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Similar to the FLEX 10KE architecture, embedded gate arrays are the 
fastest-growing segment of the gate array market. As with standard gate 
arrays, embedded gate arrays implement general logic in a conventional 
“sea-of-gates” architecture. Additionally, embedded gate arrays have 
dedicated die areas for implementing large, specialized functions. By 
embedding functions in silicon, embedded gate arrays reduce die area 
and increase speed when compared to standard gate arrays. While 
embedded megafunctions typically cannot be customized, FLEX 10KE 
devices are programmable, providing the designer with full control over 
embedded megafunctions and general logic, while facilitating iterative 
design changes during debugging.

Each FLEX 10KE device contains an embedded array and a logic array. 
The embedded array is used to implement a variety of memory functions 
or complex logic functions, such as digital signal processing (DSP), wide 
data-path manipulation, microcontroller applications, and data-
transformation functions. The logic array performs the same function as 
the sea-of-gates in the gate array and is used to implement general logic 
such as counters, adders, state machines, and multiplexers. The 
combination of embedded and logic arrays provides the high 
performance and high density of embedded gate arrays, enabling 
designers to implement an entire system on a single device.

FLEX 10KE devices are configured at system power-up with data stored 
in an Altera serial configuration device or provided by a system 
controller. Altera offers the EPC1, EPC2, and EPC16 configuration 
devices, which configure FLEX 10KE devices via a serial data stream. 
Configuration data can also be downloaded from system RAM or via the 
Altera BitBlasterTM, ByteBlasterMVTM, or MasterBlaster download cables. 
After a FLEX 10KE device has been configured, it can be reconfigured 
in-circuit by resetting the device and loading new data. Because 
reconfiguration requires less than 85 ms, real-time changes can be made 
during system operation.

FLEX 10KE devices contain an interface that permits microprocessors to 
configure FLEX 10KE devices serially or in-parallel, and synchronously or 
asynchronously. The interface also enables microprocessors to treat a 
FLEX 10KE device as memory and configure it by writing to a virtual 
memory location, making it easy to reconfigure the device.
6 Altera Corporation
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Functional 
Description

Each FLEX 10KE device contains an enhanced embedded array to 
implement memory and specialized logic functions, and a logic array to 
implement general logic.

The embedded array consists of a series of EABs. When implementing 
memory functions, each EAB provides 4,096 bits, which can be used to 
create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. 
When implementing logic, each EAB can contribute 100 to 600 gates 
towards complex logic functions, such as multipliers, microcontrollers, 
state machines, and DSP functions. EABs can be used independently, or 
multiple EABs can be combined to implement larger functions.

The logic array consists of logic array blocks (LABs). Each LAB contains 
eight LEs and a local interconnect. An LE consists of a four-input look-up 
table (LUT), a programmable flipflop, and dedicated signal paths for carry 
and cascade functions. The eight LEs can be used to create medium-sized 
blocks of logic—such as 8-bit counters, address decoders, or state 
machines—or combined across LABs to create larger logic blocks. Each 
LAB represents about 96 usable gates of logic.

Signal interconnections within FLEX 10KE devices (as well as to and from 
device pins) are provided by the FastTrack Interconnect routing structure, 
which is a series of fast, continuous row and column channels that run the 
entire length and width of the device. 

Each I/O pin is fed by an I/O element (IOE) located at the end of each row 
and column of the FastTrack Interconnect routing structure. Each IOE 
contains a bidirectional I/O buffer and a flipflop that can be used as either 
an output or input register to feed input, output, or bidirectional signals. 
When used with a dedicated clock pin, these registers provide exceptional 
performance. As inputs, they provide setup times as low as 0.9 ns and 
hold times of 0 ns. As outputs, these registers provide clock-to-output 
times as low as 3.0 ns. IOEs provide a variety of features, such as JTAG 
BST support, slew-rate control, tri-state buffers, and open-drain outputs. 
8 Altera Corporation
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The EAB can also use Altera megafunctions to implement dual-port RAM 
applications where both ports can read or write, as shown in Figure 3.

Figure 3. FLEX 10KE EAB in Dual-Port RAM Mode

The FLEX 10KE EAB can be used in a single-port mode, which is useful for 
backward-compatibility with FLEX 10K designs (see Figure 4).

Port A Port B

address_a[] address_b[]

data_a[] data_b[]

we_a we_b

clkena_a clkena_b

Clock A Clock B
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EABs provide flexible options for driving and controlling clock signals. 
Different clocks and clock enables can be used for reading and writing to 
the EAB. Registers can be independently inserted on the data input, EAB 
output, write address, write enable signals, read address, and read enable 
signals. The global signals and the EAB local interconnect can drive write 
enable, read enable, and clock enable signals. The global signals, 
dedicated clock pins, and EAB local interconnect can drive the EAB clock 
signals. Because the LEs drive the EAB local interconnect, the LEs can 
control write enable, read enable, clear, clock, and clock enable signals. 

An EAB is fed by a row interconnect and can drive out to row and column 
interconnects. Each EAB output can drive up to two row channels and up 
to two column channels; the unused row channel can be driven by other 
LEs. This feature increases the routing resources available for EAB 
outputs (see Figures 2 and 4). The column interconnect, which is adjacent 
to the EAB, has twice as many channels as other columns in the device.

Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, 
LAB control signals, and the LAB local interconnect. The LAB provides 
the coarse-grained structure to the FLEX 10KE architecture, facilitating 
efficient routing with optimum device utilization and high performance 
(see Figure 7). 
Altera Corporation 15 
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Each LAB provides four control signals with programmable inversion 
that can be used in all eight LEs. Two of these signals can be used as clocks, 
the other two can be used for clear/preset control. The LAB clocks can be 
driven by the dedicated clock input pins, global signals, I/O signals, or 
internal signals via the LAB local interconnect. The LAB preset and clear 
control signals can be driven by the global signals, I/O signals, or internal 
signals via the LAB local interconnect. The global control signals are 
typically used for global clock, clear, or preset signals because they 
provide asynchronous control with very low skew across the device. If 
logic is required on a control signal, it can be generated in one or more LE 
in any LAB and driven into the local interconnect of the target LAB. In 
addition, the global control signals can be generated from LE outputs.

Logic Element

The LE, the smallest unit of logic in the FLEX 10KE architecture, has a 
compact size that provides efficient logic utilization. Each LE contains a 
four-input LUT, which is a function generator that can quickly compute 
any function of four variables. In addition, each LE contains a 
programmable flipflop with a synchronous clock enable, a carry chain, 
and a cascade chain. Each LE drives both the local and the FastTrack 
Interconnect routing structure (see Figure 8).

Figure 8. FLEX 10KE Logic Element
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Figure 11 shows the LE operating modes.

Figure 11. FLEX 10KE LE Operating Modes
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Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but 
supports a synchronous clear instead of the up/down control. The clear 
function is substituted for the cascade-in signal in the up/down counter 
mode. Use 2 three-input LUTs: one generates the counter data, and the 
other generates the fast carry bit. Synchronous loading is provided by a 
2-to-1 multiplexer. The output of this multiplexer is AND ed with a 
synchronous clear signal. 

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer. 

Clear & Preset Logic Control

Logic for the programmable register’s clear and preset functions is 
controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The 
clear and preset control structure of the LE asynchronously loads signals 
into a register. Either LABCTRL1 or LABCTRL2 can control the 
asynchronous clear. Alternatively, the register can be set up so that 
LABCTRL1 implements an asynchronous load. The data to be loaded is 
driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the 
register.

During compilation, the Altera Compiler automatically selects the best 
control signal implementation. Because the clear and preset functions are 
active-low, the Compiler automatically assigns a logic high to an unused 
clear or preset. 

The clear and preset logic is implemented in one of the following six 
modes chosen during design entry: 

■ Asynchronous clear
■ Asynchronous preset
■ Asynchronous clear and preset
■ Asynchronous load with clear
■ Asynchronous load with preset
■ Asynchronous load without clear or preset
24 Altera Corporation
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Figure 13. FLEX 10KE LAB Connections to Row & Column Interconnect     
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When dedicated inputs drive non-inverted and inverted peripheral clears, 
clock enables, and output enables, two signals on the peripheral control 
bus will be used.

Tables 8 and 9 list the sources for each peripheral control signal, and show 
how the output enable, clock enable, clock, and clear signals share 
12 peripheral control signals. The tables also show the rows that can drive 
global signals.

Table 8. Peripheral Bus Sources for EPF10K30E, EPF10K50E & EPF10K50S Devices

Peripheral 
Control Signal

EPF10K30E EPF10K50E
EPF10K50S

OE0 Row A Row A

OE1 Row B Row B

OE2 Row C Row D

OE3 Row D Row F

OE4 Row E Row H

OE5 Row F Row J

CLKENA0/CLK0/GLOBAL0 Row A Row A

CLKENA1/OE6/GLOBAL1 Row B Row C

CLKENA2/CLR0 Row C Row E

CLKENA3/OE7/GLOBAL2 Row D Row G

CLKENA4/CLR1 Row E Row I

CLKENA5/CLK1/GLOBAL3 Row F Row J
Altera Corporation 33 
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Signals on the peripheral control bus can also drive the four global signals, 
referred to as GLOBAL0 through GLOBAL3 in Tables 8 and 9. An internally 
generated signal can drive a global signal, providing the same low-skew, 
low-delay characteristics as a signal driven by an input pin. An LE drives 
the global signal by driving a row line that drives the peripheral bus, 
which then drives the global signal. This feature is ideal for internally 
generated clear or clock signals with high fan-out. However, internally 
driven global signals offer no advantage over the general-purpose 
interconnect for routing data signals. The dedicated input pin should be 
driven to a known logic state (such as ground) and not be allowed to float.

The chip-wide output enable pin is an active-high pin (DEV_OE) that can 
be used to tri-state all pins on the device. This option can be set in the 
Altera software. On EPF10K50E and EPF10K200E devices, the built-in I/O 
pin pull-up resistors (which are active during configuration) are active 
when the chip-wide output enable pin is asserted. The registers in the IOE 
can also be reset by the chip-wide reset pin.

Table 9.  Peripheral Bus Sources for EPF10K100E, EPF10K130E, EPF10K200E & EPF10K200S Devices

Peripheral 
Control Signal

EPF10K100E EPF10K130E EPF10K200E
EPF10K200S

OE0 Row A Row C Row G

OE1 Row C Row E Row I

OE2 Row E Row G Row K

OE3 Row L Row N Row R

OE4 Row I Row K Row O

OE5 Row K Row M Row Q

CLKENA0/CLK0/GLOBAL0 Row F Row H Row L

CLKENA1/OE6/GLOBAL1 Row D Row F Row J

CLKENA2/CLR0 Row B Row D Row H

CLKENA3/OE7/GLOBAL2 Row H Row J Row N

CLKENA4/CLR1 Row J Row L Row P

CLKENA5/CLK1/GLOBAL3 Row G Row I Row M
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SameFrame 
Pin-Outs

FLEX 10KE devices support the SameFrame pin-out feature for 
FineLine BGA packages. The SameFrame pin-out feature is the 
arrangement of balls on FineLine BGA packages such that the lower-ball-
count packages form a subset of the higher-ball-count packages. 
SameFrame pin-outs provide the flexibility to migrate not only from 
device to device within the same package, but also from one package to 
another. A given printed circuit board (PCB) layout can support multiple 
device density/package combinations. For example, a single board layout 
can support a range of devices from an EPF10K30E device in a 256-pin 
FineLine BGA package to an EPF10K200S device in a 672-pin 
FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame 
pin-out devices. Devices can be defined for present and future use. The 
Altera software generates pin-outs describing how to lay out a board to 
take advantage of this migration (see Figure 18).

Figure 18. SameFrame Pin-Out Example
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PCI Pull-Up Clamping Diode Option

FLEX 10KE devices have a pull-up clamping diode on every I/O, 
dedicated input, and dedicated clock pin. PCI clamping diodes clamp the 
signal to the VCCIO value and are required for 3.3-V PCI compliance. 
Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When VCCIO is 
3.3 V, a pin that has the clamping diode option turned on can be driven by 
a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When VCCIO is 2.5 V, a pin 
that has the clamping diode option turned on can be driven by a 2.5-V 
signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can 
be activated for a subset of pins, which would allow a device to bridge 
between a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can 
be configured for low-noise or high-speed performance. A slower slew 
rate reduces system noise and adds a maximum delay of 4.3 ns. The fast 
slew rate should be used for speed-critical outputs in systems that are 
adequately protected against noise. Designers can specify the slew rate 
pin-by-pin or assign a default slew rate to all pins on a device-wide basis. 
The slow slew rate setting affects the falling edge of the output.

Open-Drain Output Option

FLEX 10KE devices provide an optional open-drain output (electrically 
equivalent to open-collector output) for each I/O pin. This open-drain 
output enables the device to provide system-level control signals (e.g., 
interrupt and write enable signals) that can be asserted by any of several 
devices. It can also provide an additional wired-OR plane. 

MultiVolt I/O Interface 

The FLEX 10KE device architecture supports the MultiVolt I/O interface 
feature, which allows FLEX 10KE devices in all packages to interface with 
systems of differing supply voltages. These devices have one set of VCC 
pins for internal operation and input buffers (VCCINT), and another set for 
I/O output drivers (VCCIO). 
42 Altera Corporation



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Table 22. FLEX 10KE 2.5-V Device DC Operating Conditions Notes (6), (7)

Symbol Parameter Conditions Min Typ Max Unit

VIH High-level input 
voltage

1.7, 0.5 × VCCIO (8) 5.75 V

VIL Low-level input 
voltage

–0.5 0.8, 
0.3 × VCCIO (8)

V

VOH 3.3-V high-level TTL 
output voltage

IOH = –8 mA DC, 
VCCIO = 3.00 V (9) 

2.4 V

3.3-V high-level 
CMOS output voltage

IOH = –0.1 mA DC, 
VCCIO = 3.00 V (9) 

VCCIO – 0.2 V

3.3-V high-level PCI 
output voltage

IOH = –0.5 mA DC, 
VCCIO = 3.00 to 3.60 V (9) 

0.9 × VCCIO V

2.5-V high-level output 
voltage

IOH = –0.1 mA DC, 
VCCIO = 2.30 V (9) 

2.1 V

IOH = –1 mA DC, 
VCCIO = 2.30 V (9) 

2.0 V

IOH = –2 mA DC, 
VCCIO = 2.30 V (9) 

1.7 V

VOL 3.3-V low-level TTL 
output voltage

IOL = 12 mA DC, 
VCCIO = 3.00 V (10)

0.45 V

3.3-V low-level CMOS 
output voltage

IOL = 0.1 mA DC, 
VCCIO = 3.00 V (10)

0.2 V

3.3-V low-level PCI 
output voltage

IOL = 1.5 mA DC, 
VCCIO = 3.00 to 3.60 V 
(10)

0.1 × VCCIO V

2.5-V low-level output 
voltage

IOL = 0.1 mA DC, 
VCCIO = 2.30 V (10)

0.2 V

IOL = 1 mA DC, 
VCCIO = 2.30 V (10)

0.4 V

IOL = 2 mA DC, 
VCCIO = 2.30 V (10)

0.7 V

II Input pin leakage 
current

VI = VCCIOmax to 0 V (11) –10 10 µA

IOZ Tri-stated I/O pin 
leakage current

VO = VCCIOmax to 0 V (11) –10 10 µA

ICC0 VCC supply current 
(standby)

VI = ground, no load, no 
toggling inputs

5 mA

VI = ground, no load, no 
toggling inputs (12)

10 mA

RCONF Value of I/O pin pull-
up resistor before and 
during configuration

VCCIO = 3.0 V (13) 20 50 k¾

VCCIO = 2.3 V (13) 30 80 k¾
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Figure 22 shows the required relationship between VCCIO and VCCINT for 
3.3-V PCI compliance.

Figure 22. Relationship between VCCIO & VCCINT for 3.3-V PCI Compliance

Figure 23 shows the typical output drive characteristics of FLEX 10KE 
devices with 3.3-V and 2.5-V VCCIO. The output driver is compliant to the 
3.3-V PCI Local Bus Specification, Revision 2.2 (when VCCIO pins are 
connected to 3.3 V). FLEX 10KE devices with a -1 speed grade also comply 
with the drive strength requirements of the PCI Local Bus Specification, 
Revision 2.2 (when VCCINT pins are powered with a minimum supply of 
2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices 
can be used in open 5.0-V PCI systems.
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Figure 23. Output Drive Characteristics of FLEX 10KE Devices Note (1)

Note:
(1) These are transient (AC) currents.

Timing Model The continuous, high-performance FastTrack Interconnect routing 
resources ensure predictable performance and accurate simulation and 
timing analysis. This predictable performance contrasts with that of 
FPGAs, which use a segmented connection scheme and therefore have 
unpredictable performance. 

Device performance can be estimated by following the signal path from a 
source, through the interconnect, to the destination. For example, the 
registered performance between two LEs on the same row can be 
calculated by adding the following parameters: 
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■ Interconnect delay (tSAMEROW)
■ LE look-up table delay (tLUT)
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LEs between the source and destination LEs. 

VO Output Voltage (V)

IOL

IOH
IOH

V
V

VCCINT = 2.5 
VCCIO = 2.5 
Room Temperature 

V
V

VCCINT = 2.5 
VCCIO = 3.3 
Room Temperature 

1 2 3

10

20

30

50

60

40

70

80

90

VO Output Voltage (V)

1 2 3

10

20

30

50

60

40

70

80

90
IOL

OTypical I
Output
Current (mA)

OTypical I
Output
Current (mA)
52 Altera Corporation



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Table 26. EAB Timing Microparameters Note (1)

Symbol Parameter Conditions

tEABDATA1 Data or address delay to EAB for combinatorial input

tEABDATA2 Data or address delay to EAB for registered input

tEABWE1 Write enable delay to EAB for combinatorial input

tEABWE2 Write enable delay to EAB for registered input

tEABRE1 Read enable delay to EAB for combinatorial input

tEABRE2 Read enable delay to EAB for registered input

tEABCLK EAB register clock delay

tEABCO EAB register clock-to-output delay

tEABBYPASS Bypass register delay

tEABSU EAB register setup time before clock

tEABH EAB register hold time after clock

tEABCLR EAB register asynchronous clear time to output delay

tAA Address access delay (including the read enable to output delay) 

tWP Write pulse width

tRP Read pulse width

tWDSU Data setup time before falling edge of write pulse (5)

tWDH Data hold time after falling edge of write pulse (5)

tWASU Address setup time before rising edge of write pulse (5)

tWAH Address hold time after falling edge of write pulse (5)

tRASU Address setup time with respect to the falling edge of the read enable

tRAH Address hold time with respect to the falling edge of the read enable

tWO Write enable to data output valid delay

tDD Data-in to data-out valid delay

tEABOUT Data-out delay

tEABCH Clock high time

tEABCL Clock low time
58 Altera Corporation
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Notes to tables:
(1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be 

measured explicitly.
(2) Operating conditions: VCCIO = 3.3 V ±10% for commercial or industrial use.
(3) Operating conditions: VCCIO = 2.5 V ±5% for commercial or industrial use in EPF10K30E, EPF10K50S, 

EPF10K100E, EPF10K130E, and EPF10K200S devices.
(4) Operating conditions: VCCIO = 3.3 V.
(5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. 
(6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; 

these parameters are calculated by summing selected microparameters. 
(7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing 

analysis are required to determine actual worst-case performance.
(8) Contact Altera Applications for test circuit specifications and test conditions.
(9) This timing parameter is sample-tested only.
(10) This parameter is measured with the measurement and test conditions, including load, specified in the PCI Local 

Bus Specification, revision 2.2.

Table 30. External Bidirectional Timing Parameters Note (9)

Symbol Parameter Conditions

tINSUBIDIR Setup time for bi-directional pins with global clock at same-row or same-
column LE register

tINHBIDIR Hold time for bidirectional pins with global clock at same-row or same-column 
LE register

tINH Hold time with global clock at IOE register

tOUTCOBIDIR Clock-to-output delay for bidirectional pins with global clock at IOE register C1 = 35 pF

tXZBIDIR Synchronous IOE output buffer disable delay C1 = 35 pF

tZXBIDIR Synchronous IOE output buffer enable delay, slow slew rate= off C1 = 35 pF
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 38 through 44 show EPF10K50E device internal and external 
timing parameters.  

Table 37. EPF10K30E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (3) 2.8 3.9 5.2 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 3.8 4.9 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 4.9 2.0 5.9 2.0 7.6 ns

tXZBIDIR (3) 6.1 7.5 9.7 ns

tZXBIDIR (3) 6.1 7.5 9.7 ns

tOUTCOBIDIR (4)  0.5 3.9 0.5 4.9 – – ns

tXZBIDIR (4) 5.1  6.5 – ns

tZXBIDIR (4) 5.1  6.5 – ns

Table 38. EPF10K50E Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.6 0.9 1.3 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.7 0.8 1.1 ns

tPACKED 0.4 0.5 0.6 ns

tEN 0.6 0.7 0.9 ns

tCICO 0.2 0.2 0.3 ns

tCGEN 0.5 0.5 0.8 ns

tCGENR 0.2 0.2 0.3 ns

tCASC 0.8 1.0 1.4 ns

tC 0.5 0.6 0.8 ns

tCO 0.7 0.7 0.9 ns

tCOMB 0.5 0.6 0.8 ns

tSU 0.7 0.7 0.8 ns
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30.
(2) This parameter is measured without use of the ClockLock or ClockBoost circuits.
(3) This parameter is measured with use of the ClockLock or ClockBoost circuits

Table 71. EPF10K50S External Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 8.0 9.5 12.5 ns

tINSU (2) 2.4 2.9 3.9 ns

tINH (2) 0.0 0.0 0.0 ns

tOUTCO (2) 2.0 4.3 2.0  5.2 2.0 7.3 ns

tINSU (3) 2.4 2.9 ns

tINH (3) 0.0 0.0 ns

tOUTCO (3) 0.5 3.3 0.5 4.1 ns

tPCISU  2.4 2.9 – ns

tPCIH  0.0  0.0 – ns

tPCICO  2.0  6.0  2.0 7.7 – – ns

Table 72. EPF10K50S External Bidirectional Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (2) 2.7 3.2 4.3 ns

tINHBIDIR (2) 0.0 0.0 0.0 ns

tINHBIDIR (3) 0.0 0.0 – ns

tINSUBIDIR (3) 3.7 4.2 – ns

tOUTCOBIDIR (2) 2.0 4.5 2.0 5.2 2.0 7.3 ns

tXZBIDIR (2) 6.8 7.8 10.1 ns

tZXBIDIR (2) 6.8 7.8 10.1 ns

tOUTCOBIDIR (3) 0.5 3.5 0.5 4.2 – –

tXZBIDIR (3) 6.8 8.4 – ns

tZXBIDIR (3) 6.8 8.4 – ns
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Table 73. EPF10K200S Device Internal & External Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.7 0.8 1.2 ns

tCLUT 0.4 0.5 0.6 ns

tRLUT 0.5 0.7 0.9 ns

tPACKED 0.4 0.5 0.7 ns

tEN 0.6 0.5 0.6 ns

tCICO 0.1 0.2 0.3 ns

tCGEN 0.3 0.4 0.6 ns

tCGENR 0.1 0.2 0.3 ns

tCASC 0.7 0.8 1.2 ns

tC 0.5 0.6 0.8 ns

tCO 0.5 0.6 0.8 ns

tCOMB 0.3 0.6 0.8 ns

tSU 0.4 0.6 0.7 ns

tH 1.0 1.1 1.5 ns

tPRE 0.4 0.6 0.8 ns

tCLR 0.5 0.6 0.8 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 74. EPF10K200S Device IOE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tIOD 1.8 1.9 2.6 ns

tIOC 0.3 0.3 0.5 ns

tIOCO 1.7 1.9 2.6 ns

tIOCOMB 0.5 0.6 0.8 ns

tIOSU 0.8 0.9 1.2 ns

tIOH 0.4 0.8 1.1 ns

tIOCLR 0.2 0.2 0.3 ns

tOD1 1.3 0.7 0.9 ns

tOD2 0.8 0.2 0.4 ns

tOD3 2.9 3.0 3.9 ns

tXZ 5.0 5.3 7.1 ns

tZX1 5.0 5.3 7.1 ns
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