAH}	0.8		0.5		0.7		ns		
t _{EABWO}		3.1		4.4		5.8	ns		

Table 77. EPF10K200S Device Interconnect Timing Microparameters (Part 1 of 2) Note (1)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Мах	Min	Max	
t _{DIN2IOE}		4.4		4.8		5.5	ns
t _{DIN2LE}		0.6		0.6		0.9	ns
t _{DIN2DATA}		1.8		2.1		2.8	ns
t _{DCLK2IOE}		1.7		2.0		2.8	ns
t _{DCLK2LE}		0.6		0.6		0.9	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		3.0		4.6		5.7	ns
t _{SAMECOLUMN}		3.5		4.9		6.4	ns
t _{DIFFROW}		6.5		9.5		12.1	ns
t _{TWOROWS}		9.5		14.1		17.8	ns
tLEPERIPH		5.5		6.2		7.2	ns
t _{LABCARRY}		0.3		0.1		0.2	ns

Figure 31. FLEX 10KE I_{CCACTIVE} vs. Operating Frequency (Part 2 of 2)

Configuration & Operation

The FLEX 10KE architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The FLEX 10KE architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. The process of physically loading the SRAM data into the device is called *configuration*. Before configuration, as V_{CC} rises, the device initiates a Power-On Reset (POR). This POR event clears the device and prepares it for configuration. The FLEX 10KE POR time does not exceed 50 µs.

When configuring with a configuration device, refer to the respective configuration device data sheet for POR timing information.