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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Notes:
(1) This application uses combinatorial inputs and outputs.
(2) This application uses registered inputs and outputs.

Table 6 shows FLEX 10KE performance for more complex designs. These 
designs are available as Altera MegaCore® functions.

Note:
(1) These values are for calculation time. Calculation time = number of clocks required/fmax. Number of clocks 

required = ceiling [log 2 (points)/2] × [points +14 + ceiling]

Table 5. FLEX 10KE Performance

Application Resources Used Performance Units

LEs EABs -1 Speed Grade -2 Speed Grade -3 Speed Grade

16-bit loadable counter 16 0 285 250 200 MHz

16-bit accumulator 16 0 285 250 200 MHz

16-to-1 multiplexer (1) 10 0 3.5 4.9 7.0 ns

16-bit multiplier with 3-stage 
pipeline (2)

592 0 156 131 93 MHz

256 × 16 RAM read cycle 
speed (2)

0 1 196 154 118 MHz

256 × 16 RAM write cycle 
speed (2)

0 1 185 143 106 MHz

Table 6. FLEX 10KE Performance for Complex Designs

Application LEs Used Performance Units

-1 Speed Grade -2 Speed Grade -3 Speed Grade

8-bit, 16-tap parallel finite impulse 
response (FIR) filter

597 192 156 116 MSPS

8-bit, 512-point fast Fourier 
transform (FFT) function

1,854 23.4 28.7 38.9 µs (1)

113 92 68 MHz

a16450 universal asynchronous 
receiver/transmitter (UART)

342 36 28 20.5 MHz
Altera Corporation 5 
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The EAB can also use Altera megafunctions to implement dual-port RAM 
applications where both ports can read or write, as shown in Figure 3.

Figure 3. FLEX 10KE EAB in Dual-Port RAM Mode

The FLEX 10KE EAB can be used in a single-port mode, which is useful for 
backward-compatibility with FLEX 10K designs (see Figure 4).

Port A Port B

address_a[] address_b[]

data_a[] data_b[]

we_a we_b

clkena_a clkena_b

Clock A Clock B
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The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock, clear, and preset control signals on the flipflop can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the flipflop is bypassed and the output 
of the LUT drives the output of the LE. 

The LE has two outputs that drive the interconnect: one drives the local 
interconnect and the other drives either the row or column FastTrack 
Interconnect routing structure. The two outputs can be controlled 
independently. For example, the LUT can drive one output while the 
register drives the other output. This feature, called register packing, can 
improve LE utilization because the register and the LUT can be used for 
unrelated functions.

The FLEX 10KE architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. The carry chain supports 
high-speed counters and adders and the cascade chain implements 
wide-input functions with minimum delay. Carry and cascade chains 
connect all LEs in a LAB as well as all LABs in the same row. Intensive use 
of carry and cascade chains can reduce routing flexibility. Therefore, the 
use of these chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
FLEX 10KE architecture to implement high-speed counters, adders, and 
comparators of arbitrary width efficiently. Carry chain logic can be 
created automatically by the Altera Compiler during design processing, 
or manually by the designer during design entry. Parameterized functions 
such as LPM and DesignWare functions automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EPF10K50E device, the carry chain stops at the eighteenth LAB and 
a new one begins at the nineteenth LAB.
18 Altera Corporation
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Cascade Chain

With the cascade chain, the FLEX 10KE architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. An a delay as low as 0.6 ns per LE, each additional LE 
provides four more inputs to the effective width of a function. Cascade 
chain logic can be created automatically by the Altera Compiler during 
design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EPF10K50E device, the 
cascade chain stops at the eighteenth LAB and a new one begins at the 
nineteenth LAB). This break is due to the EAB’s placement in the middle 
of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to 
form functions with a wide fan-in. These examples show functions of 
4n variables implemented with n LEs. The LE delay is 0.9 ns; the cascade 
chain delay is 0.6 ns. With the cascade chain, 2.7 ns are needed to decode 
a 16-bit address.

Figure 10. FLEX 10KE Cascade Chain Operation
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LE Operating Modes

The FLEX 10KE LE can operate in the following four modes:

■ Normal mode
■ Arithmetic mode
■ Up/down counter mode
■ Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven 
available inputs to the LE—the four data inputs from the LAB local 
interconnect, the feedback from the programmable register, and the 
carry-in and cascade-in from the previous LE—are directed to different 
destinations to implement the desired logic function. Three inputs to the 
LE provide clock, clear, and preset control for the register. The Altera 
software, in conjunction with parameterized functions such as LPM and 
DesignWare functions, automatically chooses the appropriate mode for 
common functions such as counters, adders, and multipliers. If required, 
the designer can also create special-purpose functions that use a specific 
LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all 
four modes. The Altera software can set DATA1 to enable the register 
synchronously, providing easy implementation of fully synchronous 
designs.
Altera Corporation 21 
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Figure 11 shows the LE operating modes.

Figure 11. FLEX 10KE LE Operating Modes
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Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this 
mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with 
an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 
asynchronously loads a one into the register. Alternatively, the Altera 
software can provide preset control by using the clear and inverting the 
input and output of the register. Inversion control is available for the 
inputs to both LEs and IOEs. Therefore, if a register is preset by only one 
of the two LABCTRL signals, the DATA3 input is not needed and can be 
used for one of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls 
the preset and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that 
asserting LABCTRL1 asynchronously loads a one into the register, 
effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear. LABCTRL2 implements the clear by 
controlling the register clear; LABCTRL2 does not have to feed the preset 
circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the 
Altera software provides preset control by using the clear and inverting 
the input and output of the register. Asserting LABCTRL2 presets the 
register, while asserting LABCTRL1 loads the register. The Altera software 
inverts the signal that drives DATA3 to account for the inversion of the 
register’s output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear.
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For improved routing, the row interconnect consists of a combination of 
full-length and half-length channels. The full-length channels connect to 
all LABs in a row; the half-length channels connect to the LABs in half of 
the row. The EAB can be driven by the half-length channels in the left half 
of the row and by the full-length channels. The EAB drives out to the full-
length channels. In addition to providing a predictable, row-wide 
interconnect, this architecture provides increased routing resources. Two 
neighboring LABs can be connected using a half-row channel, thereby 
saving the other half of the channel for the other half of the row.

Table 7 summarizes the FastTrack Interconnect routing structure 
resources available in each FLEX 10KE device.

In addition to general-purpose I/O pins, FLEX 10KE devices have six 
dedicated input pins that provide low-skew signal distribution across the 
device. These six inputs can be used for global clock, clear, preset, and 
peripheral output enable and clock enable control signals. These signals 
are available as control signals for all LABs and IOEs in the device. The 
dedicated inputs can also be used as general-purpose data inputs because 
they can feed the local interconnect of each LAB in the device. 

Figure 14 shows the interconnection of adjacent LABs and EABs, with 
row, column, and local interconnects, as well as the associated cascade 
and carry chains. Each LAB is labeled according to its location: a letter 
represents the row and a number represents the column. For example, 
LAB B3 is in row B, column 3.

Table 7. FLEX 10KE FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per
Column

EPF10K30E 6 216 36 24

EPF10K50E
EPF10K50S

10 216 36 24

EPF10K100E 12 312 52 24

EPF10K130E 16 312 52 32

EPF10K200E
EPF10K200S

24 312 52 48
Altera Corporation 29 
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Figure 14. FLEX 10KE Interconnect Resources

I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used 
either as an input register for external data that requires a fast setup time, 
or as an output register for data that requires fast clock-to-output 
performance. In some cases, using an LE register for an input register will 
result in a faster setup time than using an IOE register. IOEs can be used 
as input, output, or bidirectional pins. For bidirectional registered I/O 
implementation, the output register should be in the IOE, and the data 
input and output enable registers should be LE registers placed adjacent 
to the bidirectional pin. The Altera Compiler uses the programmable 
inversion option to invert signals from the row and column interconnect 
automatically where appropriate. Figure 15 shows the bidirectional I/O 
registers.

I/O Element (IOE)

Row
Interconnect

IOE

IOE

IOE

IOE

Column
Interconnect

LAB
B1

See Figure 17
for details.

See Figure 16
for details.

LAB
A3

LAB
B3

LAB
A1

LAB
A2

LAB
B2

IOE

IOE

Cascade &

LAB B4

LAB A4

LAB B5

LAB A5

IOE IOEIOE IOEIOE IOE

IOEIOE IOEIOE IOEIOE

IOE

IOE

Carry Chains
30 Altera Corporation



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column 
channels. When an IOE is used as an output, the signal is driven by a 
multiplexer that selects a signal from the column channels. Two IOEs 
connect to each side of the column channels. Each IOE can be driven by 
column channels via a multiplexer. The set of column channels is different 
for each IOE (see Figure 17).

Figure 17. FLEX 10KE Column-to-IOE Connections   

Table 11 lists the FLEX 10KE column-to-IOE interconnect resources. 

Each IOE is driven by
a m-to-1 multiplexer

Each IOE can drive two
column channels.

Column
Interconnect
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m

m

n
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The values for m and n are provided in Table 11.

Table 11. FLEX 10KE Column-to-IOE Interconnect Resources

Device Channels per Column (n) Column Channels per Pin (m)

EPF10K30E 24 16

EPF10K50E
EPF10K50S

24 16

EPF10K100E 24 16

EPF10K130E 32 24

EPF10K200E
EPF10K200S

48 40
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ClockLock & 
ClockBoost 
Features

To support high-speed designs, FLEX 10KE devices offer optional 
ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) 
used to increase design speed and reduce resource usage. The ClockLock 
circuitry uses a synchronizing PLL that reduces the clock delay and skew 
within a device. This reduction minimizes clock-to-output and setup 
times while maintaining zero hold times. The ClockBoost circuitry, which 
provides a clock multiplier, allows the designer to enhance device area 
efficiency by resource sharing within the device. The ClockBoost feature 
allows the designer to distribute a low-speed clock and multiply that clock 
on-device. Combined, the ClockLock and ClockBoost features provide 
significant improvements in system performance and bandwidth.

All FLEX 10KE devices, except EPF10K50E and EPF10K200E devices, 
support ClockLock and ClockBoost circuitry. EPF10K50S and 
EPF10K200S devices support this circuitry. Devices that support Clock-
Lock and ClockBoost circuitry are distinguished with an “X” suffix in the 
ordering code; for instance, the EPF10K200SFC672-1X device supports 
this circuit.

The ClockLock and ClockBoost features in FLEX 10KE devices are 
enabled through the Altera software. External devices are not required to 
use these features. The output of the ClockLock and ClockBoost circuits is 
not available at any of the device pins.

The ClockLock and ClockBoost circuitry locks onto the rising edge of the 
incoming clock. The circuit output can drive the clock inputs of registers 
only; the generated clock cannot be gated or inverted.

The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and 
ClockBoost circuitry. When the dedicated clock pin is driving the 
ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

For designs that require both a multiplied and non-multiplied clock, the 
clock trace on the board can be connected to the GCLK1 pin. In the 
Altera software, the GCLK1 pin can feed both the ClockLock and 
ClockBoost circuitry in the FLEX 10KE device. However, when both 
circuits are used, the other clock pin cannot be used.
38 Altera Corporation



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Table 20. 2.5-V EPF10K50E & EPF10K200E Device Recommended Operating Conditions 

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage for internal logic 
and input buffers

(3), (4) 2.30 (2.30) 2.70 (2.70) V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output buffers, 
2.5-V operation

(3), (4) 2.30 (2.30) 2.70 (2.70) V

VI Input voltage (5) –0.5 5.75 V

VO Output voltage 0 VCCIO V

TA Ambient temperature For commercial use 0 70 ° C

For industrial use –40 85 ° C

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns

Table 21. 2.5-V EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E & EPF10K200S Device 
Recommended Operating Conditions 

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage for internal logic 
and input buffers

(3), (4) 2.375 
(2.375)

2.625 
(2.625)

V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output buffers, 
2.5-V operation

(3), (4) 2.375 
(2.375)

2.625 
(2.625)

V

VI Input voltage (5) –0.5 5.75 V

VO Output voltage 0 VCCIO V

TA Ambient temperature For commercial use 0 70 ° C

For industrial use –40 85 ° C

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns
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Table 28. Interconnect Timing Microparameters Note (1)

Symbol Parameter Conditions

tDIN2IOE Delay from dedicated input pin to IOE control input (7)

tDIN2LE Delay from dedicated input pin to LE or EAB control input (7)

tDCLK2IOE Delay from dedicated clock pin to IOE clock (7)

tDCLK2LE Delay from dedicated clock pin to LE or EAB clock (7)

tDIN2DATA Delay from dedicated input or clock to LE or EAB data (7)

tSAMELAB Routing delay for an LE driving another LE in the same LAB

tSAMEROW Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the 
same row

(7)

tSAMECOLUMN Routing delay for an LE driving an IOE in the same column (7)

tDIFFROW Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different 
row

(7)

tTWOROWS Routing delay for a row IOE or EAB driving an LE or EAB in a different row (7)

tLEPERIPH Routing delay for an LE driving a control signal of an IOE via the peripheral 
control bus

(7)

tLABCARRY Routing delay for the carry-out signal of an LE driving the carry-in signal of a 
different LE in a different LAB

tLABCASC Routing delay for the cascade-out signal of an LE driving the cascade-in 
signal of a different LE in a different LAB

Table 29. External Timing Parameters

Symbol Parameter Conditions

tDRR Register-to-register delay via four LEs, three row interconnects, and four local 
interconnects

(8)

tINSU Setup time with global clock at IOE register (9)

tINH Hold time with global clock at IOE register (9)

tOUTCO Clock-to-output delay with global clock at IOE register (9)

tPCISU Setup time with global clock for registers used in PCI designs (9),(10)

tPCIH Hold time with global clock for registers used in PCI designs (9),(10)

tPCICO Clock-to-output delay with global clock for registers used in PCI designs (9),(10)
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Figure 30. EAB Synchronous Timing Waveforms

Tables 31 through 37 show EPF10K30E device internal and external 
timing parameters.
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Table 31. EPF10K30E Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.7 0.8 1.1 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.6 0.7 1.0 ns

tPACKED 0.3 0.4 0.5 ns

tEN 0.6 0.8 1.0 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.5 0.7 ns
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 38 through 44 show EPF10K50E device internal and external 
timing parameters.  

Table 37. EPF10K30E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (3) 2.8 3.9 5.2 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 3.8 4.9 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 4.9 2.0 5.9 2.0 7.6 ns

tXZBIDIR (3) 6.1 7.5 9.7 ns

tZXBIDIR (3) 6.1 7.5 9.7 ns

tOUTCOBIDIR (4)  0.5 3.9 0.5 4.9 – – ns

tXZBIDIR (4) 5.1  6.5 – ns

tZXBIDIR (4) 5.1  6.5 – ns

Table 38. EPF10K50E Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.6 0.9 1.3 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.7 0.8 1.1 ns

tPACKED 0.4 0.5 0.6 ns

tEN 0.6 0.7 0.9 ns

tCICO 0.2 0.2 0.3 ns

tCGEN 0.5 0.5 0.8 ns

tCGENR 0.2 0.2 0.3 ns

tCASC 0.8 1.0 1.4 ns

tC 0.5 0.6 0.8 ns

tCO 0.7 0.7 0.9 ns

tCOMB 0.5 0.6 0.8 ns

tSU 0.7 0.7 0.8 ns
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Table 41. EPF10K50E Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 6.4 7.6 10.2 ns

tEABRCOMB 6.4 7.6 10.2 ns

tEABRCREG 4.4 5.1 7.0 ns

tEABWP 2.5 2.9 3.9 ns

tEABWCOMB 6.0 7.0 9.5 ns

tEABWCREG 6.8 7.8 10.6 ns

tEABDD 5.7 6.7 9.0 ns

tEABDATACO 0.8 0.9 1.3 ns

tEABDATASU 1.5 1.7 2.3 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 1.3 1.4 2.0 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.5 1.7 2.3 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.8 ns

tEABWAH 0.5 0.5 0.8 ns

tEABWO 5.1 6.0 8.1 ns

Table 42. EPF10K50E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 3.5 4.3 5.6 ns

tDIN2LE 2.1 2.5 3.4 ns

tDIN2DATA 2.2 2.4 3.1 ns

tDCLK2IOE 2.9 3.5 4.7 ns

tDCLK2LE 2.1 2.5 3.4 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.1 1.1 1.5 ns

tSAMECOLUMN 0.8 1.0 1.3 ns

tDIFFROW 1.9 2.1 2.8 ns

tTWOROWS 3.0 3.2 4.3 ns

tLEPERIPH 3.1 3.3 3.7 ns

tLABCARRY 0.1 0.1 0.2 ns

tLABCASC 0.3 0.3 0.5 ns
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tOD3 4.0 5.6 7.5 ns

tXZ 2.8 4.1 5.5 ns

tZX1 2.8 4.1 5.5 ns

tZX2 2.8 4.1 5.5 ns

tZX3 4.0 5.6 7.5 ns

tINREG 2.5 3.0 4.1 ns

tIOFD 0.4 0.5 0.6 ns

tINCOMB 0.4 0.5 0.6 ns

Table 54. EPF10K130E Device EAB Internal Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.5 2.0 2.6 ns

tEABDATA2 0.0 0.0 0.0 ns

tEABWE1 1.5 2.0 2.6 ns

tEABWE2 0.3 0.4 0.5 ns

tEABRE1 0.3 0.4 0.5 ns

tEABRE2 0.0 0.0 0.0 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.4 0.5 ns

tEABBYPASS 0.1 0.1 0.2 ns

tEABSU 0.8 1.0 1.4 ns

tEABH 0.1 0.2 0.2 ns

tEABCLR 0.3 0.4 0.5 ns

tAA 4.0 5.0 6.6 ns

tWP 2.7 3.5 4.7 ns

tRP 1.0 1.3 1.7 ns

tWDSU 1.0 1.3 1.7 ns

tWDH 0.2 0.2 0.3 ns

tWASU 1.6 2.1 2.8 ns

tWAH 1.6 2.1 2.8 ns

tRASU 3.0 3.9 5.2 ns

tRAH 0.1 0.1 0.2 ns

tWO 1.5 2.0 2.6 ns

Table 53. EPF10K130E Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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tDD 1.5 2.0 2.6 ns

tEABOUT 0.2 0.3 0.3 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.7 3.5 4.7 ns

Table 55. EPF10K130E Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 5.9 7.5 9.9 ns

tEABRCOMB 5.9 7.5 9.9 ns

tEABRCREG 5.1 6.4 8.5 ns

tEABWP 2.7 3.5 4.7 ns

tEABWCOMB 5.9 7.7 10.3 ns

tEABWCREG 5.4 7.0 9.4 ns

tEABDD 3.4 4.5 5.9 ns

tEABDATACO 0.5 0.7 0.8 ns

tEABDATASU 0.8 1.0 1.4 ns

tEABDATAH 0.1 0.1 0.2 ns

tEABWESU 1.1 1.4 1.9 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.0 1.3 1.7 ns

tEABWDH 0.2 0.2 0.3 ns

tEABWASU 4.1 5.1 6.8 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 3.4 4.5 5.9 ns

Table 54. EPF10K130E Device EAB Internal Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.

Tables 66 through 79 show EPF10K50S and EPF10K200S device external 
timing parameters.  

Table 64. EPF10K200E External Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 10.0 12.0 16.0 ns

tINSU 2.8 3.4 4.4 ns

tINH 0.0 0.0 0.0 ns

tOUTCO 2.0 4.5 2.0 5.3 2.0 7.8 ns

tPCISU  3.0  6.2 - ns

tPCIH  0.0  0.0 - ns

tPCICO  2.0  6.0  2.0  8.9 - - ns

Table 65. EPF10K200E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 3.0 4.0 5.5 ns

tINHBIDIR 0.0 0.0 0.0 ns

tOUTCOBIDIR 2.0 4.5 2.0 5.3 2.0 7.8 ns

tXZBIDIR 8.1 9.5 13.0 ns

tZXBIDIR 8.1  9.5                     13.0 ns

Table 66. EPF10K50S Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.6 0.8 1.1 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.6 0.7 0.9 ns

tPACKED 0.2 0.3 0.4 ns

tEN 0.6 0.7 0.9 ns

tCICO 0.1 0.1 0.1 ns

tCGEN 0.4 0.5 0.6 ns
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During initialization, which occurs immediately after configuration, the 
device resets registers, enables I/O pins, and begins to operate as a logic 
device. The I/O pins are tri-stated during power-up, and before and 
during configuration. Together, the configuration and initialization 
processes are called command mode; normal device operation is called user 
mode.

SRAM configuration elements allow FLEX 10KE devices to be 
reconfigured in-circuit by loading new configuration data into the device. 
Real-time reconfiguration is performed by forcing the device into 
command mode with a device pin, loading different configuration data, 
reinitializing the device, and resuming user-mode operation. The entire 
reconfiguration process requires less than 85 ms and can be used to 
reconfigure an entire system dynamically. In-field upgrades can be 
performed by distributing new configuration files.

Before and during configuration, all I/O pins (except dedicated inputs, 
clock, or configuration pins) are pulled high by a weak pull-up resistor.

Programming Files

Despite being function- and pin-compatible, FLEX 10KE devices are not 
programming- or configuration file-compatible with FLEX 10K or 
FLEX 10KA devices. A design therefore must be recompiled before it is 
transferred from a FLEX 10K or FLEX 10KA device to an equivalent 
FLEX 10KE device. This recompilation should be performed both to create 
a new programming or configuration file and to check design timing in 
FLEX 10KE devices, which has different timing characteristics than 
FLEX 10K or FLEX 10KA devices.

FLEX 10KE devices are generally pin-compatible with equivalent 
FLEX 10KA devices. In some cases, FLEX 10KE devices have fewer I/O 
pins than the equivalent FLEX 10KA devices. Table 81 shows which 
FLEX 10KE devices have fewer I/O pins than equivalent FLEX 10KA 
devices. However, power, ground, JTAG, and configuration pins are the 
same on FLEX 10KA and FLEX 10KE devices, enabling migration from a 
FLEX 10KA design to a FLEX 10KE design.
Altera Corporation 97 


