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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs 216

Number of Logic Elements/Cells 1728

Total RAM Bits 24576

Number of I/O 147

Number of Gates 119000

Voltage - Supply 2.375V ~ 2.625V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 85°C (TA)

Package / Case 208-BFQFP

Supplier Device Package 208-PQFP (28x28)

Purchase URL https://www.e-xfl.com/product-detail/intel/epf10k30eqi208-2n

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/epf10k30eqi208-2n-4496343
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array


FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Note to tables:
(1) The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum 

system gates.
(2) New EPF10K100B designs should use EPF10K100E devices.

...and More 
Features

– Fabricated on an advanced process and operate with a 2.5-V 
internal supply voltage

– In-circuit reconfigurability (ICR) via external configuration 
devices, intelligent controller, or JTAG port

– ClockLockTM and ClockBoostTM options for reduced clock 
delay/skew and clock multiplication

– Built-in low-skew clock distribution trees
– 100% functional testing of all devices; test vectors or scan chains 

are not required
– Pull-up on I/O pins before and during configuration

■ Flexible interconnect
– FastTrack® Interconnect continuous routing structure for fast, 

predictable interconnect delays
– Dedicated carry chain that implements arithmetic functions such 

as fast adders, counters, and comparators (automatically used by 
software tools and megafunctions)

– Dedicated cascade chain that implements high-speed, 
high-fan-in logic functions (automatically used by software tools 
and megafunctions)

– Tri-state emulation that implements internal tri-state buses
– Up to six global clock signals and four global clear signals

■ Powerful I/O pins
– Individual tri-state output enable control for each pin
– Open-drain option on each I/O pin
– Programmable output slew-rate control to reduce switching 

noise
– Clamp to VCCIO user-selectable on a pin-by-pin basis
– Supports hot-socketing

Table 2. FLEX 10KE Device Features

Feature EPF10K100E (2) EPF10K130E EPF10K200E
EPF10K200S

Typical gates (1) 100,000 130,000 200,000

Maximum system gates 257,000 342,000 513,000

Logic elements (LEs) 4,992 6,656 9,984

EABs 12 16 24

Total RAM bits 49,152 65,536 98,304

Maximum user I/O pins 338 413 470
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FLEX 10KE Embedded Programmable Logic Devices Data Sheet
■ Software design support and automatic place-and-route provided by 
Altera’s development systems for Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800

■ Flexible package options
– Available in a variety of packages with 144 to 672 pins, including 

the innovative FineLine BGATM packages (see Tables 3 and 4)
– SameFrameTM pin-out compatibility between FLEX 10KA and 

FLEX 10KE devices across a range of device densities and pin 
counts

■ Additional design entry and simulation support provided by EDIF 
2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), 
DesignWare components, Verilog HDL, VHDL, and other interfaces 
to popular EDA tools from manufacturers such as Cadence, 
Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, 
VeriBest, and Viewlogic 

Notes:
(1) FLEX 10KE device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat 

pack (RQFP), pin-grid array (PGA), and ball-grid array (BGA) packages.
(2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When 

planning device migration, use the I/O pins that are common to all devices. 
(3) This option is supported with a 484-pin FineLine BGA package. By using SameFrame pin migration, all 

FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin, 484-pin, and 
672-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration 
is set.

Table 3. FLEX 10KE Package Options & I/O Pin Count  Notes (1), (2)

Device 144-Pin 
TQFP

208-Pin 
PQFP

240-Pin
PQFP
RQFP

256-Pin
FineLine 

BGA

356-Pin 
BGA

484-Pin
FineLine 

BGA

599-Pin 
PGA

600-Pin 
BGA

672-Pin
FineLine 

BGA

EPF10K30E 102 147 176 220 220 (3)

EPF10K50E 102 147 189 191 254 254 (3)

EPF10K50S 102 147 189 191 220 254 254 (3)

EPF10K100E 147 189 191 274 338 338 (3)

EPF10K130E 186 274 369 424 413

EPF10K200E 470 470 470

EPF10K200S 182 274 369 470 470 470
Altera Corporation 3 



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
The EAB can also be used for bidirectional, dual-port memory 
applications where two ports read or write simultaneously. To implement 
this type of dual-port memory, two EABs are used to support two 
simultaneous read or writes.

Alternatively, one clock and clock enable can be used to control the input 
registers of the EAB, while a different clock and clock enable control the 
output registers (see Figure 2).

Figure 2. FLEX 10KE Device in Dual-Port RAM Mode       Notes (1)

Notes:
(1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
(2) EPF10K30E and EPF10K50E devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, and 

EPF10K200E devices have 104 EAB local interconnect channels. 
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Each LAB provides four control signals with programmable inversion 
that can be used in all eight LEs. Two of these signals can be used as clocks, 
the other two can be used for clear/preset control. The LAB clocks can be 
driven by the dedicated clock input pins, global signals, I/O signals, or 
internal signals via the LAB local interconnect. The LAB preset and clear 
control signals can be driven by the global signals, I/O signals, or internal 
signals via the LAB local interconnect. The global control signals are 
typically used for global clock, clear, or preset signals because they 
provide asynchronous control with very low skew across the device. If 
logic is required on a control signal, it can be generated in one or more LE 
in any LAB and driven into the local interconnect of the target LAB. In 
addition, the global control signals can be generated from LE outputs.

Logic Element

The LE, the smallest unit of logic in the FLEX 10KE architecture, has a 
compact size that provides efficient logic utilization. Each LE contains a 
four-input LUT, which is a function generator that can quickly compute 
any function of four variables. In addition, each LE contains a 
programmable flipflop with a synchronous clock enable, a carry chain, 
and a cascade chain. Each LE drives both the local and the FastTrack 
Interconnect routing structure (see Figure 8).

Figure 8. FLEX 10KE Logic Element
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Figure 9 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for an accumulator function. Another portion of the LUT and the carry 
chain logic generates the carry-out signal, which is routed directly to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it can be used as a general-purpose signal. 

Figure 9. FLEX 10KE Carry Chain Operation (n-Bit Full Adder)
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LE Operating Modes

The FLEX 10KE LE can operate in the following four modes:

■ Normal mode
■ Arithmetic mode
■ Up/down counter mode
■ Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven 
available inputs to the LE—the four data inputs from the LAB local 
interconnect, the feedback from the programmable register, and the 
carry-in and cascade-in from the previous LE—are directed to different 
destinations to implement the desired logic function. Three inputs to the 
LE provide clock, clear, and preset control for the register. The Altera 
software, in conjunction with parameterized functions such as LPM and 
DesignWare functions, automatically chooses the appropriate mode for 
common functions such as counters, adders, and multipliers. If required, 
the designer can also create special-purpose functions that use a specific 
LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all 
four modes. The Altera software can set DATA1 to enable the register 
synchronously, providing easy implementation of fully synchronous 
designs.
Altera Corporation 21 
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Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but 
supports a synchronous clear instead of the up/down control. The clear 
function is substituted for the cascade-in signal in the up/down counter 
mode. Use 2 three-input LUTs: one generates the counter data, and the 
other generates the fast carry bit. Synchronous loading is provided by a 
2-to-1 multiplexer. The output of this multiplexer is AND ed with a 
synchronous clear signal. 

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer. 

Clear & Preset Logic Control

Logic for the programmable register’s clear and preset functions is 
controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The 
clear and preset control structure of the LE asynchronously loads signals 
into a register. Either LABCTRL1 or LABCTRL2 can control the 
asynchronous clear. Alternatively, the register can be set up so that 
LABCTRL1 implements an asynchronous load. The data to be loaded is 
driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the 
register.

During compilation, the Altera Compiler automatically selects the best 
control signal implementation. Because the clear and preset functions are 
active-low, the Compiler automatically assigns a logic high to an unused 
clear or preset. 

The clear and preset logic is implemented in one of the following six 
modes chosen during design entry: 

■ Asynchronous clear
■ Asynchronous preset
■ Asynchronous clear and preset
■ Asynchronous load with clear
■ Asynchronous load with preset
■ Asynchronous load without clear or preset
24 Altera Corporation
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Figure 13. FLEX 10KE LAB Connections to Row & Column Interconnect     

From Adjacent LAB

Row Channels

Column
Channels

Each LE can drive two
row channels.

LE 2 

LE 8 

LE 1  
To Adjacent LAB 

Each LE can switch
interconnect access
with an LE in the
adjacent LAB.

At each intersection,
six row channels can
drive column channels.

To Other RowsTo LAB Local
Interconnect

To Other
Columns
28 Altera Corporation



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
For improved routing, the row interconnect consists of a combination of 
full-length and half-length channels. The full-length channels connect to 
all LABs in a row; the half-length channels connect to the LABs in half of 
the row. The EAB can be driven by the half-length channels in the left half 
of the row and by the full-length channels. The EAB drives out to the full-
length channels. In addition to providing a predictable, row-wide 
interconnect, this architecture provides increased routing resources. Two 
neighboring LABs can be connected using a half-row channel, thereby 
saving the other half of the channel for the other half of the row.

Table 7 summarizes the FastTrack Interconnect routing structure 
resources available in each FLEX 10KE device.

In addition to general-purpose I/O pins, FLEX 10KE devices have six 
dedicated input pins that provide low-skew signal distribution across the 
device. These six inputs can be used for global clock, clear, preset, and 
peripheral output enable and clock enable control signals. These signals 
are available as control signals for all LABs and IOEs in the device. The 
dedicated inputs can also be used as general-purpose data inputs because 
they can feed the local interconnect of each LAB in the device. 

Figure 14 shows the interconnection of adjacent LABs and EABs, with 
row, column, and local interconnects, as well as the associated cascade 
and carry chains. Each LAB is labeled according to its location: a letter 
represents the row and a number represents the column. For example, 
LAB B3 is in row B, column 3.

Table 7. FLEX 10KE FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per
Column

EPF10K30E 6 216 36 24

EPF10K50E
EPF10K50S

10 216 36 24

EPF10K100E 12 312 52 24

EPF10K130E 16 312 52 32

EPF10K200E
EPF10K200S

24 312 52 48
Altera Corporation 29 
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On all FLEX 10KE devices (except EPF10K50E and EPF10K200E devices), 
the input path from the I/O pad to the FastTrack Interconnect has a 
programmable delay element that can be used to guarantee a zero hold 
time. EPF10K50S and EPF10K200S devices also support this feature. 
Depending on the placement of the IOE relative to what it is driving, the 
designer may choose to turn on the programmable delay to ensure a zero 
hold time or turn it off to minimize setup time. This feature is used to 
reduce setup time for complex pin-to-register paths (e.g., PCI designs).

Each IOE selects the clock, clear, clock enable, and output enable controls 
from a network of I/O control signals called the peripheral control bus. 
The peripheral control bus uses high-speed drivers to minimize signal 
skew across the device and provides up to 12 peripheral control signals 
that can be allocated as follows:

■ Up to eight output enable signals
■ Up to six clock enable signals
■ Up to two clock signals
■ Up to two clear signals

If more than six clock enable or eight output enable signals are required, 
each IOE on the device can be controlled by clock enable and output 
enable signals driven by specific LEs. In addition to the two clock signals 
available on the peripheral control bus, each IOE can use one of two 
dedicated clock pins. Each peripheral control signal can be driven by any 
of the dedicated input pins or the first LE of each LAB in a particular row. 
In addition, a LE in a different row can drive a column interconnect, which 
causes a row interconnect to drive the peripheral control signal. The chip-
wide reset signal resets all IOE registers, overriding any other control 
signals.

When a dedicated clock pin drives IOE registers, it can be inverted for all 
IOEs in the device. All IOEs must use the same sense of the clock. For 
example, if any IOE uses the inverted clock, all IOEs must use the inverted 
clock and no IOE can use the non-inverted clock. However, LEs can still 
use the true or complement of the clock on a LAB-by-LAB basis. 

The incoming signal may be inverted at the dedicated clock pin and will 
drive all IOEs. For the true and complement of a clock to be used to drive 
IOEs, drive it into both global clock pins. One global clock pin will supply 
the true, and the other will supply the complement. 

When the true and complement of a dedicated input drives IOE clocks, 
two signals on the peripheral control bus are consumed, one for each 
sense of the clock.
32 Altera Corporation
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Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row 
channels. The signal is accessible by all LEs within that row. When an IOE 
is used as an output, the signal is driven by a multiplexer that selects a 
signal from the row channels. Up to eight IOEs connect to each side of 
each row channel (see Figure 16).

Figure 16. FLEX 10KE Row-to-IOE Connections

Table 10 lists the FLEX 10KE row-to-IOE interconnect resources. 
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The values for m and n are provided in Table 10.

Table 10. FLEX 10KE Row-to-IOE Interconnect Resources

Device Channels per Row (n) Row Channels per Pin (m)

EPF10K30E 216 27

EPF10K50E
EPF10K50S

216 27

EPF10K100E 312 39

EPF10K130E 312 39

EPF10K200E
EPF10K200S

312 39
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Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column 
channels. When an IOE is used as an output, the signal is driven by a 
multiplexer that selects a signal from the column channels. Two IOEs 
connect to each side of the column channels. Each IOE can be driven by 
column channels via a multiplexer. The set of column channels is different 
for each IOE (see Figure 17).

Figure 17. FLEX 10KE Column-to-IOE Connections   

Table 11 lists the FLEX 10KE column-to-IOE interconnect resources. 
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The values for m and n are provided in Table 11.

Table 11. FLEX 10KE Column-to-IOE Interconnect Resources

Device Channels per Column (n) Column Channels per Pin (m)

EPF10K30E 24 16

EPF10K50E
EPF10K50S

24 16

EPF10K100E 24 16

EPF10K130E 32 24

EPF10K200E
EPF10K200S

48 40
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Tables 12 and 13 summarize the ClockLock and ClockBoost parameters 
for -1 and -2 speed-grade devices, respectively.

Table 12. ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices

Symbol Parameter Condition Min Typ Max Unit
tR Input rise time 5 ns

tF Input fall time 5 ns

t INDUTY Input duty cycle 40 60 %

fCLK1 Input clock frequency (ClockBoost 

clock multiplication factor equals 1)

25 180 MHz

fCLK2 Input clock frequency (ClockBoost 

clock multiplication factor equals 2)

16 90 MHz

fCLKDEV Input deviation from user 

specification in the MAX+PLUS II 

software (1)

25,000 (2) PPM

t INCLKSTB Input clock stability (measured 

between adjacent clocks)

100 ps

tLOCK Time required for ClockLock or 

ClockBoost to acquire lock (3)
10 µs

t JITTER Jitter on ClockLock or ClockBoost-

generated clock (4)
tINCLKSTB < 100 250 ps

t INCLKSTB < 50 200 (4) ps

tOUTDUTY Duty cycle for ClockLock or 

ClockBoost-generated clock

40 50 60 %
40 Altera Corporation
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Figure 20 shows the timing requirements for the JTAG signals.

Figure 20. FLEX 10KE JTAG Waveforms

Table 18 shows the timing parameters and values for FLEX 10KE devices.

Table 18. FLEX 10KE JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJCP TCK clock period  100 ns

tJCH TCK clock high time  50 ns

tJCL TCK clock low time  50 ns

tJPSU JTAG port setup time  20 ns

tJPH JTAG port hold time  45 ns

tJPCO JTAG port clock to output 25 ns

tJPZX JTAG port high impedance to valid output 25 ns

tJPXZ JTAG port valid output to high impedance 25 ns

tJSSU Capture register setup time 20 ns

tJSH Capture register hold time 45 ns

tJSCO Update register clock to output 35 ns

tJSZX Update register high impedance to valid output 35 ns

tJSXZ Update register valid output to high impedance 35 ns
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Table 22. FLEX 10KE 2.5-V Device DC Operating Conditions Notes (6), (7)

Symbol Parameter Conditions Min Typ Max Unit

VIH High-level input 
voltage

1.7, 0.5 × VCCIO (8) 5.75 V

VIL Low-level input 
voltage

–0.5 0.8, 
0.3 × VCCIO (8)

V

VOH 3.3-V high-level TTL 
output voltage

IOH = –8 mA DC, 
VCCIO = 3.00 V (9) 

2.4 V

3.3-V high-level 
CMOS output voltage

IOH = –0.1 mA DC, 
VCCIO = 3.00 V (9) 

VCCIO – 0.2 V

3.3-V high-level PCI 
output voltage

IOH = –0.5 mA DC, 
VCCIO = 3.00 to 3.60 V (9) 

0.9 × VCCIO V

2.5-V high-level output 
voltage

IOH = –0.1 mA DC, 
VCCIO = 2.30 V (9) 

2.1 V

IOH = –1 mA DC, 
VCCIO = 2.30 V (9) 

2.0 V

IOH = –2 mA DC, 
VCCIO = 2.30 V (9) 

1.7 V

VOL 3.3-V low-level TTL 
output voltage

IOL = 12 mA DC, 
VCCIO = 3.00 V (10)

0.45 V

3.3-V low-level CMOS 
output voltage

IOL = 0.1 mA DC, 
VCCIO = 3.00 V (10)

0.2 V

3.3-V low-level PCI 
output voltage

IOL = 1.5 mA DC, 
VCCIO = 3.00 to 3.60 V 
(10)

0.1 × VCCIO V

2.5-V low-level output 
voltage

IOL = 0.1 mA DC, 
VCCIO = 2.30 V (10)

0.2 V

IOL = 1 mA DC, 
VCCIO = 2.30 V (10)

0.4 V

IOL = 2 mA DC, 
VCCIO = 2.30 V (10)

0.7 V

II Input pin leakage 
current

VI = VCCIOmax to 0 V (11) –10 10 µA

IOZ Tri-stated I/O pin 
leakage current

VO = VCCIOmax to 0 V (11) –10 10 µA

ICC0 VCC supply current 
(standby)

VI = ground, no load, no 
toggling inputs

5 mA

VI = ground, no load, no 
toggling inputs (12)

10 mA

RCONF Value of I/O pin pull-
up resistor before and 
during configuration

VCCIO = 3.0 V (13) 20 50 k¾

VCCIO = 2.3 V (13) 30 80 k¾
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents 

less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are 

powered.
(6) Typical values are for TA = 25° C, VCCINT = 2.5 V, and VCCIO = 2.5 V or 3.3 V.
(7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21.
(8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS 

signals. Additionally, the input buffers are 3.3-V PCI compliant when VCCIO and VCCINT meet the relationship shown 
in Figure 22.

(9) The IOH parameter refers to high-level TTL, PCI, or CMOS output current.
(10) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(11) This value is specified for normal device operation. The value may vary during power-up.
(12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial 

temperature devices.
(13) Pin pull-up resistance values will be lower if the pin is driven higher than VCCIO by an external source.
(14) Capacitance is sample-tested only.

Table 23. FLEX 10KE Device Capacitance Note (14)

Symbol Parameter Conditions Min Max Unit

CIN Input capacitance VIN = 0 V, f = 1.0 MHz 10 pF

CINCLK Input capacitance on 
dedicated clock pin

VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 10 pF
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Figure 26. FLEX 10KE Device IOE Timing Model

Figure 27. FLEX 10KE Device EAB Timing Model

Data-In

I/O Register
Delays

tIOCO

tIOCOMB

tIOSU

tIOH

tIOCLR

Output Data
Delay

tIOD

I/O Element
Contol Delay

tIOC

Input Register Delay

tINREG

Output
Delays

tOD1

tOD2

tOD3

tXZ

tZX1

tZX2

tZX3

I/O Register
Feedback Delay

tIOFD

Input Delay

tINCOMB

Clock Enable
Clear

Data Feedback
into FastTrack
Interconnect

Clock
Output Enable

EAB Data Input
Delays

tEABDATA1

tEABDATA2

Data-In

Write Enable
Input Delays

tEABWE1

tEABWE2

EAB Clock
Delay

tEABCLK

Input Register
Delays

tEABCO

tEABBYPASS

tEABSU

tEABH

tEABCH

tEABCL

tEABRE1

tEABRE2

RAM/ROM
Block Delays

tAA

tRP
tRASU
tRAH

tDD

tWP

tWDSU

tWDH

tWASU

tWAH

tWO

Output Register
Delays

tEABCO

tEABBYPASS

tEABSU

tEABH

tEABCH

tEABCL

tEABOUT

Address

WE

Input Register
Clock

Output Register
Clock

Data-Out

EAB Output
Delay

Read Enable
Input Delays

RE
Altera Corporation 55 



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
tOD3 4.0 5.6 7.5 ns

tXZ 2.8 4.1 5.5 ns

tZX1 2.8 4.1 5.5 ns

tZX2 2.8 4.1 5.5 ns

tZX3 4.0 5.6 7.5 ns

tINREG 2.5 3.0 4.1 ns

tIOFD 0.4 0.5 0.6 ns

tINCOMB 0.4 0.5 0.6 ns

Table 54. EPF10K130E Device EAB Internal Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.5 2.0 2.6 ns

tEABDATA2 0.0 0.0 0.0 ns

tEABWE1 1.5 2.0 2.6 ns

tEABWE2 0.3 0.4 0.5 ns

tEABRE1 0.3 0.4 0.5 ns

tEABRE2 0.0 0.0 0.0 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.4 0.5 ns

tEABBYPASS 0.1 0.1 0.2 ns

tEABSU 0.8 1.0 1.4 ns

tEABH 0.1 0.2 0.2 ns

tEABCLR 0.3 0.4 0.5 ns

tAA 4.0 5.0 6.6 ns

tWP 2.7 3.5 4.7 ns

tRP 1.0 1.3 1.7 ns

tWDSU 1.0 1.3 1.7 ns

tWDH 0.2 0.2 0.3 ns

tWASU 1.6 2.1 2.8 ns

tWAH 1.6 2.1 2.8 ns

tRASU 3.0 3.9 5.2 ns

tRAH 0.1 0.1 0.2 ns

tWO 1.5 2.0 2.6 ns

Table 53. EPF10K130E Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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tZX2 4.5 4.8 6.6 ns

tZX3 6.6 7.6 10.1 ns

tINREG 3.7 5.7 7.7 ns

tIOFD 1.8 3.4 4.0 ns

tINCOMB 1.8 3.4 4.0 ns

Table 75. EPF10K200S Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.8 2.4 3.2 ns

tEABDATA1 0.4 0.5 0.6 ns

tEABWE1 1.1 1.7 2.3 ns

tEABWE2 0.0 0.0 0.0 ns

tEABRE1 0 0 0 ns

tEABRE2 0.4 0.5 0.6 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.8 0.9 1.2 ns

tEABBYPASS 0.0 0.1 0.1 ns

tEABSU 0.7 1.1 1.5 ns

tEABH 0.4 0.5 0.6 ns

tEABCLR 0.8 0.9 1.2 ns

tAA 2.1 3.7 4.9 ns

tWP 2.1 4.0 5.3 ns

tRP 1.1 1.1 1.5 ns

tWDSU 0.5 1.1 1.5 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.1 1.6 2.1 ns

tWAH 1.6 2.5 3.3 ns

tRASU 1.6 2.6 3.5 ns

tRAH 0.1 0.1 0.2 ns

tWO 2.0 2.4 3.2 ns

tDD 2.0 2.4 3.2 ns

tEABOUT 0.0 0.1 0.1 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.1 2.8 3.8 ns

Table 74. EPF10K200S Device IOE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Power 
Consumption

The supply power (P) for FLEX 10KE devices can be calculated with the 
following equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

The ICCACTIVE value depends on the switching frequency and the 
application logic. This value is calculated based on the amount of current 
that each LE typically consumes. The PIO value, which depends on the 
device output load characteristics and switching frequency, can be 
calculated using the guidelines given in Application Note 74 (Evaluating 
Power for Altera Devices).

Compared to the rest of the device, the embedded array consumes a 
negligible amount of power. Therefore, the embedded array can be 
ignored when calculating supply current.

The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K × fMAX × N × togLC × 

Where:

fMAX = Maximum operating frequency in MHz
N = Total number of LEs used in the device
togLC = Average percent of LEs toggling at each clock 

(typically 12.5%)
K = Constant

Table 80 provides the constant (K) values for FLEX 10KE devices.

This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions.

Table 80. FLEX 10KE K Constant Values

Device K Value

EPF10K30E 4.5

EPF10K50E 4.8

EPF10K50S 4.5

EPF10K100E 4.5

EPF10K130E 4.6

EPF10K200E 4.8

EPF10K200S 4.6

µA
MHz LE×
---------------------------
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