Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 360 | | Number of Logic Elements/Cells | 2880 | | Total RAM Bits | 40960 | | Number of I/O | 189 | | Number of Gates | 199000 | | Voltage - Supply | 2.3V ~ 2.7V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 240-BFQFP | | Supplier Device Package | 240-PQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k50eqc240-1n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong The EAB can also use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3. Figure 3. FLEX 10KE EAB in Dual-Port RAM Mode The FLEX 10KE EAB can be used in a single-port mode, which is useful for backward-compatibility with FLEX 10K designs (see Figure 4). Figure 4. FLEX 10KE Device in Single-Port RAM Mode #### Note: EPF10K30E, EPF10K50E, and EPF10K50S devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 104 EAB local interconnect channels. EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the write enable signal. In contrast, the EAB's synchronous RAM generates its own write enable signal and is self-timed with respect to the input or write clock. A circuit using the EAB's self-timed RAM must only meet the setup and hold time specifications of the global clock. When used as RAM, each EAB can be configured in any of the following sizes: 256×16 , 512×8 , $1,024 \times 4$, or $2,048 \times 2$ (see Figure 5). Figure 5. FLEX 10KE EAB Memory Configurations Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block; two 512×8 RAM blocks can be combined to form a 512×16 block (see Figure 6). Figure 6. Examples of Combining FLEX 10KE EABS If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. The Altera software automatically combines EABs to meet a designer's RAM specifications. #### Normal Mode The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Altera Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time. The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a three-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a four-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa. #### Arithmetic Mode The arithmetic mode offers 2 three-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 11 on page 22, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. #### **Up/Down Counter Mode** The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources. On all FLEX 10KE devices (except EPF10K50E and EPF10K200E devices), the input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. EPF10K50S and EPF10K200S devices also support this feature. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time or turn it off to minimize setup time. This feature is used to reduce setup time for complex pin-to-register paths (e.g., PCI designs). Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across the device and provides up to 12 peripheral control signals that can be allocated as follows: - Up to eight output enable signals - Up to six clock enable signals - Up to two clock signals - Up to two clear signals If more than six clock enable or eight output enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, a LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chipwide reset signal resets all IOE registers, overriding any other control signals. When a dedicated clock pin drives IOE registers, it can be inverted for all IOEs in the device. All IOEs must use the same sense of the clock. For example, if any IOE uses the inverted clock, all IOEs must use the inverted clock and no IOE can use the non-inverted clock. However, LEs can still use the true or complement of the clock on a LAB-by-LAB basis. The incoming signal may be inverted at the dedicated clock pin and will drive all IOEs. For the true and complement of a clock to be used to drive IOEs, drive it into both global clock pins. One global clock pin will supply the true, and the other will supply the complement. When the true and complement of a dedicated input drives IOE clocks, two signals on the peripheral control bus are consumed, one for each sense of the clock. When dedicated inputs drive non-inverted and inverted peripheral clears, clock enables, and output enables, two signals on the peripheral control bus will be used. Tables 8 and 9 list the sources for each peripheral control signal, and show how the output enable, clock enable, clock, and clear signals share 12 peripheral control signals. The tables also show the rows that can drive global signals. | Peripheral
Control Signal | EPF10K30E | EPF10K50E
EPF10K50S | | |------------------------------|-----------|------------------------|--| | OE0 | Row A | Row A | | | OE1 | Row B | Row B | | | OE2 | Row C | Row D | | | OE3 | Row D | Row F | | | OE4 | Row E | Row H | | | OE5 | Row F | Row J | | | CLKENA0/CLK0/GLOBAL0 | Row A | Row A | | | CLKENA1/OE6/GLOBAL1 | Row B | Row C | | | CLKENA2/CLR0 | Row C | Row E | | | CLKENA3/OE7/GLOBAL2 | Row D | Row G | | | CLKENA4/CLR1 | Row E | Row I | | | CLKENA5/CLK1/GLOBAL3 | Row F | Row J | | ### ClockLock & ClockBoost Timing Parameters For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. Figure 19 shows the incoming and generated clock specifications. Figure 19. Specifications for Incoming & Generated Clocks The t_l parameter refers to the nominal input clock period; the t_0 parameter refers to the nominal output clock period. Tables 12 and 13 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively. | Table 12. | . ClockLock & ClockBoost Param | eters for -1 Speed-C | Grade Device | es | | | |-----------------------|---|----------------------|--------------|-----|------------|------| | Symbol | Parameter | Condition | Min | Тур | Max | Unit | | t_R | Input rise time | | | | 5 | ns | | t _F | Input fall time | | | | 5 | ns | | t _{INDUTY} | Input duty cycle | | 40 | | 60 | % | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | | 25 | | 180 | MHz | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | | 16 | | 90 | MHz | | f _{CLKDEV} | Input deviation from user specification in the MAX+PLUS II software (1) | | | | 25,000 (2) | PPM | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | | | 100 | ps | | t _{LOCK} | Time required for ClockLock or ClockBoost to acquire lock (3) | | | | 10 | μs | | t _{JITTER} | Jitter on ClockLock or ClockBoost- | $t_{INCLKSTB} < 100$ | | | 250 | ps | | | generated clock (4) | $t_{INCLKSTB} < 50$ | | | 200 (4) | ps | | t _{OUTDUTY} | Duty cycle for ClockLock or ClockBoost-generated clock | | 40 | 50 | 60 | % | | Symbol | Parameter | Condition | Min | Тур | Max | Unit | |-----------------------|---|----------------------|-----|-----|------------|------| | t_R | Input rise time | | | | 5 | ns | | t _F | Input fall time | | | | 5 | ns | | t _{INDUTY} | Input duty cycle | | 40 | | 60 | % | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | | 25 | | 75 | MHz | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | | 16 | | 37.5 | MHz | | f _{CLKDEV} | Input deviation from user specification in the MAX+PLUS II software (1) | | | | 25,000 (2) | PPM | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | | | 100 | ps | | t _{LOCK} | Time required for ClockLock or ClockBoost to acquire lock (3) | | | | 10 | μs | | t _{JITTER} | Jitter on ClockLock or ClockBoost- | $t_{INCLKSTB} < 100$ | | | 250 | ps | | | generated clock (4) | $t_{INCLKSTB} < 50$ | | | 200 (4) | ps | | t _{OUTDUTY} | Duty cycle for ClockLock or
ClockBoost-generated clock | | 40 | 50 | 60 | % | #### Notes to tables: - (1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter. - (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period. - (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration. - (4) The t_{IITTER} specification is measured under long-term observation. The maximum value for t_{IITTER} is 200 ps if $t_{INCLKSTB}$ is lower than 50 ps. # I/O Configuration This section discusses the peripheral component interconnect (PCI) pull-up clamping diode option, slew-rate control, open-drain output option, and MultiVolt I/O interface for FLEX 10KE devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera software logic options. The MultiVolt I/O interface is controlled by connecting $V_{\rm CCIO}$ to a different voltage than $V_{\rm CCINT}.$ Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu). to Be Driven Figure 20. FLEX 10KE JTAG Waveforms TMS TDI t_{JPSU} TCK t_{JPZX} t _{JPXZ} $\mathbf{t}_{\mathsf{JPCO}}$ TDO t_{JSH} t_{JSSU} Signal to Be Captured t_{JSCO}t_{JSZX} t_{JSXZ} Signal Figure 20 shows the timing requirements for the JTAG signals. Table 18 shows the timing parameters and values for FLEX 10KE devices. | Table 1 | 8. FLEX 10KE JTAG Timing Parameters & Values | | | | |-------------------|------------------------------------------------|-----|-----|------| | Symbol | Parameter | Min | Max | Unit | | t _{JCP} | TCK clock period | 100 | | ns | | t _{JCH} | TCK clock high time | 50 | | ns | | t _{JCL} | TCK clock low time | 50 | | ns | | t _{JPSU} | JTAG port setup time | 20 | | ns | | t _{JPH} | JTAG port hold time | 45 | | ns | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | t _{JSSU} | Capture register setup time | 20 | | ns | | t _{JSH} | Capture register hold time | 45 | | ns | | t _{JSCO} | Update register clock to output | | 35 | ns | | t _{JSZX} | Update register high impedance to valid output | | 35 | ns | | t _{JSXZ} | Update register valid output to high impedance | | 35 | ns | | Table 23. FLEX 10KE Device Capacitance Note (14) | | | | | | | |--------------------------------------------------|------------------------------------------|-------------------------------------|-----|-----|------|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V. - (7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21. - (8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22. - (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current. - (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (11) This value is specified for normal device operation. The value may vary during power-up. - (12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial temperature devices. - (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source. - (14) Capacitance is sample-tested only. | Table 24. LE Timing Microparameters (Part 2 of 2) Note (1) | | | | | |------------------------------------------------------------|----------------------------------------|-----------|--|--| | Symbol | Parameter | Condition | | | | t _{CLR} | LE register clear delay | | | | | t _{CH} | Minimum clock high time from clock pin | | | | | t_{CL} | Minimum clock low time from clock pin | | | | | Table 25. 10 | E Timing Microparameters Note (1) | | |---------------------|-----------------------------------------------------------------------------------------------------------------------|----------------| | Symbol | Parameter | Conditions | | t_{IOD} | IOE data delay | | | t _{IOC} | IOE register control signal delay | | | t _{IOCO} | IOE register clock-to-output delay | | | t _{IOCOMB} | IOE combinatorial delay | | | t _{IOSU} | IOE register setup time for data and enable signals before clock; IOE register recovery time after asynchronous clear | | | t _{IOH} | IOE register hold time for data and enable signals after clock | | | t _{IOCLR} | IOE register clear time | | | t _{OD1} | Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (2) | | t_{OD2} | Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 2.5 V | C1 = 35 pF (3) | | t _{OD3} | Output buffer and pad delay, slow slew rate = on | C1 = 35 pF (4) | | t_{XZ} | IOE output buffer disable delay | | | t _{ZX1} | IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (2) | | t_{ZX2} | IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 2.5 V | C1 = 35 pF (3) | | t _{ZX3} | IOE output buffer enable delay, slow slew rate = on | C1 = 35 pF (4) | | t _{INREG} | IOE input pad and buffer to IOE register delay | | | t _{IOFD} | IOE register feedback delay | | | t _{INCOMB} | IOE input pad and buffer to FastTrack Interconnect delay | | | Table 30. External Bidirectional Timing Parameters Note (9) | | | | | | |-------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------|--|--|--| | Symbol | Parameter | Conditions | | | | | ^t INSUBIDIR | Setup time for bi-directional pins with global clock at same-row or same-column LE register | | | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | t _{INH} | Hold time with global clock at IOE register | | | | | | ^t OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE register | C1 = 35 pF | | | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | C1 = 35 pF | | | | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate= off | C1 = 35 pF | | | | #### Notes to tables: - (1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly. - (2) Operating conditions: VCCIO = $3.3 \text{ V} \pm 10\%$ for commercial or industrial use. - (3) Operating conditions: VCCIO = 2.5 V $\pm 5\%$ for commercial or industrial use in EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E, and EPF10K200S devices. - (4) Operating conditions: VCCIO = 3.3 V. - (5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. - (6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; these parameters are calculated by summing selected microparameters. - (7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. - (8) Contact Altera Applications for test circuit specifications and test conditions. - (9) This timing parameter is sample-tested only. - (10) This parameter is measured with the measurement and test conditions, including load, specified in the PCI Local Bus Specification, revision 2.2. | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |------------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.5 | | 2.0 | | 2.6 | ns | | t _{EABDATA1} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABWE1} | | 1.5 | | 2.0 | | 2.6 | ns | | t _{EABWE2} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{EABRE1} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{EABRE2} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCO} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{EABBYPASS} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{EABSU} | 0.8 | | 1.0 | | 1.4 | | ns | | t _{EABH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{EABCLR} | 0.3 | | 0.4 | | 0.5 | | ns | | t_{AA} | | 4.0 | | 5.1 | | 6.6 | ns | | t_{WP} | 2.7 | | 3.5 | | 4.7 | | ns | | t_{RP} | 1.0 | | 1.3 | | 1.7 | | ns | | t _{WDSU} | 1.0 | | 1.3 | | 1.7 | | ns | | t _{WDH} | 0.2 | | 0.2 | | 0.3 | | ns | | t _{WASU} | 1.6 | | 2.1 | | 2.8 | | ns | | t _{WAH} | 1.6 | | 2.1 | | 2.8 | | ns | | t _{RASU} | 3.0 | | 3.9 | | 5.2 | | ns | | t _{RAH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{WO} | | 1.5 | | 2.0 | | 2.6 | ns | | t _{DD} | | 1.5 | | 2.0 | | 2.6 | ns | | t _{EABOUT} | | 0.2 | | 0.3 | | 0.3 | ns | | t _{EABCH} | 1.5 | | 2.0 | | 2.5 | | ns | | t _{EABCL} | 2.7 | | 3.5 | | 4.7 | | ns | | Table 48. EPF10K | 100E Device | EAB Interna | al Timing M | acroparame | ters (Part 1 | of 2) No | nte (1) | |-----------------------|-------------|-------------|----------------|------------|--------------|----------|---------| | Symbol | -1 Spee | d Grade | -2 Speed Grade | | -3 Spee | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{EABAA} | | 5.9 | | 7.6 | | 9.9 | ns | | t _{EABRCOMB} | 5.9 | | 7.6 | | 9.9 | | ns | | t _{EABRCREG} | 5.1 | | 6.5 | | 8.5 | | ns | | t_{EABWP} | 2.7 | | 3.5 | | 4.7 | | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |-----------------------------|----------------|-----|----------------|-----|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (3) | 2.2 | | 2.4 | | 3.2 | | ns | | t _{INHBIDIR} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{INSUBIDIR} (4) | 2.8 | | 3.0 | | - | | ns | | t _{INHBIDIR} (4) | 0.0 | | 0.0 | | - | | ns | | t _{OUTCOBIDIR} (3) | 2.0 | 5.0 | 2.0 | 7.0 | 2.0 | 9.2 | ns | | t _{XZBIDIR} (3) | | 5.6 | | 8.1 | | 10.8 | ns | | t _{ZXBIDIR} (3) | | 5.6 | | 8.1 | | 10.8 | ns | | toutcobidir (4) | 0.5 | 4.0 | 0.5 | 6.0 | - | - | ns | | t _{XZBIDIR} (4) | | 4.6 | | 7.1 | | - | ns | | t _{ZXBIDIR} (4) | | 4.6 | | 7.1 | | - | ns | #### Notes to tables: - (1) All timing parameters are described in Tables 24 through 30 in this data sheet. - (2) These parameters are specified by characterization. - (3) This parameter is measured without the use of the ClockLock or ClockBoost circuits. - (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits. Tables 59 through 65 show EPF10K200E device internal and external timing parameters. | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |---------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{LUT} | | 0.7 | | 0.8 | | 1.2 | ns | | t _{CLUT} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{RLUT} | | 0.6 | | 0.7 | | 0.9 | ns | | t _{PACKED} | | 0.3 | | 0.5 | | 0.7 | ns | | t_{EN} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{CICO} | | 0.2 | | 0.2 | | 0.3 | ns | | t _{CGEN} | | 0.4 | | 0.4 | | 0.6 | ns | | t _{CGENR} | | 0.2 | | 0.2 | | 0.3 | ns | | t _{CASC} | | 0.7 | | 0.8 | | 1.2 | ns | | t_{C} | | 0.5 | | 0.6 | | 0.8 | ns | | t_{CO} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{COMB} | | 0.4 | | 0.6 | | 0.8 | ns | | t_{SU} | 0.4 | | 0.6 | | 0.7 | | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |------------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.7 | | 2.4 | | 3.2 | ns | | t _{EABDATA2} | | 0.4 | | 0.6 | | 0.8 | ns | | t _{EABWE1} | | 1.0 | | 1.4 | | 1.9 | ns | | t _{EABWE2} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABRE1} | | 0.0 | | 0.0 | | 0.0 | | | t _{EABRE2} | | 0.4 | | 0.6 | | 0.8 | | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCO} | | 0.8 | | 1.1 | | 1.5 | ns | | t _{EABBYPASS} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABSU} | 0.7 | | 1.0 | | 1.3 | | ns | | t _{EABH} | 0.4 | | 0.6 | | 0.8 | | ns | | t _{EABCLR} | 0.8 | | 1.1 | | 1.5 | | | | t_{AA} | | 2.0 | | 2.8 | | 3.8 | ns | | t_{WP} | 2.0 | | 2.8 | | 3.8 | | ns | | t_{RP} | 1.0 | | 1.4 | | 1.9 | | | | t _{WDSU} | 0.5 | | 0.7 | | 0.9 | | ns | | t_{WDH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{WASU} | 1.0 | | 1.4 | | 1.9 | | ns | | t _{WAH} | 1.5 | | 2.1 | | 2.9 | | ns | | t _{RASU} | 1.5 | | 2.1 | | 2.8 | | | | t _{RAH} | 0.1 | | 0.1 | | 0.2 | | | | t_{WO} | | 2.1 | | 2.9 | | 4.0 | ns | | t _{DD} | | 2.1 | | 2.9 | | 4.0 | ns | | t _{EABOUT} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCH} | 1.5 | | 2.0 | | 2.5 | | ns | | t _{EABCL} | 1.5 | | 2.0 | | 2.5 | | ns | | Table 76. EPF10K200S Device EAB Internal Timing Macroparameters Note (1) | | | | | | | | |--------------------------------------------------------------------------|----------------|-----|----------------|-----|----------------|-----|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{EABAA} | | 3.9 | | 6.4 | | 8.4 | ns | | t _{EABRCOMB} | 3.9 | | 6.4 | | 8.4 | | ns | | t _{EABRCREG} | 3.6 | | 5.7 | | 7.6 | | ns | | t _{EABWP} | 2.1 | | 4.0 | | 5.3 | | ns | | t _{EABWCOMB} | 4.8 | | 8.1 | | 10.7 | | ns | | t _{EABWCREG} | 5.4 | | 8.0 | | 10.6 | | ns | | t _{EABDD} | | 3.8 | | 5.1 | | 6.7 | ns | | t _{EABDATA} CO | | 0.8 | | 1.0 | | 1.3 | ns | | t _{EABDATASU} | 1.1 | | 1.6 | | 2.1 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 0.7 | | 1.1 | | 1.5 | | ns | | t _{EABWEH} | 0.4 | | 0.5 | | 0.6 | | ns | | t _{EABWDSU} | 1.2 | | 1.8 | | 2.4 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWASU} | 1.9 | | 3.6 | | 4.7 | | ns | | t _{EABWAH} | 0.8 | | 0.5 | | 0.7 | | ns | | t _{EABWO} | | 3.1 | | 4.4 | | 5.8 | ns | | Table 77. EPF10K200S Device Interconnect Timing Microparameters (Part 1 of 2) Note (1) | | | | | | | | |----------------------------------------------------------------------------------------|----------------|-----|----------------|------|----------------|------|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 4.4 | | 4.8 | | 5.5 | ns | | t _{DIN2LE} | | 0.6 | | 0.6 | | 0.9 | ns | | t _{DIN2DATA} | | 1.8 | | 2.1 | | 2.8 | ns | | t _{DCLK2IOE} | | 1.7 | | 2.0 | | 2.8 | ns | | t _{DCLK2LE} | | 0.6 | | 0.6 | | 0.9 | ns | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{SAMEROW} | | 3.0 | | 4.6 | | 5.7 | ns | | t _{SAME} COLUMN | | 3.5 | | 4.9 | | 6.4 | ns | | t _{DIFFROW} | | 6.5 | | 9.5 | | 12.1 | ns | | t _{TWOROWS} | | 9.5 | | 14.1 | | 17.8 | ns | | t _{LEPERIPH} | | 5.5 | | 6.2 | | 7.2 | ns | | t _{LABCARRY} | | 0.3 | | 0.1 | | 0.2 | ns | # Power Consumption The supply power (P) for FLEX 10KE devices can be calculated with the following equation: $$P = P_{INT} + P_{IO} = (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO}$$ The $I_{CCACTIVE}$ value depends on the switching frequency and the application logic. This value is calculated based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*. Compared to the rest of the device, the embedded array consumes a negligible amount of power. Therefore, the embedded array can be ignored when calculating supply current. The I_{CCACTIVE} value can be calculated with the following equation: $$I_{CCACTIVE} = K \times f_{\boldsymbol{MAX}} \times N \times \boldsymbol{tog_{LC}} \times \frac{\mu A}{MHz \times LE}$$ Where: \mathbf{f}_{MAX} = Maximum operating frequency in MHz N = Total number of LEs used in the device tog_{LC} = Average percent of LEs toggling at each clock (typically 12.5%) K = Constant Table 80 provides the constant (K) values for FLEX 10KE devices. | Table 80. FLEX 10KE K Constant Values | | | | | | |---------------------------------------|---------|--|--|--|--| | Device | K Value | | | | | | EPF10K30E | 4.5 | | | | | | EPF10K50E | 4.8 | | | | | | EPF10K50S | 4.5 | | | | | | EPF10K100E | 4.5 | | | | | | EPF10K130E | 4.6 | | | | | | EPF10K200E | 4.8 | | | | | | EPF10K200S | 4.6 | | | | | This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions. # Device Pin-Outs See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information. ## Revision History The information contained in the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.5 supersedes information published in previous versions. ### Version 2.5 The following changes were made to the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.5: - Note (1) added to Figure 23. - Text added to "I/O Element" section on page 34. - Updated Table 22. ### Version 2.4 The following changes were made to the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.4: updated text on page 34 and page 63. 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit_reg@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.