Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 216 | | Number of Logic Elements/Cells | 1728 | | Total RAM Bits | 24576 | | Number of I/O | 147 | | Number of Gates | 119000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 85°C (TA) | | Package / Case | 208-BFQFP | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k30eqi208-2 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Application | Resources Used | | Performance | | | | |---|----------------|------|----------------|----------------|----------------|-----| | | LEs | EABs | -1 Speed Grade | -2 Speed Grade | -3 Speed Grade | | | 16-bit loadable counter | 16 | 0 | 285 | 250 | 200 | MHz | | 16-bit accumulator | 16 | 0 | 285 | 250 | 200 | MHz | | 16-to-1 multiplexer (1) | 10 | 0 | 3.5 | 4.9 | 7.0 | ns | | 16-bit multiplier with 3-stage pipeline (2) | 592 | 0 | 156 | 131 | 93 | MHz | | 256 × 16 RAM read cycle speed (2) | 0 | 1 | 196 | 154 | 118 | MHz | | 256 × 16 RAM write cycle | 0 | 1 | 185 | 143 | 106 | MHz | ### Notes: - (1) This application uses combinatorial inputs and outputs. - (2) This application uses registered inputs and outputs. Table 6 shows FLEX 10KE performance for more complex designs. These designs are available as Altera MegaCore $^{\circ}$ functions. | Table 6. FLEX 10KE Performance for Complex Designs | | | | | | | | |---|----------|----------------|----------------|----------------|----------------|--|--| | Application | LEs Used | | Performance | | Units | | | | | | -1 Speed Grade | -2 Speed Grade | -3 Speed Grade | | | | | 8-bit, 16-tap parallel finite impulse response (FIR) filter | 597 | 192 | 156 | 116 | MSPS | | | | 8-bit, 512-point fast Fourier | 1,854 | 23.4 | 28.7 | 38.9 | μ s (1) | | | | transform (FFT) function | | 113 | 92 | 68 | MHz | | | | a16450 universal asynchronous receiver/transmitter (UART) | 342 | 36 | 28 | 20.5 | MHz | | | #### Note: (1) These values are for calculation time. Calculation time = number of clocks required / f_{max} . Number of clocks required = ceiling [log 2 (points)/2] × [points +14 + ceiling] The EAB can also use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3. Figure 3. FLEX 10KE EAB in Dual-Port RAM Mode The FLEX 10KE EAB can be used in a single-port mode, which is useful for backward-compatibility with FLEX 10K designs (see Figure 4). #### Normal Mode The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Altera Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time. The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a three-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a four-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa. #### Arithmetic Mode The arithmetic mode offers 2 three-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 11 on page 22, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. #### **Up/Down Counter Mode** The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources. In addition to the six clear and preset modes, FLEX 10KE devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality. Figure 12. FLEX 10KE LE Clear & Preset Modes | Peripheral
Control Signal | EPF10K100E | EPF10K130E | EPF10K200E
EPF10K200S | |------------------------------|------------|------------|--------------------------| | OE0 | Row A | Row C | Row G | | OE1 | Row C | Row E | Row I | | OE2 | Row E | Row G | Row K | | OE3 | Row L | Row N | Row R | | OE4 | Row I | Row K | Row O | | OE5 | Row K | Row M | Row Q | | CLKENA0/CLK0/GLOBAL0 | Row F | Row H | Row L | | CLKENA1/OE6/GLOBAL1 | Row D | Row F | Row J | | CLKENA2/CLR0 | Row B | Row D | Row H | | CLKENA3/OE7/GLOBAL2 | Row H | Row J | Row N | | CLKENA4/CLR1 | Row J | Row L | Row P | | CLKENA5/CLK1/GLOBAL3 | Row G | Row I | Row M | Signals on the peripheral control bus can also drive the four global signals, referred to as <code>GLOBALO</code> through <code>GLOBALO</code> in Tables 8 and 9. An internally generated signal can drive a global signal, providing the same low-skew, low-delay characteristics as a signal driven by an input pin. An LE drives the global signal by driving a row line that drives the peripheral bus, which then drives the global signal. This feature is ideal for internally generated clear or clock signals with high fan-out. However, internally driven global signals offer no advantage over the general-purpose interconnect for routing data signals. The dedicated input pin should be driven to a known logic state (such as ground) and not be allowed to float. The chip-wide output enable pin is an active-high pin (DEV_OE) that can be used to tri-state all pins on the device. This option can be set in the Altera software. On EPF10K50E and EPF10K200E devices, the built-in I/O pin pull-up resistors (which are active during configuration) are active when the chip-wide output enable pin is asserted. The registers in the IOE can also be reset by the chip-wide reset pin. #### Column-to-IOE Connections When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels is different for each IOE (see Figure 17). Figure 17. FLEX 10KE Column-to-IOE Connections The values for m and n are provided in Table 11. Table 11 lists the FLEX 10KE column-to-IOE interconnect resources. | Table 11. FLEX 10 | Table 11. FLEX 10KE Column-to-IOE Interconnect Resources | | | | | | | |--------------------------|--|-----------------------------|--|--|--|--|--| | Device | Channels per Column (n) | Column Channels per Pin (m) | | | | | | | EPF10K30E | 24 | 16 | | | | | | | EPF10K50E
EPF10K50S | 24 | 16 | | | | | | | EPF10K100E | 24 | 16 | | | | | | | EPF10K130E | 32 | 24 | | | | | | | EPF10K200E
EPF10K200S | 48 | 40 | | | | | | | Symbol | Parameter | Condition | Min | Тур | Max | Unit | |-----------------------|---|----------------------|-----|-----|------------|------| | t_R | Input rise time | | | | 5 | ns | | t _F | Input fall time | | | | 5 | ns | | t _{INDUTY} | Input duty cycle | | 40 | | 60 | % | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | | 25 | | 75 | MHz | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | | 16 | | 37.5 | MHz | | f _{CLKDEV} | Input deviation from user specification in the MAX+PLUS II software (1) | | | | 25,000 (2) | PPM | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | | | 100 | ps | | t _{LOCK} | Time required for ClockLock or ClockBoost to acquire lock (3) | | | | 10 | μs | | t _{JITTER} | Jitter on ClockLock or ClockBoost- | $t_{INCLKSTB} < 100$ | | | 250 | ps | | | generated clock (4) | $t_{INCLKSTB} < 50$ | | | 200 (4) | ps | | t _{OUTDUTY} | Duty cycle for ClockLock or
ClockBoost-generated clock | | 40 | 50 | 60 | % | #### Notes to tables: - (1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter. - (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period. - (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration. - (4) The t_{IITTER} specification is measured under long-term observation. The maximum value for t_{IITTER} is 200 ps if $t_{INCLKSTB}$ is lower than 50 ps. # I/O Configuration This section discusses the peripheral component interconnect (PCI) pull-up clamping diode option, slew-rate control, open-drain output option, and MultiVolt I/O interface for FLEX 10KE devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera software logic options. The MultiVolt I/O interface is controlled by connecting $V_{\rm CCIO}$ to a different voltage than $V_{\rm CCINT}.$ Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu). | Table 17. 32-Bit IDCODE for FLEX 10KE Devices Note (1) | | | | | | | | | | |--|---------------------|-----------------------|-----------------------------------|------------------|--|--|--|--|--| | Device | | IDCODE (32 Bits) | | | | | | | | | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer's Identity (11 Bits) | 1 (1 Bit)
(2) | | | | | | | EPF10K30E | 0001 | 0001 0000 0011 0000 | 00001101110 | 1 | | | | | | | EPF10K50E
EPF10K50S | 0001 | 0001 0000 0101 0000 | 00001101110 | 1 | | | | | | | EPF10K100E | 0010 | 0000 0001 0000 0000 | 00001101110 | 1 | | | | | | | EPF10K130E | 0001 | 0000 0001 0011 0000 | 00001101110 | 1 | | | | | | | EPF10K200E
EPF10K200S | 0001 | 0000 0010 0000 0000 | 00001101110 | 1 | | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. FLEX 10KE devices include weak pull-up resistors on the JTAG pins. For more information, see the following documents: - Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) - BitBlaster Serial Download Cable Data Sheet - ByteBlasterMV Parallel Port Download Cable Data Sheet - Jam Programming & Test Language Specification | Table 24. LE Timing Microparameters (Part 2 of 2) Note (1) | | | | | |------------------------------------------------------------|----------------------------------------|-----------|--|--| | Symbol | Parameter | Condition | | | | t _{CLR} | LE register clear delay | | | | | t _{CH} | Minimum clock high time from clock pin | | | | | t_{CL} | Minimum clock low time from clock pin | | | | | Table 25. IOL | E Timing Microparameters Note (1) | | |---------------------|-----------------------------------------------------------------------------------------------------------------------|----------------| | Symbol | Parameter | Conditions | | t_{IOD} | IOE data delay | | | t _{IOC} | IOE register control signal delay | | | t _{IOCO} | IOE register clock-to-output delay | | | t _{IOCOMB} | IOE combinatorial delay | | | t _{IOSU} | IOE register setup time for data and enable signals before clock; IOE register recovery time after asynchronous clear | | | t _{IOH} | IOE register hold time for data and enable signals after clock | | | t _{IOCLR} | IOE register clear time | | | t _{OD1} | Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (2) | | t _{OD2} | Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 2.5 V | C1 = 35 pF (3) | | t _{OD3} | Output buffer and pad delay, slow slew rate = on | C1 = 35 pF (4) | | t_{XZ} | IOE output buffer disable delay | | | t_{ZX1} | IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (2) | | t_{ZX2} | IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 2.5 V | C1 = 35 pF (3) | | t _{ZX3} | IOE output buffer enable delay, slow slew rate = on | C1 = 35 pF (4) | | t _{INREG} | IOE input pad and buffer to IOE register delay | | | t _{IOFD} | IOE register feedback delay | | | t _{INCOMB} | IOE input pad and buffer to FastTrack Interconnect delay | | | Table 30. External Bidirectional Timing Parameters Note (9) | | | | | | |-------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------|--|--|--| | Symbol | Parameter | Conditions | | | | | ^t INSUBIDIR | Setup time for bi-directional pins with global clock at same-row or same-column LE register | | | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | t _{INH} | Hold time with global clock at IOE register | | | | | | ^t OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE register | C1 = 35 pF | | | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | C1 = 35 pF | | | | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate= off | C1 = 35 pF | | | | #### Notes to tables: - Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly. - (2) Operating conditions: VCCIO = $3.3 \text{ V} \pm 10\%$ for commercial or industrial use. - (3) Operating conditions: VCCIO = $2.5 \text{ V} \pm 5\%$ for commercial or industrial use in EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E, and EPF10K200S devices. - (4) Operating conditions: VCCIO = 3.3 V. - (5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. - (6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; these parameters are calculated by summing selected microparameters. - (7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. - (8) Contact Altera Applications for test circuit specifications and test conditions. - (9) This timing parameter is sample-tested only. - (10) This parameter is measured with the measurement and test conditions, including load, specified in the PCI Local Bus Specification, revision 2.2. Tables 52 through 58 show EPF10K130E device internal and external timing parameters. | Table 52. EPF10I | 1 | | ····oroparan | | ote (1) | | | |---------------------|----------------|-----|--------------|----------------|---------|----------|------| | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | ed Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t_{LUT} | | 0.6 | | 0.9 | | 1.3 | ns | | t _{CLUT} | | 0.6 | | 0.8 | | 1.0 | ns | | t _{RLUT} | | 0.7 | | 0.9 | | 0.2 | ns | | t _{PACKED} | | 0.3 | | 0.5 | | 0.6 | ns | | t _{EN} | | 0.2 | | 0.3 | | 0.4 | ns | | t _{CICO} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CGEN} | | 0.4 | | 0.6 | | 0.8 | ns | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CASC} | | 0.6 | | 0.9 | | 1.2 | ns | | t_{C} | | 0.3 | | 0.5 | | 0.6 | ns | | t _{CO} | | 0.5 | | 0.7 | | 0.8 | ns | | t _{COMB} | | 0.3 | | 0.5 | | 0.6 | ns | | t _{SU} | 0.5 | | 0.7 | | 0.8 | | ns | | t_H | 0.6 | | 0.7 | | 1.0 | | ns | | t _{PRE} | | 0.9 | | 1.2 | | 1.6 | ns | | t _{CLR} | | 0.9 | | 1.2 | | 1.6 | ns | | t _{CH} | 1.5 | | 1.5 | | 2.5 | | ns | | t _{CL} | 1.5 | | 1.5 | | 2.5 | | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |----------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 1.3 | | 1.5 | | 2.0 | ns | | t _{IOC} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{ioco} | | 0.6 | | 0.8 | | 1.0 | ns | | t _I OCOMB | | 0.6 | | 0.8 | | 1.0 | ns | | iosu | 1.0 | | 1.2 | | 1.6 | | ns | | t _{IOH} | 0.9 | | 0.9 | | 1.4 | | ns | | t _{IOCLR} | | 0.6 | | 0.8 | | 1.0 | ns | | OD1 | | 2.8 | | 4.1 | | 5.5 | ns | | t_{OD2} | | 2.8 | | 4.1 | | 5.5 | ns | | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | ed Grade | Unit | |------------------------|---------|---------|---------|---------|---------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 2.0 | | 2.4 | | 3.2 | ns | | t _{EABDATA1} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{EABWE1} | | 1.4 | | 1.7 | | 2.3 | ns | | t _{EABWE2} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABRE1} | | 0 | | 0 | | 0 | ns | | t _{EABRE2} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCO} | | 0.8 | | 0.9 | | 1.2 | ns | | t _{EABBYPASS} | | 0.0 | | 0.1 | | 0.1 | ns | | t _{EABSU} | 0.9 | | 1.1 | | 1.5 | | ns | | t _{EABH} | 0.4 | | 0.5 | | 0.6 | | ns | | t _{EABCLR} | 0.8 | | 0.9 | | 1.2 | | ns | | t _{AA} | | 3.1 | | 3.7 | | 4.9 | ns | | t _{WP} | 3.3 | | 4.0 | | 5.3 | | ns | | t_{RP} | 0.9 | | 1.1 | | 1.5 | | ns | | twDSU | 0.9 | | 1.1 | | 1.5 | | ns | | t _{WDH} | 0.1 | | 0.1 | | 0.1 | | ns | | twasu | 1.3 | | 1.6 | | 2.1 | | ns | | t _{WAH} | 2.1 | | 2.5 | | 3.3 | | ns | | t _{RASU} | 2.2 | | 2.6 | | 3.5 | | ns | | t _{RAH} | 0.1 | | 0.1 | | 0.2 | | ns | | two | | 2.0 | | 2.4 | | 3.2 | ns | | t _{DD} | | 2.0 | | 2.4 | | 3.2 | ns | | EABOUT | | 0.0 | | 0.1 | | 0.1 | ns | | t _{EABCH} | 1.5 | | 2.0 | | 2.5 | | ns | | EABCL | 3.3 | | 4.0 | | 5.3 | | ns | | Table 62. EPF10K200E Device EAB Internal Timing Macroparameters (Part 1 of 2) Note (1) | | | | | | | | | |---------------------------------------------------------------------------------------------|----------------|-----|----------------|-----|----------------|-----|------|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{EABAA} | | 5.1 | | 6.4 | | 8.4 | ns | | | t _{EABRCOMB} | 5.1 | | 6.4 | | 8.4 | | ns | | | t _{EABRCREG} | 4.8 | | 5.7 | | 7.6 | | ns | | | t _{EABWP} | 3.3 | | 4.0 | | 5.3 | | ns | | | Table 64. EPF10K200E External Timing Parameters Notes (1), (2) | | | | | | | | | |----------------------------------------------------------------|---------|---------|----------------|------|----------------|------|------|--| | Symbol | -1 Spec | d Grade | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{DRR} | | 10.0 | | 12.0 | | 16.0 | ns | | | t _{INSU} | 2.8 | | 3.4 | | 4.4 | | ns | | | t _{INH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{оитсо} | 2.0 | 4.5 | 2.0 | 5.3 | 2.0 | 7.8 | ns | | | t _{PCISU} | 3.0 | | 6.2 | | - | | ns | | | t _{PCIH} | 0.0 | | 0.0 | | - | | ns | | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 8.9 | - | - | ns | | | Table 65. EPF10K200E External Bidirectional Timing Parameters Notes (1), (2) | | | | | | | | | |------------------------------------------------------------------------------|----------------|-----|----------------|-----|----------------|------|------|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{INSUBIDIR} | 3.0 | | 4.0 | | 5.5 | | ns | | | t _{INHBIDIR} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{OUTCOBIDIR} | 2.0 | 4.5 | 2.0 | 5.3 | 2.0 | 7.8 | ns | | | t _{XZBIDIR} | | 8.1 | | 9.5 | | 13.0 | ns | | | t _{ZXBIDIR} | | 8.1 | | 9.5 | | 13.0 | ns | | ### Notes to tables: - (1) All timing parameters are described in Tables 24 through 30 in this data sheet. - (2) These parameters are specified by characterization. Tables 66 through 79 show EPF10K50S and EPF10K200S device external timing parameters. | Table 66. EPF10K50S Device LE Timing Microparameters (Part 1 of 2) Note (1) | | | | | | | | |-----------------------------------------------------------------------------|----------------|-----|---------|---------|----------------|-----|------| | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t_{LUT} | | 0.6 | | 0.8 | | 1.1 | ns | | t_{CLUT} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{RLUT} | | 0.6 | | 0.7 | | 0.9 | ns | | t _{PACKED} | | 0.2 | | 0.3 | | 0.4 | ns | | t _{EN} | | 0.6 | | 0.7 | | 0.9 | ns | | t _{CICO} | | 0.1 | | 0.1 | | 0.1 | ns | | t _{CGEN} | | 0.4 | | 0.5 | | 0.6 | ns | | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | d Grade | Unit | |------------------------|---------|---------|---------|---------|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.7 | | 2.4 | | 3.2 | ns | | t _{EABDATA2} | | 0.4 | | 0.6 | | 0.8 | ns | | t _{EABWE1} | | 1.0 | | 1.4 | | 1.9 | ns | | t _{EABWE2} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABRE1} | | 0.0 | | 0.0 | | 0.0 | | | t _{EABRE2} | | 0.4 | | 0.6 | | 0.8 | | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCO} | | 0.8 | | 1.1 | | 1.5 | ns | | t _{EABBYPASS} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABSU} | 0.7 | | 1.0 | | 1.3 | | ns | | t _{EABH} | 0.4 | | 0.6 | | 0.8 | | ns | | t _{EABCLR} | 0.8 | | 1.1 | | 1.5 | | | | t_{AA} | | 2.0 | | 2.8 | | 3.8 | ns | | t_{WP} | 2.0 | | 2.8 | | 3.8 | | ns | | t_{RP} | 1.0 | | 1.4 | | 1.9 | | | | t _{WDSU} | 0.5 | | 0.7 | | 0.9 | | ns | | t_{WDH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{WASU} | 1.0 | | 1.4 | | 1.9 | | ns | | t _{WAH} | 1.5 | | 2.1 | | 2.9 | | ns | | t _{RASU} | 1.5 | | 2.1 | | 2.8 | | | | t _{RAH} | 0.1 | | 0.1 | | 0.2 | | | | t_{WO} | | 2.1 | | 2.9 | | 4.0 | ns | | t _{DD} | | 2.1 | | 2.9 | | 4.0 | ns | | t _{EABOUT} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCH} | 1.5 | | 2.0 | | 2.5 | | ns | | t _{EABCL} | 1.5 | | 2.0 | | 2.5 | | ns | | Table 74. EPF10K200S Device IOE Timing Microparameters (Part 2 of 2) Note (1) | | | | | | | | | |-------------------------------------------------------------------------------|----------------|-----|------------------|-----|----------------|------|------|--| | Symbol | -1 Speed Grade | | e -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t_{ZX2} | | 4.5 | | 4.8 | | 6.6 | ns | | | t_{ZX3} | | 6.6 | | 7.6 | | 10.1 | ns | | | t _{INREG} | | 3.7 | | 5.7 | | 7.7 | ns | | | t _{IOFD} | | 1.8 | | 3.4 | | 4.0 | ns | | | t _{INCOMB} | | 1.8 | | 3.4 | | 4.0 | ns | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |------------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.8 | | 2.4 | | 3.2 | ns | | t _{EABDATA1} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{EABWE1} | | 1.1 | | 1.7 | | 2.3 | ns | | t _{EABWE2} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABRE1} | | 0 | | 0 | | 0 | ns | | t _{EABRE2} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCO} | | 0.8 | | 0.9 | | 1.2 | ns | | t _{EABBYPASS} | | 0.0 | | 0.1 | | 0.1 | ns | | t _{EABSU} | 0.7 | | 1.1 | | 1.5 | | ns | | t _{EABH} | 0.4 | | 0.5 | | 0.6 | | ns | | t _{EABCLR} | 0.8 | | 0.9 | | 1.2 | | ns | | t _{AA} | | 2.1 | | 3.7 | | 4.9 | ns | | t_{WP} | 2.1 | | 4.0 | | 5.3 | | ns | | t _{RP} | 1.1 | | 1.1 | | 1.5 | | ns | | t _{WDSU} | 0.5 | | 1.1 | | 1.5 | | ns | | t _{WDH} | 0.1 | | 0.1 | | 0.1 | | ns | | t _{WASU} | 1.1 | | 1.6 | | 2.1 | | ns | | t _{WAH} | 1.6 | | 2.5 | | 3.3 | | ns | | t _{RASU} | 1.6 | | 2.6 | | 3.5 | | ns | | t _{RAH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{wo} | | 2.0 | | 2.4 | | 3.2 | ns | | t _{DD} | | 2.0 | | 2.4 | | 3.2 | ns | | t _{EABOUT} | | 0.0 | | 0.1 | | 0.1 | ns | | t _{EABCH} | 1.5 | | 2.0 | | 2.5 | | ns | | t _{EABCL} | 2.1 | | 2.8 | | 3.8 | | ns | # Power Consumption The supply power (P) for FLEX 10KE devices can be calculated with the following equation: $$P = P_{INT} + P_{IO} = (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO}$$ The $I_{CCACTIVE}$ value depends on the switching frequency and the application logic. This value is calculated based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*. Compared to the rest of the device, the embedded array consumes a negligible amount of power. Therefore, the embedded array can be ignored when calculating supply current. The I_{CCACTIVE} value can be calculated with the following equation: $$I_{CCACTIVE} = K \times f_{\boldsymbol{MAX}} \times N \times \boldsymbol{tog_{LC}} \times \frac{\mu A}{MHz \times LE}$$ Where: **f**_{MAX} = Maximum operating frequency in MHz N = Total number of LEs used in the device tog_{LC} = Average percent of LEs toggling at each clock (typically 12.5%) K = Constant Table 80 provides the constant (K) values for FLEX 10KE devices. | Table 80. FLEX 10KE K Constant Values | | | | | | |---------------------------------------|---------|--|--|--|--| | Device | K Value | | | | | | EPF10K30E | 4.5 | | | | | | EPF10K50E | 4.8 | | | | | | EPF10K50S | 4.5 | | | | | | EPF10K100E | 4.5 | | | | | | EPF10K130E | 4.6 | | | | | | EPF10K200E | 4.8 | | | | | | EPF10K200S | 4.6 | | | | | This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions. To better reflect actual designs, the power model (and the constant K in the power calculation equations) for continuous interconnect FLEX devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results when compared to measured power consumption for actual designs in segmented FPGAs. Figure 31 shows the relationship between the current and operating frequency of FLEX 10KE devices. Figure 31. FLEX 10KE I_{CCACTIVE} vs. Operating Frequency (Part 1 of 2) During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*. SRAM configuration elements allow FLEX 10KE devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 85 ms and can be used to reconfigure an entire system dynamically. In-field upgrades can be performed by distributing new configuration files. Before and during configuration, all I/O pins (except dedicated inputs, clock, or configuration pins) are pulled high by a weak pull-up resistor. ## **Programming Files** Despite being function- and pin-compatible, FLEX 10KE devices are not programming- or configuration file-compatible with FLEX 10K or FLEX 10KA devices. A design therefore must be recompiled before it is transferred from a FLEX 10K or FLEX 10KA device to an equivalent FLEX 10KE device. This recompilation should be performed both to create a new programming or configuration file and to check design timing in FLEX 10KE devices, which has different timing characteristics than FLEX 10K or FLEX 10KA devices. FLEX 10KE devices are generally pin-compatible with equivalent FLEX 10KA devices. In some cases, FLEX 10KE devices have fewer I/O pins than the equivalent FLEX 10KA devices. Table 81 shows which FLEX 10KE devices have fewer I/O pins than equivalent FLEX 10KA devices. However, power, ground, JTAG, and configuration pins are the same on FLEX 10KA and FLEX 10KE devices, enabling migration from a FLEX 10KA design to a FLEX 10KE design. Additionally, the Altera software offers several features that help plan for future device migration by preventing the use of conflicting I/O pins. | Table 81. I/O Counts for FLEX 10KA & FLEX 10KE Devices | | | | | | | | |--------------------------------------------------------|-----------|----------------|-----------|--|--|--|--| | FLEX 10 | KA | FLEX 10 | KE | | | | | | Device | I/O Count | Device | I/O Count | | | | | | EPF10K30AF256 | 191 | EPF10K30EF256 | 176 | | | | | | EPF10K30AF484 | 246 | EPF10K30EF484 | 220 | | | | | | EPF10K50VB356 | 274 | EPF10K50SB356 | 220 | | | | | | EPF10K50VF484 | 291 | EPF10K50EF484 | 254 | | | | | | EPF10K50VF484 | 291 | EPF10K50SF484 | 254 | | | | | | EPF10K100AF484 | 369 | EPF10K100EF484 | 338 | | | | | # Configuration Schemes The configuration data for a FLEX 10KE device can be loaded with one of five configuration schemes (see Table 82), chosen on the basis of the target application. An EPC1, EPC2, or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of a FLEX 10KE device, allowing automatic configuration on system power-up. Multiple FLEX 10KE devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Additional FLEX 10KA, FLEX 10KE, and FLEX 6000 devices can be configured in the same serial chain. | Table 82. Data Sources for FLEX 10KE Configuration | | | | | | | |----------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--| | Configuration Scheme | Data Source | | | | | | | Configuration device | EPC1, EPC2, or EPC16 configuration device | | | | | | | Passive serial (PS) | BitBlaster, ByteBlasterMV, or MasterBlaster download cables, or serial data source | | | | | | | Passive parallel asynchronous (PPA) | Parallel data source | | | | | | | Passive parallel synchronous (PPS) | Parallel data source | | | | | | | JTAG | BitBlaster or ByteBlasterMV download cables, or microprocessor with a Jam STAPL file or JBC file | | | | | | # Device Pin-Outs See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information. # Revision History The information contained in the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.5 supersedes information published in previous versions. ## Version 2.5 The following changes were made to the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.5: - Note (1) added to Figure 23. - Text added to "I/O Element" section on page 34. - Updated Table 22. ### Version 2.4 The following changes were made to the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.4: updated text on page 34 and page 63.