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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Functional 
Description

Each FLEX 10KE device contains an enhanced embedded array to 
implement memory and specialized logic functions, and a logic array to 
implement general logic.

The embedded array consists of a series of EABs. When implementing 
memory functions, each EAB provides 4,096 bits, which can be used to 
create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. 
When implementing logic, each EAB can contribute 100 to 600 gates 
towards complex logic functions, such as multipliers, microcontrollers, 
state machines, and DSP functions. EABs can be used independently, or 
multiple EABs can be combined to implement larger functions.

The logic array consists of logic array blocks (LABs). Each LAB contains 
eight LEs and a local interconnect. An LE consists of a four-input look-up 
table (LUT), a programmable flipflop, and dedicated signal paths for carry 
and cascade functions. The eight LEs can be used to create medium-sized 
blocks of logic—such as 8-bit counters, address decoders, or state 
machines—or combined across LABs to create larger logic blocks. Each 
LAB represents about 96 usable gates of logic.

Signal interconnections within FLEX 10KE devices (as well as to and from 
device pins) are provided by the FastTrack Interconnect routing structure, 
which is a series of fast, continuous row and column channels that run the 
entire length and width of the device. 

Each I/O pin is fed by an I/O element (IOE) located at the end of each row 
and column of the FastTrack Interconnect routing structure. Each IOE 
contains a bidirectional I/O buffer and a flipflop that can be used as either 
an output or input register to feed input, output, or bidirectional signals. 
When used with a dedicated clock pin, these registers provide exceptional 
performance. As inputs, they provide setup times as low as 0.9 ns and 
hold times of 0 ns. As outputs, these registers provide clock-to-output 
times as low as 3.0 ns. IOEs provide a variety of features, such as JTAG 
BST support, slew-rate control, tri-state buffers, and open-drain outputs. 
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The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock, clear, and preset control signals on the flipflop can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the flipflop is bypassed and the output 
of the LUT drives the output of the LE. 

The LE has two outputs that drive the interconnect: one drives the local 
interconnect and the other drives either the row or column FastTrack 
Interconnect routing structure. The two outputs can be controlled 
independently. For example, the LUT can drive one output while the 
register drives the other output. This feature, called register packing, can 
improve LE utilization because the register and the LUT can be used for 
unrelated functions.

The FLEX 10KE architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. The carry chain supports 
high-speed counters and adders and the cascade chain implements 
wide-input functions with minimum delay. Carry and cascade chains 
connect all LEs in a LAB as well as all LABs in the same row. Intensive use 
of carry and cascade chains can reduce routing flexibility. Therefore, the 
use of these chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
FLEX 10KE architecture to implement high-speed counters, adders, and 
comparators of arbitrary width efficiently. Carry chain logic can be 
created automatically by the Altera Compiler during design processing, 
or manually by the designer during design entry. Parameterized functions 
such as LPM and DesignWare functions automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EPF10K50E device, the carry chain stops at the eighteenth LAB and 
a new one begins at the nineteenth LAB.
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Figure 9 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for an accumulator function. Another portion of the LUT and the carry 
chain logic generates the carry-out signal, which is routed directly to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it can be used as a general-purpose signal. 

Figure 9. FLEX 10KE Carry Chain Operation (n-Bit Full Adder)
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Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but 
supports a synchronous clear instead of the up/down control. The clear 
function is substituted for the cascade-in signal in the up/down counter 
mode. Use 2 three-input LUTs: one generates the counter data, and the 
other generates the fast carry bit. Synchronous loading is provided by a 
2-to-1 multiplexer. The output of this multiplexer is AND ed with a 
synchronous clear signal. 

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer. 

Clear & Preset Logic Control

Logic for the programmable register’s clear and preset functions is 
controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The 
clear and preset control structure of the LE asynchronously loads signals 
into a register. Either LABCTRL1 or LABCTRL2 can control the 
asynchronous clear. Alternatively, the register can be set up so that 
LABCTRL1 implements an asynchronous load. The data to be loaded is 
driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the 
register.

During compilation, the Altera Compiler automatically selects the best 
control signal implementation. Because the clear and preset functions are 
active-low, the Compiler automatically assigns a logic high to an unused 
clear or preset. 

The clear and preset logic is implemented in one of the following six 
modes chosen during design entry: 

■ Asynchronous clear
■ Asynchronous preset
■ Asynchronous clear and preset
■ Asynchronous load with clear
■ Asynchronous load with preset
■ Asynchronous load without clear or preset
24 Altera Corporation
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In addition to the six clear and preset modes, FLEX 10KE devices provide 
a chip-wide reset pin that can reset all registers in the device. Use of this 
feature is set during design entry. In any of the clear and preset modes, the 
chip-wide reset overrides all other signals. Registers with asynchronous 
presets may be preset when the chip-wide reset is asserted. Inversion can 
be used to implement the asynchronous preset. Figure 12 shows examples 
of how to setup the preset and clear inputs for the desired functionality.

Figure 12. FLEX 10KE LE Clear & Preset Modes
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Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row 
channels. The signal is accessible by all LEs within that row. When an IOE 
is used as an output, the signal is driven by a multiplexer that selects a 
signal from the row channels. Up to eight IOEs connect to each side of 
each row channel (see Figure 16).

Figure 16. FLEX 10KE Row-to-IOE Connections

Table 10 lists the FLEX 10KE row-to-IOE interconnect resources. 
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The values for m and n are provided in Table 10.

Table 10. FLEX 10KE Row-to-IOE Interconnect Resources

Device Channels per Row (n) Row Channels per Pin (m)

EPF10K30E 216 27

EPF10K50E
EPF10K50S

216 27

EPF10K100E 312 39

EPF10K130E 312 39

EPF10K200E
EPF10K200S

312 39
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SameFrame 
Pin-Outs

FLEX 10KE devices support the SameFrame pin-out feature for 
FineLine BGA packages. The SameFrame pin-out feature is the 
arrangement of balls on FineLine BGA packages such that the lower-ball-
count packages form a subset of the higher-ball-count packages. 
SameFrame pin-outs provide the flexibility to migrate not only from 
device to device within the same package, but also from one package to 
another. A given printed circuit board (PCB) layout can support multiple 
device density/package combinations. For example, a single board layout 
can support a range of devices from an EPF10K30E device in a 256-pin 
FineLine BGA package to an EPF10K200S device in a 672-pin 
FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame 
pin-out devices. Devices can be defined for present and future use. The 
Altera software generates pin-outs describing how to lay out a board to 
take advantage of this migration (see Figure 18).

Figure 18. SameFrame Pin-Out Example
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Tables 12 and 13 summarize the ClockLock and ClockBoost parameters 
for -1 and -2 speed-grade devices, respectively.

Table 12. ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices

Symbol Parameter Condition Min Typ Max Unit
tR Input rise time 5 ns

tF Input fall time 5 ns

t INDUTY Input duty cycle 40 60 %

fCLK1 Input clock frequency (ClockBoost 

clock multiplication factor equals 1)

25 180 MHz

fCLK2 Input clock frequency (ClockBoost 

clock multiplication factor equals 2)

16 90 MHz

fCLKDEV Input deviation from user 

specification in the MAX+PLUS II 

software (1)

25,000 (2) PPM

t INCLKSTB Input clock stability (measured 

between adjacent clocks)

100 ps

tLOCK Time required for ClockLock or 

ClockBoost to acquire lock (3)
10 µs

t JITTER Jitter on ClockLock or ClockBoost-

generated clock (4)
tINCLKSTB < 100 250 ps

t INCLKSTB < 50 200 (4) ps

tOUTDUTY Duty cycle for ClockLock or 

ClockBoost-generated clock

40 50 60 %
40 Altera Corporation
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Table 22. FLEX 10KE 2.5-V Device DC Operating Conditions Notes (6), (7)

Symbol Parameter Conditions Min Typ Max Unit

VIH High-level input 
voltage

1.7, 0.5 × VCCIO (8) 5.75 V

VIL Low-level input 
voltage

–0.5 0.8, 
0.3 × VCCIO (8)

V

VOH 3.3-V high-level TTL 
output voltage

IOH = –8 mA DC, 
VCCIO = 3.00 V (9) 

2.4 V

3.3-V high-level 
CMOS output voltage

IOH = –0.1 mA DC, 
VCCIO = 3.00 V (9) 

VCCIO – 0.2 V

3.3-V high-level PCI 
output voltage

IOH = –0.5 mA DC, 
VCCIO = 3.00 to 3.60 V (9) 

0.9 × VCCIO V

2.5-V high-level output 
voltage

IOH = –0.1 mA DC, 
VCCIO = 2.30 V (9) 

2.1 V

IOH = –1 mA DC, 
VCCIO = 2.30 V (9) 

2.0 V

IOH = –2 mA DC, 
VCCIO = 2.30 V (9) 

1.7 V

VOL 3.3-V low-level TTL 
output voltage

IOL = 12 mA DC, 
VCCIO = 3.00 V (10)

0.45 V

3.3-V low-level CMOS 
output voltage

IOL = 0.1 mA DC, 
VCCIO = 3.00 V (10)

0.2 V

3.3-V low-level PCI 
output voltage

IOL = 1.5 mA DC, 
VCCIO = 3.00 to 3.60 V 
(10)

0.1 × VCCIO V

2.5-V low-level output 
voltage

IOL = 0.1 mA DC, 
VCCIO = 2.30 V (10)

0.2 V

IOL = 1 mA DC, 
VCCIO = 2.30 V (10)

0.4 V

IOL = 2 mA DC, 
VCCIO = 2.30 V (10)

0.7 V

II Input pin leakage 
current

VI = VCCIOmax to 0 V (11) –10 10 µA

IOZ Tri-stated I/O pin 
leakage current

VO = VCCIOmax to 0 V (11) –10 10 µA

ICC0 VCC supply current 
(standby)

VI = ground, no load, no 
toggling inputs

5 mA

VI = ground, no load, no 
toggling inputs (12)

10 mA

RCONF Value of I/O pin pull-
up resistor before and 
during configuration

VCCIO = 3.0 V (13) 20 50 k¾

VCCIO = 2.3 V (13) 30 80 k¾
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents 

less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are 

powered.
(6) Typical values are for TA = 25° C, VCCINT = 2.5 V, and VCCIO = 2.5 V or 3.3 V.
(7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21.
(8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS 

signals. Additionally, the input buffers are 3.3-V PCI compliant when VCCIO and VCCINT meet the relationship shown 
in Figure 22.

(9) The IOH parameter refers to high-level TTL, PCI, or CMOS output current.
(10) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(11) This value is specified for normal device operation. The value may vary during power-up.
(12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial 

temperature devices.
(13) Pin pull-up resistance values will be lower if the pin is driven higher than VCCIO by an external source.
(14) Capacitance is sample-tested only.

Table 23. FLEX 10KE Device Capacitance Note (14)

Symbol Parameter Conditions Min Max Unit

CIN Input capacitance VIN = 0 V, f = 1.0 MHz 10 pF

CINCLK Input capacitance on 
dedicated clock pin

VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 10 pF
50 Altera Corporation
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Figure 23. Output Drive Characteristics of FLEX 10KE Devices Note (1)

Note:
(1) These are transient (AC) currents.

Timing Model The continuous, high-performance FastTrack Interconnect routing 
resources ensure predictable performance and accurate simulation and 
timing analysis. This predictable performance contrasts with that of 
FPGAs, which use a segmented connection scheme and therefore have 
unpredictable performance. 

Device performance can be estimated by following the signal path from a 
source, through the interconnect, to the destination. For example, the 
registered performance between two LEs on the same row can be 
calculated by adding the following parameters: 

■ LE register clock-to-output delay (tCO)
■ Interconnect delay (tSAMEROW)
■ LE look-up table delay (tLUT)
■ LE register setup time (tSU)

The routing delay depends on the placement of the source and destination 
LEs. A more complex registered path may involve multiple combinatorial 
LEs between the source and destination LEs. 
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Figure 28. Synchronous Bidirectional Pin External Timing Model

Tables 24 through 28 describe the FLEX 10KE device internal timing 
parameters. Tables 29 through 30 describe the FLEX 10KE external timing 
parameters and their symbols.
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Table 24. LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol Parameter Condition

tLUT LUT delay for data-in

tCLUT LUT delay for carry-in

tRLUT LUT delay for LE register feedback

tPACKED Data-in to packed register delay

tEN LE register enable delay

tCICO Carry-in to carry-out delay

tCGEN Data-in to carry-out delay

tCGENR LE register feedback to carry-out delay

tCASC Cascade-in to cascade-out delay

tC LE register control signal delay

tCO LE register clock-to-output delay

tCOMB Combinatorial delay

tSU LE register setup time for data and enable signals before clock; LE register 
recovery time after asynchronous clear, preset, or load

tH LE register hold time for data and enable signals after clock

tPRE LE register preset delay
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tCLR LE register clear delay

tCH Minimum clock high time from clock pin

tCL Minimum clock low time from clock pin

Table 24. LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Parameter Condition

Table 25. IOE Timing Microparameters Note (1)

Symbol Parameter Conditions

tIOD IOE data delay

tIOC IOE register control signal delay

tIOCO IOE register clock-to-output delay

tIOCOMB IOE combinatorial delay

tIOSU IOE register setup time for data and enable signals before clock; IOE register 
recovery time after asynchronous clear

tIOH IOE register hold time for data and enable signals after clock

tIOCLR IOE register clear time

tOD1 Output buffer and pad delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tOD2 Output buffer and pad delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tOD3 Output buffer and pad delay, slow slew rate = on C1 = 35 pF (4)

tXZ IOE output buffer disable delay

tZX1 IOE output buffer enable delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tZX2 IOE output buffer enable delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tZX3 IOE output buffer enable delay, slow slew rate = on C1 = 35 pF (4)

tINREG IOE input pad and buffer to IOE register delay

tIOFD IOE register feedback delay

tINCOMB IOE input pad and buffer to FastTrack Interconnect delay
Altera Corporation 57 
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Figures 29 and 30 show the asynchronous and synchronous timing 
waveforms, respectively, or the EAB macroparameters in Tables 26 
and 27.

Figure 29. EAB Asynchronous Timing Waveforms
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Table 40. EPF10K50E Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.7 2.0 2.7 ns

tEABDATA1 0.6 0.7 0.9 ns

tEABWE1 1.1 1.3 1.8 ns

tEABWE2 0.4 0.4 0.6 ns

tEABRE1 0.8 0.9 1.2 ns

tEABRE2 0.4 0.4 0.6 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.3 0.5 ns

tEABBYPASS 0.5 0.6 0.8 ns

tEABSU 0.9 1.0 1.4 ns

tEABH 0.4 0.4 0.6 ns

tEABCLR 0.3 0.3 0.5 ns

tAA 3.2 3.8 5.1 ns

tWP 2.5 2.9 3.9 ns

tRP 0.9 1.1 1.5 ns

tWDSU 0.9 1.0 1.4 ns

tWDH 0.1 0.1 0.2 ns

tWASU 1.7 2.0 2.7 ns

tWAH 1.8 2.1 2.9 ns

tRASU 3.1 3.7 5.0 ns

tRAH 0.2 0.2 0.3 ns

tWO 2.5 2.9 3.9 ns

tDD 2.5 2.9 3.9 ns

tEABOUT 0.5 0.6 0.8 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.5 2.9 3.9 ns
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Table 41. EPF10K50E Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 6.4 7.6 10.2 ns

tEABRCOMB 6.4 7.6 10.2 ns

tEABRCREG 4.4 5.1 7.0 ns

tEABWP 2.5 2.9 3.9 ns

tEABWCOMB 6.0 7.0 9.5 ns

tEABWCREG 6.8 7.8 10.6 ns

tEABDD 5.7 6.7 9.0 ns

tEABDATACO 0.8 0.9 1.3 ns

tEABDATASU 1.5 1.7 2.3 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 1.3 1.4 2.0 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.5 1.7 2.3 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.8 ns

tEABWAH 0.5 0.5 0.8 ns

tEABWO 5.1 6.0 8.1 ns

Table 42. EPF10K50E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 3.5 4.3 5.6 ns

tDIN2LE 2.1 2.5 3.4 ns

tDIN2DATA 2.2 2.4 3.1 ns

tDCLK2IOE 2.9 3.5 4.7 ns

tDCLK2LE 2.1 2.5 3.4 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.1 1.1 1.5 ns

tSAMECOLUMN 0.8 1.0 1.3 ns

tDIFFROW 1.9 2.1 2.8 ns

tTWOROWS 3.0 3.2 4.3 ns

tLEPERIPH 3.1 3.3 3.7 ns

tLABCARRY 0.1 0.1 0.2 ns

tLABCASC 0.3 0.3 0.5 ns
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Tables 52 through 58 show EPF10K130E device internal and external 
timing parameters.   

Table 52. EPF10K130E Device LE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.6 0.9 1.3 ns

tCLUT 0.6 0.8 1.0 ns

tRLUT 0.7 0.9 0.2 ns

tPACKED 0.3 0.5 0.6 ns

tEN 0.2 0.3 0.4 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.6 0.8 ns

tCGENR 0.1 0.1 0.2 ns

tCASC 0.6 0.9 1.2 ns

tC 0.3 0.5 0.6 ns

tCO 0.5 0.7 0.8 ns

tCOMB 0.3 0.5 0.6 ns

tSU 0.5 0.7 0.8 ns

tH 0.6 0.7 1.0 ns

tPRE 0.9 1.2 1.6 ns

tCLR 0.9 1.2 1.6 ns

tCH 1.5 1.5 2.5 ns

tCL 1.5 1.5 2.5 ns

Table 53. EPF10K130E Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tIOD 1.3 1.5 2.0 ns

tIOC 0.0 0.0 0.0 ns

tIOCO 0.6 0.8 1.0 ns

tIOCOMB 0.6 0.8 1.0 ns

tIOSU 1.0 1.2 1.6 ns

tIOH 0.9 0.9 1.4 ns

tIOCLR 0.6 0.8 1.0 ns

tOD1 2.8 4.1 5.5 ns

tOD2 2.8 4.1 5.5 ns
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 59 through 65 show EPF10K200E device internal and external 
timing parameters.   

Table 58. EPF10K130E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (3) 2.2 2.4 3.2 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 2.8 3.0 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 5.0 2.0 7.0 2.0 9.2 ns

tXZBIDIR (3) 5.6 8.1 10.8 ns

tZXBIDIR (3) 5.6 8.1  10.8 ns

tOUTCOBIDIR (4) 0.5 4.0 0.5 6.0 – – ns

tXZBIDIR (4) 4.6 7.1 – ns

tZXBIDIR (4) 4.6 7.1 – ns

Table 59. EPF10K200E Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.7 0.8 1.2 ns

tCLUT 0.4 0.5 0.6 ns

tRLUT 0.6 0.7 0.9 ns

tPACKED 0.3 0.5 0.7 ns

tEN 0.4 0.5 0.6 ns

tCICO 0.2 0.2 0.3 ns

tCGEN 0.4 0.4 0.6 ns

tCGENR 0.2 0.2 0.3 ns

tCASC 0.7 0.8 1.2 ns

tC 0.5 0.6 0.8 ns

tCO 0.5 0.6 0.8 ns

tCOMB 0.4 0.6 0.8 ns

tSU 0.4 0.6 0.7 ns
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Power 
Consumption

The supply power (P) for FLEX 10KE devices can be calculated with the 
following equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

The ICCACTIVE value depends on the switching frequency and the 
application logic. This value is calculated based on the amount of current 
that each LE typically consumes. The PIO value, which depends on the 
device output load characteristics and switching frequency, can be 
calculated using the guidelines given in Application Note 74 (Evaluating 
Power for Altera Devices).

Compared to the rest of the device, the embedded array consumes a 
negligible amount of power. Therefore, the embedded array can be 
ignored when calculating supply current.

The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K × fMAX × N × togLC × 

Where:

fMAX = Maximum operating frequency in MHz
N = Total number of LEs used in the device
togLC = Average percent of LEs toggling at each clock 

(typically 12.5%)
K = Constant

Table 80 provides the constant (K) values for FLEX 10KE devices.

This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions.

Table 80. FLEX 10KE K Constant Values

Device K Value

EPF10K30E 4.5

EPF10K50E 4.8

EPF10K50S 4.5

EPF10K100E 4.5

EPF10K130E 4.6

EPF10K200E 4.8

EPF10K200S 4.6

µA
MHz LE×
---------------------------
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Figure 31. FLEX 10KE ICCACTIVE vs. Operating Frequency (Part 2 of 2)

Configuration & 
Operation

The FLEX 10KE architecture supports several configuration schemes. This 
section summarizes the device operating modes and available device 
configuration schemes. 

Operating Modes

The FLEX 10KE architecture uses SRAM configuration elements that 
require configuration data to be loaded every time the circuit powers up. 
The process of physically loading the SRAM data into the device is called 
configuration. Before configuration, as VCC rises, the device initiates a 
Power-On Reset (POR). This POR event clears the device and prepares it 
for configuration. The FLEX 10KE POR time does not exceed 50 µs.

When configuring with a configuration device, refer to the respective 
configuration device data sheet for POR timing information.
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