E·XFL

Altera - EPF10K30EQC208-1X Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	216
Number of Logic Elements/Cells	1728
Total RAM Bits	24576
Number of I/O	147
Number of Gates	119000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf10k30eqc208-1x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 4. FLEX 10KE Package Sizes									
Device	144- Pin TQFP	208-Pin PQFP	240-Pin PQFP RQFP	256-Pin FineLine BGA	356- Pin BGA	484-Pin FineLine BGA	599-Pin PGA	600- Pin BGA	672-Pin FineLine BGA
Pitch (mm)	0.50	0.50	0.50	1.0	1.27	1.0	-	1.27	1.0
Area (mm ²)	484	936	1,197	289	1,225	529	3,904	2,025	729
$\begin{array}{l} \text{Length} \times \text{width} \\ \text{(mm} \times \text{mm)} \end{array}$	22 × 22	30.6 × 30.6	34.6×34.6	17 × 17	35×35	23 × 23	62.5 × 62.5	45×45	27 × 27

General Description

Altera FLEX 10KE devices are enhanced versions of FLEX 10K devices. Based on reconfigurable CMOS SRAM elements, the FLEX architecture incorporates all features necessary to implement common gate array megafunctions. With up to 200,000 typical gates, FLEX 10KE devices provide the density, speed, and features to integrate entire systems, including multiple 32-bit buses, into a single device.

The ability to reconfigure FLEX 10KE devices enables 100% testing prior to shipment and allows the designer to focus on simulation and design verification. FLEX 10KE reconfigurability eliminates inventory management for gate array designs and generation of test vectors for fault coverage.

Table 5 shows FLEX 10KE performance for some common designs. All performance values were obtained with Synopsys DesignWare or LPM functions. Special design techniques are not required to implement the applications; the designer simply infers or instantiates a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file.

Cascade Chain

With the cascade chain, the FLEX 10KE architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. An a delay as low as 0.6 ns per LE, each additional LE provides four more inputs to the effective width of a function. Cascade chain logic can be created automatically by the Altera Compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EPF10K50E device, the cascade chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB). This break is due to the EAB's placement in the middle of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. The LE delay is 0.9 ns; the cascade chain delay is 0.6 ns. With the cascade chain, 2.7 ns are needed to decode a 16-bit address.

Figure 10. FLEX 10KE Cascade Chain Operation

Altera Corporation

Normal Mode

The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Altera Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time.

The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a three-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a four-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 11 on page 22, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources.

I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time, or as an output register for data that requires fast clock-to-output performance. In some cases, using an LE register for an input register will result in a faster setup time than using an IOE register. IOEs can be used as input, output, or bidirectional pins. For bidirectional registered I/O implementation, the output register should be in the IOE, and the data input and output enable registers should be LE registers placed adjacent to the bidirectional pin. The Altera Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Figure 15 shows the bidirectional I/O registers.

Table 9. Peripheral Bus Sources for EPF10K100E, EPF10K130E, EPF10K200E & EPF10K200S Devices						
Peripheral Control Signal	EPF10K100E	EPF10K130E	EPF10K200E EPF10K200S			
OE 0	Row A	Row C	Row G			
OE1	Row C	Row E	Row I			
OE 2	Row E	Row G	Row K			
OE 3	Row L	Row N	Row R			
OE4	Row I	Row K	Row O			
OE5	Row K	Row M	Row Q			
CLKENA0/CLK0/GLOBAL0	Row F	Row H	Row L			
CLKENA1/OE6/GLOBAL1	Row D	Row F	Row J			
CLKENA2/CLR0	Row B	Row D	Row H			
CLKENA3/OE7/GLOBAL2	Row H	Row J	Row N			
CLKENA4/CLR1	Row J	Row L	Row P			
CLKENA5/CLK1/GLOBAL3	Row G	Row I	Row M			

Signals on the peripheral control bus can also drive the four global signals, referred to as GLOBAL0 through GLOBAL3 in Tables 8 and 9. An internally generated signal can drive a global signal, providing the same low-skew, low-delay characteristics as a signal driven by an input pin. An LE drives the global signal by driving a row line that drives the peripheral bus, which then drives the global signal. This feature is ideal for internally generated clear or clock signals with high fan-out. However, internally driven global signals offer no advantage over the general-purpose interconnect for routing data signals. The dedicated input pin should be driven to a known logic state (such as ground) and not be allowed to float.

The chip-wide output enable pin is an active-high pin (DEV_OE) that can be used to tri-state all pins on the device. This option can be set in the Altera software. On EPF10K50E and EPF10K200E devices, the built-in I/O pin pull-up resistors (which are active during configuration) are active when the chip-wide output enable pin is asserted. The registers in the IOE can also be reset by the chip-wide reset pin.

Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels is different for each IOE (see Figure 17).

The values for m and n are provided in Table 11.

Table 11 lists the FLEX 10KE column-to-IOE interconnect resources.

Table 11. FLEX 10KE Column-to-IOE Interconnect Resources					
Device	Channels per Column (n)	Column Channels per Pin (m)			
EPF10K30E	24	16			
EPF10K50E EPF10K50S	24	16			
EPF10K100E	24	16			
EPF10K130E	32	24			
EPF10K200E EPF10K200S	48	40			

SameFrame Pin-Outs FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ballcount packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K30E device in a 256-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 18).

Printed Circuit Board Designed for 672-Pin FineLine BGA Package

 256-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements)
 672-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements)

ClockLock & ClockBoost Features

To support high-speed designs, FLEX 10KE devices offer optional ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) used to increase design speed and reduce resource usage. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by resource sharing within the device. The ClockBoost feature allows the designer to distribute a low-speed clock and multiply that clock on-device. Combined, the ClockLock and ClockBoost features provide significant improvements in system performance and bandwidth.

All FLEX 10KE devices, except EPF10K50E and EPF10K200E devices, support ClockLock and ClockBoost circuitry. EPF10K50S and EPF10K200S devices support this circuitry. Devices that support Clock-Lock and ClockBoost circuitry are distinguished with an "X" suffix in the ordering code; for instance, the EPF10K200SFC672-1X device supports this circuit.

The ClockLock and ClockBoost features in FLEX 10KE devices are enabled through the Altera software. External devices are not required to use these features. The output of the ClockLock and ClockBoost circuits is not available at any of the device pins.

The ClockLock and ClockBoost circuitry locks onto the rising edge of the incoming clock. The circuit output can drive the clock inputs of registers only; the generated clock cannot be gated or inverted.

The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and ClockBoost circuitry. When the dedicated clock pin is driving the ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to the GCLK1 pin. In the Altera software, the GCLK1 pin can feed both the ClockLock and ClockBoost circuitry in the FLEX 10KE device. However, when both circuits are used, the other clock pin cannot be used.

Table 22. FLEX 10KE 2.5-V Device DC Operating Conditions Notes (6), (7)								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{IH}	High-level input voltage		$1.7, 0.5 \times V_{CCIO}$ (8)		5.75	V		
V _{IL}	Low-level input voltage		-0.5		0.8, 0.3 × V _{CCIO} <i>(8)</i>	V		
V _{OH}	3.3-V high-level TTL output voltage	I _{OH} = -8 mA DC, V _{CCIO} = 3.00 V <i>(</i> 9 <i>)</i>	2.4			V		
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V <i>(</i> 9 <i>)</i>	V _{CCIO} – 0.2			V		
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V} (9)$	$0.9 imes V_{CCIO}$			V		
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V <i>(</i> 9 <i>)</i>	2.1			V		
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V <i>(9)</i>	2.0			V		
		$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (9)$	1.7			V		
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V <i>(10)</i>			0.45	V		
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (10)			0.2	V		
	3.3-V low-level PCI output voltage	I_{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (10)			$0.1 \times V_{CCIO}$	V		
	2.5-V low-level output voltage	$I_{OL} = 0.1 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (10)$			0.2	V		
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (10)			0.4	V		
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (10)			0.7	V		
I _I	Input pin leakage current	$V_{I} = V_{CCIOmax}$ to 0 V (11)	-10		10	μA		
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = V_{CCIOmax}$ to 0 V (11)	-10		10	μA		
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load, no toggling inputs		5		mA		
		V _I = ground, no load, no toggling inputs <i>(12)</i>		10		mA		
R_{CONF}	Value of I/O pin pull-	V _{CCIO} = 3.0 V (13)	20		50	k¾		
	up resistor before and during configuration	$V_{CCIO} = 2.3 V (13)$	30		80	k¾		

Figure 25. FLEX 10KE Device LE Timing Model

Figure 28. Synchronous Bidirectional Pin External Timing Model

Tables 24 through 28 describe the FLEX 10KE device internal timing parameters. Tables 29 through 30 describe the FLEX 10KE external timing parameters and their symbols.

Table 24. LE	Timing Microparameters (Part 1 of 2) Note (1)	
Symbol	Parameter	Condition
t _{LUT}	LUT delay for data-in	
t _{CLUT}	LUT delay for carry-in	
t _{RLUT}	LUT delay for LE register feedback	
t _{PACKED}	Data-in to packed register delay	
t _{EN}	LE register enable delay	
t _{CICO}	Carry-in to carry-out delay	
t _{CGEN}	Data-in to carry-out delay	
t _{CGENR}	LE register feedback to carry-out delay	
t _{CASC}	Cascade-in to cascade-out delay	
t _C	LE register control signal delay	
t _{CO}	LE register clock-to-output delay	
t _{COMB}	Combinatorial delay	
t _{SU}	LE register setup time for data and enable signals before clock; LE register	
	recovery time after asynchronous clear, preset, or load	
t _H	LE register hold time for data and enable signals after clock	
t _{PRE}	LE register preset delay	

Table 27. EAE	3 Timing Macroparameters Note (1), (6)	
Symbol	Parameter	Conditions
t _{EABAA}	EAB address access delay	
t _{EABRCCOMB}	EAB asynchronous read cycle time	
t _{EABRCREG}	EAB synchronous read cycle time	
t _{EABWP}	EAB write pulse width	
t _{EABWCCOMB}	EAB asynchronous write cycle time	
t _{EABWCREG}	EAB synchronous write cycle time	
t _{EABDD}	EAB data-in to data-out valid delay	
t _{EABDATACO}	EAB clock-to-output delay when using output registers	
t _{EABDATASU}	EAB data/address setup time before clock when using input register	
t _{EABDATAH}	EAB data/address hold time after clock when using input register	
t _{EABWESU}	EAB WE setup time before clock when using input register	
t _{EABWEH}	EAB WE hold time after clock when using input register	
t _{EABWDSU}	EAB data setup time before falling edge of write pulse when not using input registers	
t _{EABWDH}	EAB data hold time after falling edge of write pulse when not using input registers	
t _{EABWASU}	EAB address setup time before rising edge of write pulse when not using	
	input registers	
t _{EABWAH}	EAB address hold time after falling edge of write pulse when not using input	
	registers	
t _{EABWO}	EAB write enable to data output valid delay	

Table 28. Inte	connect Timing Microparameters Note (1)	
Symbol	Parameter	Conditions
t _{DIN2IOE}	Delay from dedicated input pin to IOE control input	(7)
t _{DIN2LE}	Delay from dedicated input pin to LE or EAB control input	(7)
t _{DCLK2IOE}	Delay from dedicated clock pin to IOE clock	(7)
t _{DCLK2LE}	Delay from dedicated clock pin to LE or EAB clock	(7)
t _{DIN2DATA}	Delay from dedicated input or clock to LE or EAB data	(7)
t _{SAMELAB}	Routing delay for an LE driving another LE in the same LAB	
t _{SAMEROW}	Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row	(7)
t _{SAMECOLUMN}	Routing delay for an LE driving an IOE in the same column	(7)
t _{DIFFROW}	Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row	(7)
t _{TWOROWS}	Routing delay for a row IOE or EAB driving an LE or EAB in a different row	(7)
t _{LEPERIPH}	Routing delay for an LE driving a control signal of an IOE via the peripheral control bus	(7)
t _{LABCARRY}	Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB	
t _{LABCASC}	Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB	

Table 29. External Timing Parameters						
Symbol	Parameter	Conditions				
t _{DRR}	Register-to-register delay via four LEs, three row interconnects, and four local interconnects	(8)				
t _{INSU}	Setup time with global clock at IOE register	(9)				
t _{INH}	Hold time with global clock at IOE register	(9)				
tоитсо	Clock-to-output delay with global clock at IOE register	(9)				
t _{PCISU}	Setup time with global clock for registers used in PCI designs	(9),(10)				
t _{PCIH}	Hold time with global clock for registers used in PCI designs	(9),(10)				
t _{PCICO}	Clock-to-output delay with global clock for registers used in PCI designs	(9),(10)				

Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Write (EAB Output Registers Used)

Tables 31 through 37 show EPF10K30E device internal and external timing parameters.

Table 31. EPF10K30E Device LE Timing Microparameters (Part 1 of 2) Note (1)							
Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.7		0.8		1.1	ns
t _{CLUT}		0.5		0.6		0.8	ns
t _{RLUT}		0.6		0.7		1.0	ns
t _{PACKED}		0.3		0.4		0.5	ns
t _{EN}		0.6		0.8		1.0	ns
t _{CICO}		0.1		0.1		0.2	ns
t _{CGEN}		0.4		0.5		0.7	ns

Table 47. EPF10K100E Device EAB Internal Microparameters Note (1)								
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit	
	Min	Max	Min	Max	Min	Мах		
t _{EABDATA1}		1.5		2.0		2.6	ns	
t _{EABDATA1}		0.0		0.0		0.0	ns	
t _{EABWE1}		1.5		2.0		2.6	ns	
t _{EABWE2}		0.3		0.4		0.5	ns	
t _{EABRE1}		0.3		0.4		0.5	ns	
t _{EABRE2}		0.0		0.0		0.0	ns	
t _{EABCLK}		0.0		0.0		0.0	ns	
t _{EABCO}		0.3		0.4		0.5	ns	
t _{EABBYPASS}		0.1		0.1		0.2	ns	
t _{EABSU}	0.8		1.0		1.4		ns	
t _{EABH}	0.1		0.1		0.2		ns	
t _{EABCLR}	0.3		0.4		0.5		ns	
t _{AA}		4.0		5.1		6.6	ns	
t _{WP}	2.7		3.5		4.7		ns	
t _{RP}	1.0		1.3		1.7		ns	
t _{WDSU}	1.0		1.3		1.7		ns	
t _{WDH}	0.2		0.2		0.3		ns	
t _{WASU}	1.6		2.1		2.8		ns	
t _{WAH}	1.6		2.1		2.8		ns	
t _{RASU}	3.0		3.9		5.2		ns	
t _{RAH}	0.1		0.1		0.2		ns	
t _{WO}		1.5		2.0		2.6	ns	
t _{DD}		1.5		2.0		2.6	ns	
t _{EABOUT}		0.2		0.3		0.3	ns	
t _{EABCH}	1.5		2.0		2.5		ns	
t _{EABCL}	2.7		3.5		4.7		ns	

Table 48. EPF10K100E Device EAB Internal Timing Macroparameters (Part 1 of

2)	Note	(1)
-/		· · /

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.9		7.6		9.9	ns
t _{EABRCOMB}	5.9		7.6		9.9		ns
t _{EABRCREG}	5.1		6.5		8.5		ns
t _{EABWP}	2.7		3.5		4.7		ns

Table 54. EPF10K130E Device EAB Internal Microparameters (Part 2 of 2) Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{DD}		1.5		2.0		2.6	ns		
t _{EABOUT}		0.2		0.3		0.3	ns		
t _{EABCH}	1.5		2.0		2.5		ns		
t _{EABCL}	2.7		3.5		4.7		ns		

Table 55. EPF10K130E Device EAB Internal Timing Macroparameters Note (1)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{EABAA}		5.9		7.5		9.9	ns	
t _{EABRCOMB}	5.9		7.5		9.9		ns	
t _{EABRCREG}	5.1		6.4		8.5		ns	
t _{EABWP}	2.7		3.5		4.7		ns	
t _{EABWCOMB}	5.9		7.7		10.3		ns	
t _{EABWCREG}	5.4		7.0		9.4		ns	
t _{EABDD}		3.4		4.5		5.9	ns	
t _{EABDATACO}		0.5		0.7		0.8	ns	
t _{EABDATASU}	0.8		1.0		1.4		ns	
t _{EABDATAH}	0.1		0.1		0.2		ns	
t _{EABWESU}	1.1		1.4		1.9		ns	
t _{EABWEH}	0.0		0.0		0.0		ns	
t _{EABWDSU}	1.0		1.3		1.7		ns	
t _{EABWDH}	0.2		0.2		0.3		ns	
t _{EABWASU}	4.1		5.1		6.8		ns	
t _{EABWAH}	0.0		0.0		0.0		ns	
t _{EABWO}		3.4		4.5		5.9	ns	

Table 56. EPF10K130E Device Interconnect Timing Microparameters Note (1)								
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		ed Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{DIN2IOE}		2.8		3.5		4.4	ns	
t _{DIN2LE}		0.7		1.2		1.6	ns	
t _{DIN2DATA}		1.6		1.9		2.2	ns	
t _{DCLK2IOE}		1.6		2.1		2.7	ns	
t _{DCLK2LE}		0.7		1.2		1.6	ns	
t _{SAMELAB}		0.1		0.2		0.2	ns	
t _{SAMEROW}		1.9		3.4		5.1	ns	
t _{SAMECOLUMN}		0.9		2.6		4.4	ns	
t _{DIFFROW}		2.8		6.0		9.5	ns	
t _{TWOROWS}		4.7		9.4		14.6	ns	
t _{LEPERIPH}		3.1		4.7		6.9	ns	
t _{LABCARRY}		0.6		0.8		1.0	ns	
t _{LABCASC}		0.9		1.2		1.6	ns	

Table 57. EPF10K130E External Timing Parameters Notes (1), (2)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{DRR}		9.0		12.0		16.0	ns		
t _{INSU} (3)	1.9		2.1		3.0		ns		
t _{INH} (3)	0.0		0.0		0.0		ns		
t _{оитсо} (3)	2.0	5.0	2.0	7.0	2.0	9.2	ns		
t _{INSU} (4)	0.9		1.1		-		ns		
t _{INH} (4)	0.0		0.0		-		ns		
t _{OUTCO} (4)	0.5	4.0	0.5	6.0	-	-	ns		
t _{PCISU}	3.0		6.2		-		ns		
t _{PCIH}	0.0		0.0		-		ns		
t _{PCICO}	2.0	6.0	2.0	6.9	-	-	ns		

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.4		3.2	ns
t _{EABDATA2}		0.4		0.6		0.8	ns
t _{EABWE1}		1.0		1.4		1.9	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0.0		0.0		0.0	
t _{EABRE2}		0.4		0.6		0.8	
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		1.1		1.5	ns
t _{EABBYPASS}		0.0		0.0		0.0	ns
t _{EABSU}	0.7		1.0		1.3		ns
t _{EABH}	0.4		0.6		0.8		ns
t _{EABCLR}	0.8		1.1		1.5		
t _{AA}		2.0		2.8		3.8	ns
t _{WP}	2.0		2.8		3.8		ns
t _{RP}	1.0		1.4		1.9		
t _{WDSU}	0.5		0.7		0.9		ns
t _{WDH}	0.1		0.1		0.2		ns
t _{WASU}	1.0		1.4		1.9		ns
t _{WAH}	1.5		2.1		2.9		ns
t _{RASU}	1.5		2.1		2.8		
t _{RAH}	0.1		0.1		0.2		
t _{WO}		2.1		2.9		4.0	ns
t _{DD}		2.1		2.9		4.0	ns
t _{EABOUT}		0.0		0.0		0.0	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	1.5		2.0		2.5		ns

Table 77. EPF10K200S Device Interconnect Timing Microparameters (Part 2 of 2) Note (1)									
Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade -3 Spe		d Grade	Unit		
	Min	Мах	Min	Max	Min	Max			
t _{LABCASC}		0.5		1.0		1.4	ns		

 Table 78. EPF10K200S External Timing Parameters
 Note (1)

		-					
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DRR}		9.0		12.0		16.0	ns
t _{INSU} (2)	3.1		3.7		4.7		ns
t _{INH} (2)	0.0		0.0		0.0		ns
t _{оитсо} (2)	2.0	3.7	2.0	4.4	2.0	6.3	ns
t _{INSU} (3)	2.1		2.7		-		ns
t _{INH} (3)	0.0		0.0		-		ns
t _{OUTCO} (3)	0.5	2.7	0.5	3.4	-	-	ns
t _{PCISU}	3.0		4.2		-		ns
t _{PCIH}	0.0		0.0		-		ns
t _{PCICO}	2.0	6.0	2.0	8.9	-	-	ns

Table 79. EPF10K200S External Bidirectional Timing Parameters Note (1) Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit Min Max Min Max Min Max t_{INSUBIDIR} (2) 2.3 3.4 4.4 ns 0.0 t_{INHBIDIR} (2) 0.0 0.0 ns tINSUBIDIR (3) 3.3 4.4 _ ns t_{INHBIDIR} (3) 0.0 0.0 _ ns toutcobidir (2) 2.0 3.7 2.0 4.4 2.0 6.3 ns t_{XZBIDIR} (2) 6.9 7.6 9.2 ns 5.9 t_{ZXBIDIR} (2) 6.6 _ ns toutcobidir (3) 0.5 2.7 0.5 3.4 _ _ ns t_{XZBIDIR} (3) 6.9 7.6 9.2 ns t_{ZXBIDIR} (3) 5.9 6.6 _ ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(3) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Altera Corporation

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit_reg@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending

applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation

100