Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 360 | | Number of Logic Elements/Cells | 2880 | | Total RAM Bits | 40960 | | Number of I/O | 189 | | Number of Gates | 199000 | | Voltage - Supply | 2.3V ~ 2.7V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 85°C (TA) | | Package / Case | 240-BFQFP | | Supplier Device Package | 240-PQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k50eqi240-2n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 2. FLEX 10KE Device Features | | | | | | | | | |------------------------------------|----------------|------------|--------------------------|--|--|--|--|--| | Feature | EPF10K100E (2) | EPF10K130E | EPF10K200E
EPF10K200S | | | | | | | Typical gates (1) | 100,000 | 130,000 | 200,000 | | | | | | | Maximum system gates | 257,000 | 342,000 | 513,000 | | | | | | | Logic elements (LEs) | 4,992 | 6,656 | 9,984 | | | | | | | EABs | 12 | 16 | 24 | | | | | | | Total RAM bits | 49,152 | 65,536 | 98,304 | | | | | | | Maximum user I/O pins | 338 | 413 | 470 | | | | | | #### Note to tables: - (1) The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum system gates. - (2) New EPF10K100B designs should use EPF10K100E devices. # ...and More Features - Fabricated on an advanced process and operate with a 2.5-V internal supply voltage - In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port - ClockLockTM and ClockBoostTM options for reduced clock delay/skew and clock multiplication - Built-in low-skew clock distribution trees - 100% functional testing of all devices; test vectors or scan chains are not required - Pull-up on I/O pins before and during configuration #### ■ Flexible interconnect - FastTrack® Interconnect continuous routing structure for fast, predictable interconnect delays - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions) - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions) - Tri-state emulation that implements internal tri-state buses - Up to six global clock signals and four global clear signals #### ■ Powerful I/O pins - Individual tri-state output enable control for each pin - Open-drain option on each I/O pin - Programmable output slew-rate control to reduce switching noise - Clamp to V_{CCIO} user-selectable on a pin-by-pin basis - Supports hot-socketing Similar to the FLEX 10KE architecture, embedded gate arrays are the fastest-growing segment of the gate array market. As with standard gate arrays, embedded gate arrays implement general logic in a conventional "sea-of-gates" architecture. Additionally, embedded gate arrays have dedicated die areas for implementing large, specialized functions. By embedding functions in silicon, embedded gate arrays reduce die area and increase speed when compared to standard gate arrays. While embedded megafunctions typically cannot be customized, FLEX 10KE devices are programmable, providing the designer with full control over embedded megafunctions and general logic, while facilitating iterative design changes during debugging. Each FLEX 10KE device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and data-transformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device. FLEX 10KE devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers the EPC1, EPC2, and EPC16 configuration devices, which configure FLEX 10KE devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera BitBlasterTM, ByteBlasterMVTM, or MasterBlaster download cables. After a FLEX 10KE device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 85 ms, real-time changes can be made during system operation. FLEX 10KE devices contain an interface that permits microprocessors to configure FLEX 10KE devices serially or in-parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat a FLEX 10KE device as memory and configure it by writing to a virtual memory location, making it easy to reconfigure the device. Figure 4. FLEX 10KE Device in Single-Port RAM Mode #### Note: EPF10K30E, EPF10K50E, and EPF10K50S devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 104 EAB local interconnect channels. EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the write enable signal. In contrast, the EAB's synchronous RAM generates its own write enable signal and is self-timed with respect to the input or write clock. A circuit using the EAB's self-timed RAM must only meet the setup and hold time specifications of the global clock. Each LAB provides four control signals with programmable inversion that can be used in all eight LEs. Two of these signals can be used as clocks, the other two can be used for clear/preset control. The LAB clocks can be driven by the dedicated clock input pins, global signals, I/O signals, or internal signals via the LAB local interconnect. The LAB preset and clear control signals can be driven by the global signals, I/O signals, or internal signals via the LAB local interconnect. The global control signals are typically used for global clock, clear, or preset signals because they provide asynchronous control with very low skew across the device. If logic is required on a control signal, it can be generated in one or more LE in any LAB and driven into the local interconnect of the target LAB. In addition, the global control signals can be generated from LE outputs. ### Logic Element The LE, the smallest unit of logic in the FLEX 10KE architecture, has a compact size that provides efficient logic utilization. Each LE contains a four-input LUT, which is a function generator that can quickly compute any function of four variables. In addition, each LE contains a programmable flipflop with a synchronous clock enable, a carry chain, and a cascade chain. Each LE drives both the local and the FastTrack Interconnect routing structure (see Figure 8). Altera Corporation 17 Cascade-Out Carry-Out #### Cascade Chain With the cascade chain, the FLEX 10KE architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. An a delay as low as 0.6 ns per LE, each additional LE provides four more inputs to the effective width of a function. Cascade chain logic can be created automatically by the Altera Compiler during design processing, or manually by the designer during design entry. Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EPF10K50E device, the cascade chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB). This break is due to the EAB's placement in the middle of the row. Figure 10 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. The LE delay is 0.9 ns; the cascade chain delay is 0.6 ns. With the cascade chain, 2.7 ns are needed to decode a 16-bit address. Figure 10. FLEX 10KE Cascade Chain Operation # FastTrack Interconnect Routing Structure In the FLEX 10KE architecture, connections between LEs, EABs, and device I/O pins are provided by the FastTrack Interconnect routing structure, which is a series of continuous horizontal and vertical routing channels that traverses the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance. The FastTrack Interconnect routing structure consists of row and column interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect. The row interconnect can drive I/O pins and feed other LABs in the row. The column interconnect routes signals between rows and can drive I/O pins. Row channels drive into the LAB or EAB local interconnect. The row signal is buffered at every LAB or EAB to reduce the effect of fan-out on delay. A row channel can be driven by an LE or by one of three column channels. These four signals feed dual 4-to-1 multiplexers that connect to two specific row channels. These multiplexers, which are connected to each LE, allow column channels to drive row channels even when all eight LEs in a LAB drive the row interconnect. Each column of LABs or EABs is served by a dedicated column interconnect. The column interconnect that serves the EABs has twice as many channels as other column interconnects. The column interconnect can then drive I/O pins or another row's interconnect to route the signals to other LABs or EABs in the device. A signal from the column interconnect, which can be either the output of a LE or an input from an I/O pin, must be routed to the row interconnect before it can enter a LAB or EAB. Each row channel that is driven by an IOE or EAB can drive one specific column channel. Access to row and column channels can be switched between LEs in adjacent pairs of LABs. For example, a LE in one LAB can drive the row and column channels normally driven by a particular LE in the adjacent LAB in the same row, and vice versa. This flexibility enables routing resources to be used more efficiently (see Figure 13). | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|---|--------------------|-------------|-------------------|------| | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 2.30 (2.30) | 2.70 (2.70) | V | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | | Supply voltage for output buffers, 2.5-V operation | (3), (4) | 2.30 (2.30) | 2.70 (2.70) | V | | VI | Input voltage | (5) | -0.5 | 5.75 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | For commercial use | 0 | 70 | ° C | | | | For industrial use | -40 | 85 | ° C | | T _J | Operating temperature | For commercial use | 0 | 85 | ° C | | | | For industrial use | -40 | 100 | ° C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | | Table 21. 2.5-V EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E & EPF10K200S Device Recommended Operating Conditions | | | | | | | | | | |---|---|--------------------|------------------|-------------------|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 2.375
(2.375) | 2.625
(2.625) | V | | | | | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | | | | | | Supply voltage for output buffers, 2.5-V operation | (3), (4) | 2.375
(2.375) | 2.625
(2.625) | V | | | | | | V _I | Input voltage | (5) | -0.5 | 5.75 | V | | | | | | Vo | Output voltage | | 0 | V _{CCIO} | V | | | | | | T _A | Ambient temperature | For commercial use | 0 | 70 | ° C | | | | | | | | For industrial use | -40 | 85 | ° C | | | | | | TJ | Operating temperature | For commercial use | 0 | 85 | ° C | | | | | | | | For industrial use | -40 | 100 | ° C | | | | | | t _R | Input rise time | | | 40 | ns | | | | | | t _F | Input fall time | | | 40 | ns | | | | | | Table 23. FLEX 10KE Device Capacitance Note (14) | | | | | | | | | | |--------------------------------------------------|------------------------------------------|-------------------------------------|-----|-----|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | | | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | | | | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V. - (7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21. - (8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22. - (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current. - (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (11) This value is specified for normal device operation. The value may vary during power-up. - (12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial temperature devices. - (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source. - (14) Capacitance is sample-tested only. Figure 22 shows the required relationship between $V_{\rm CCIO}$ and $V_{\rm CCINT}$ for 3.3-V PCI compliance. Figure 22. Relationship between V_{CCIO} & V_{CCINT} for 3.3-V PCI Compliance Figure 23 shows the typical output drive characteristics of FLEX 10KE devices with 3.3-V and 2.5-V $V_{\rm CCIO}$. The output driver is compliant to the 3.3-V *PCI Local Bus Specification*, *Revision 2.2* (when VCCIO pins are connected to 3.3 V). FLEX 10KE devices with a -1 speed grade also comply with the drive strength requirements of the *PCI Local Bus Specification*, *Revision 2.2* (when VCCINT pins are powered with a minimum supply of 2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices can be used in open 5.0-V PCI systems. Figure 25. FLEX 10KE Device LE Timing Model | Table 24. LE Timing Microparameters (Part 2 of 2) Note (1) | | | | | | | |------------------------------------------------------------|----------------------------------------|--|--|--|--|--| | Symbol | Parameter Condition | | | | | | | t _{CLR} | LE register clear delay | | | | | | | t _{CH} | Minimum clock high time from clock pin | | | | | | | t_{CL} | Minimum clock low time from clock pin | | | | | | | Table 25. IOE Timing Microparameters Note (1) | | | | | | | | |-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--| | Symbol | Parameter | Conditions | | | | | | | t_{IOD} | IOE data delay | | | | | | | | t _{IOC} | IOE register control signal delay | | | | | | | | t _{IOCO} | IOE register clock-to-output delay | | | | | | | | t _{IOCOMB} | IOE combinatorial delay | | | | | | | | t _{IOSU} | IOE register setup time for data and enable signals before clock; IOE register recovery time after asynchronous clear | | | | | | | | t _{IOH} | IOE register hold time for data and enable signals after clock | | | | | | | | t _{IOCLR} | IOE register clear time | | | | | | | | t _{OD1} | Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (2) | | | | | | | t _{OD2} | Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 2.5 V | C1 = 35 pF (3) | | | | | | | t _{OD3} | Output buffer and pad delay, slow slew rate = on | C1 = 35 pF (4) | | | | | | | t_{XZ} | IOE output buffer disable delay | | | | | | | | t_{ZX1} | IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (2) | | | | | | | t_{ZX2} | IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 2.5 V | C1 = 35 pF (3) | | | | | | | t _{ZX3} | IOE output buffer enable delay, slow slew rate = on | C1 = 35 pF (4) | | | | | | | t _{INREG} | IOE input pad and buffer to IOE register delay | | | | | | | | t _{IOFD} | IOE register feedback delay | | | | | | | | t _{INCOMB} | IOE input pad and buffer to FastTrack Interconnect delay | | | | | | | | Table 30. External Bidirectional Timing Parameters Note (9) | | | | | | | |-------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------|--|--|--|--| | Symbol | Parameter | Conditions | | | | | | ^t INSUBIDIR | Setup time for bi-directional pins with global clock at same-row or same-column LE register | | | | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | t _{INH} | Hold time with global clock at IOE register | | | | | | | ^t OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE register | C1 = 35 pF | | | | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | C1 = 35 pF | | | | | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate= off | C1 = 35 pF | | | | | #### Notes to tables: - Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly. - (2) Operating conditions: VCCIO = $3.3 \text{ V} \pm 10\%$ for commercial or industrial use. - (3) Operating conditions: VCCIO = $2.5 \text{ V} \pm 5\%$ for commercial or industrial use in EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E, and EPF10K200S devices. - (4) Operating conditions: VCCIO = 3.3 V. - (5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. - (6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; these parameters are calculated by summing selected microparameters. - (7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. - (8) Contact Altera Applications for test circuit specifications and test conditions. - (9) This timing parameter is sample-tested only. - (10) This parameter is measured with the measurement and test conditions, including load, specified in the PCI Local Bus Specification, revision 2.2. | Table 38. EPF10K50E Device LE Timing Microparameters (Part 2 of 2) Note (1) | | | | | | | | | | |-----------------------------------------------------------------------------|---------|---------|---------|---------------------------|-----|------|----|--|--| | Symbol | -1 Spee | d Grade | -2 Spee | peed Grade -3 Speed Grade | | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | t_H | 0.9 | | 1.0 | | 1.4 | | ns | | | | t _{PRE} | | 0.5 | | 0.6 | | 0.8 | ns | | | | t _{CLR} | | 0.5 | | 0.6 | | 0.8 | ns | | | | t _{CH} | 2.0 | | 2.5 | | 3.0 | | ns | | | | t_{CL} | 2.0 | | 2.5 | | 3.0 | | ns | | | | Symbol | -1 Spee | d Grade | -2 Spee | ed Grade | -3 Spee | ed Grade | Unit | |---------------------|---------|---------|---------|----------|---------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 2.2 | | 2.4 | | 3.3 | ns | | t _{IOC} | | 0.3 | | 0.3 | | 0.5 | ns | | t _{IOCO} | | 1.0 | | 1.0 | | 1.4 | ns | | t_{IOCOMB} | | 0.0 | | 0.0 | | 0.2 | ns | | t _{IOSU} | 1.0 | | 1.2 | | 1.7 | | ns | | t_{IOH} | 0.3 | | 0.3 | | 0.5 | | ns | | t_{IOCLR} | | 0.9 | | 1.0 | | 1.4 | ns | | t_{OD1} | | 0.8 | | 0.9 | | 1.2 | ns | | t_{OD2} | | 0.3 | | 0.4 | | 0.7 | ns | | t_{OD3} | | 3.0 | | 3.5 | | 3.5 | ns | | t_{XZ} | | 1.4 | | 1.7 | | 2.3 | ns | | t_{ZX1} | | 1.4 | | 1.7 | | 2.3 | ns | | t_{ZX2} | | 0.9 | | 1.2 | | 1.8 | ns | | t _{ZX3} | | 3.6 | | 4.3 | | 4.6 | ns | | t _{INREG} | | 4.9 | | 5.8 | | 7.8 | ns | | t _{IOFD} | | 2.8 | | 3.3 | | 4.5 | ns | | t _{INCOMB} | | 2.8 | | 3.3 | | 4.5 | ns | | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | d Grade | Unit | |------------------------|----------------|-----|---------|----------------|-----|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.7 | | 2.0 | | 2.7 | ns | | t _{EABDATA1} | | 0.6 | | 0.7 | | 0.9 | ns | | t _{EABWE1} | | 1.1 | | 1.3 | | 1.8 | ns | | t _{EABWE2} | | 0.4 | | 0.4 | | 0.6 | ns | | t _{EABRE1} | | 0.8 | | 0.9 | | 1.2 | ns | | t _{EABRE2} | | 0.4 | | 0.4 | | 0.6 | ns | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCO} | | 0.3 | | 0.3 | | 0.5 | ns | | t _{EABBYPASS} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{EABSU} | 0.9 | | 1.0 | | 1.4 | | ns | | t _{EABH} | 0.4 | | 0.4 | | 0.6 | | ns | | t _{EABCLR} | 0.3 | | 0.3 | | 0.5 | | ns | | t_{AA} | | 3.2 | | 3.8 | | 5.1 | ns | | t_{WP} | 2.5 | | 2.9 | | 3.9 | | ns | | t_{RP} | 0.9 | | 1.1 | | 1.5 | | ns | | t _{WDSU} | 0.9 | | 1.0 | | 1.4 | | ns | | t_{WDH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{WASU} | 1.7 | | 2.0 | | 2.7 | | ns | | t _{WAH} | 1.8 | | 2.1 | | 2.9 | | ns | | t _{RASU} | 3.1 | | 3.7 | | 5.0 | | ns | | t _{RAH} | 0.2 | | 0.2 | | 0.3 | | ns | | t_{WO} | | 2.5 | | 2.9 | | 3.9 | ns | | t_{DD} | | 2.5 | | 2.9 | | 3.9 | ns | | t _{EABOUT} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{EABCH} | 1.5 | | 2.0 | | 2.5 | | ns | | t _{EABCL} | 2.5 | | 2.9 | | 3.9 | | ns | | Table 41. EPF10K50E Device EAB Internal Timing Macroparameters Note (1) | | | | | | | | |-------------------------------------------------------------------------|----------------|-----|----------------|-----|----------------|------|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{EABAA} | | 6.4 | | 7.6 | | 10.2 | ns | | t _{EABRCOMB} | 6.4 | | 7.6 | | 10.2 | | ns | | t _{EABRCREG} | 4.4 | | 5.1 | | 7.0 | | ns | | t _{EABWP} | 2.5 | | 2.9 | | 3.9 | | ns | | t _{EABWCOMB} | 6.0 | | 7.0 | | 9.5 | | ns | | t _{EABWCREG} | 6.8 | | 7.8 | | 10.6 | | ns | | t _{EABDD} | | 5.7 | | 6.7 | | 9.0 | ns | | t _{EABDATACO} | | 0.8 | | 0.9 | | 1.3 | ns | | t _{EABDATASU} | 1.5 | | 1.7 | | 2.3 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 1.3 | | 1.4 | | 2.0 | | ns | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWDSU} | 1.5 | | 1.7 | | 2.3 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWASU} | 3.0 | | 3.6 | | 4.8 | | ns | | t _{EABWAH} | 0.5 | | 0.5 | | 0.8 | | ns | | t _{EABWO} | | 5.1 | | 6.0 | | 8.1 | ns | | Table 42. EPF10 | K50E Device | Interconnec | t Timing Mid | croparamete | ers Note | (1) | | |--------------------------|-------------|----------------|--------------|----------------|----------|----------|------| | Symbol | -1 Spee | -1 Speed Grade | | -2 Speed Grade | | ed Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 3.5 | | 4.3 | | 5.6 | ns | | t _{DIN2LE} | | 2.1 | | 2.5 | | 3.4 | ns | | t _{DIN2DATA} | | 2.2 | | 2.4 | | 3.1 | ns | | t _{DCLK2IOE} | | 2.9 | | 3.5 | | 4.7 | ns | | t _{DCLK2LE} | | 2.1 | | 2.5 | | 3.4 | ns | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{SAMEROW} | | 1.1 | | 1.1 | | 1.5 | ns | | t _{SAME} COLUMN | | 0.8 | | 1.0 | | 1.3 | ns | | t _{DIFFROW} | | 1.9 | | 2.1 | | 2.8 | ns | | t _{TWOROWS} | | 3.0 | | 3.2 | | 4.3 | ns | | t _{LEPERIPH} | | 3.1 | | 3.3 | | 3.7 | ns | | t _{LABCARRY} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{LABCASC} | | 0.3 | | 0.3 | | 0.5 | ns | | Table 43. EPF10K | Table 43. EPF10K50E External Timing Parameters Notes (1), (2) | | | | | | | | | | | |--------------------|---------------------------------------------------------------|-----|---------|----------------|-----|---------|------|--|--|--|--| | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | d Grade | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | t _{DRR} | | 8.5 | | 10.0 | | 13.5 | ns | | | | | | t _{INSU} | 2.7 | | 3.2 | | 4.3 | | ns | | | | | | t _{INH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | | | t _{outco} | 2.0 | 4.5 | 2.0 | 5.2 | 2.0 | 7.3 | ns | | | | | | t _{PCISU} | 3.0 | | 4.2 | | - | | ns | | | | | | t _{PCIH} | 0.0 | | 0.0 | | - | | ns | | | | | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 7.7 | - | - | ns | | | | | | Table 44. EPF10K | 50E Externa | l Bidirection | al Timing P | arameters | Notes (1), | (2) | | |-------------------------|----------------|---------------|-------------|----------------|------------|---------|------| | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 2.7 | | 3.2 | | 4.3 | | ns | | t _{INHBIDIR} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} | 2.0 | 4.5 | 2.0 | 5.2 | 2.0 | 7.3 | ns | | t _{XZBIDIR} | | 6.8 | | 7.8 | | 10.1 | ns | | t _{ZXBIDIR} | | 6.8 | | 7.8 | | 10.1 | ns | #### Notes to tables: - (1) All timing parameters are described in Tables 24 through 30 in this data sheet. - (2) These parameters are specified by characterization. Tables 45 through 51 show EPF10K100E device internal and external timing parameters. | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |---------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t_{LUT} | | 0.7 | | 1.0 | | 1.5 | ns | | t _{CLUT} | | 0.5 | | 0.7 | | 0.9 | ns | | t _{RLUT} | | 0.6 | | 0.8 | | 1.1 | ns | | t _{PACKED} | | 0.3 | | 0.4 | | 0.5 | ns | | t_{EN} | | 0.2 | | 0.3 | | 0.3 | ns | | t _{CICO} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CGEN} | | 0.4 | | 0.5 | | 0.7 | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |--------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CASC} | | 0.6 | | 0.9 | | 1.2 | ns | | t _C | | 0.8 | | 1.0 | | 1.4 | ns | | t _{CO} | | 0.6 | | 0.8 | | 1.1 | ns | | t _{COMB} | | 0.4 | | 0.5 | | 0.7 | ns | | t _{SU} | 0.4 | | 0.6 | | 0.7 | | ns | | t _H | 0.5 | | 0.7 | | 0.9 | | ns | | t _{PRE} | | 0.8 | | 1.0 | | 1.4 | ns | | t _{CLR} | | 0.8 | | 1.0 | | 1.4 | ns | | t _{CH} | 1.5 | | 2.0 | | 2.5 | | ns | | t_{CL} | 1.5 | | 2.0 | | 2.5 | | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Spee | ed Grade | Unit | |---------------------|----------------|-----|----------------|-----|---------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 1.7 | | 2.0 | | 2.6 | ns | | t_{IOC} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{IOCO} | | 1.4 | | 1.6 | | 2.1 | ns | | t_{IOCOMB} | | 0.5 | | 0.7 | | 0.9 | ns | | t _{IOSU} | 0.8 | | 1.0 | | 1.3 | | ns | | t_{IOH} | 0.7 | | 0.9 | | 1.2 | | ns | | t _{IOCLR} | | 0.5 | | 0.7 | | 0.9 | ns | | t_{OD1} | | 3.0 | | 4.2 | | 5.6 | ns | | t_{OD2} | | 3.0 | | 4.2 | | 5.6 | ns | | t_{OD3} | | 4.0 | | 5.5 | | 7.3 | ns | | t_{XZ} | | 3.5 | | 4.6 | | 6.1 | ns | | t _{ZX1} | | 3.5 | | 4.6 | | 6.1 | ns | | t_{ZX2} | | 3.5 | | 4.6 | | 6.1 | ns | | t_{ZX3} | | 4.5 | - | 5.9 | - | 7.8 | ns | | t _{INREG} | | 2.0 | | 2.6 | | 3.5 | ns | | t _{IOFD} | | 0.5 | | 0.8 | | 1.2 | ns | | t _{INCOMB} | | 0.5 | | 0.8 | | 1.2 | ns | | Symbol | -1 Spee | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | | |------------------------|---------|----------------|-----|----------------|------|----------------|----|--| | | Min | Max | Min | Max | Min | Max | | | | t _{EABWCOMB} | 5.9 | | 7.7 | | 10.3 | | ns | | | t _{EABWCREG} | 5.4 | | 7.0 | | 9.4 | | ns | | | t _{EABDD} | | 3.4 | | 4.5 | | 5.9 | ns | | | t _{EABDATACO} | | 0.5 | | 0.7 | | 0.8 | ns | | | t _{EABDATASU} | 0.8 | | 1.0 | | 1.4 | | ns | | | t _{EABDATAH} | 0.1 | | 0.1 | | 0.2 | | ns | | | t _{EABWESU} | 1.1 | | 1.4 | | 1.9 | | ns | | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWDSU} | 1.0 | | 1.3 | | 1.7 | | ns | | | t _{EABWDH} | 0.2 | | 0.2 | | 0.3 | | ns | | | t _{EABWASU} | 4.1 | | 5.2 | | 6.8 | | ns | | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWO} | | 3.4 | | 4.5 | | 5.9 | ns | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Spee | ed Grade | Unit | |--------------------------|----------------|-----|----------------|-----|---------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 3.1 | | 3.6 | | 4.4 | ns | | t _{DIN2LE} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{DIN2DATA} | | 1.6 | | 1.8 | | 2.0 | ns | | t _{DCLK2IOE} | | 0.8 | | 1.1 | | 1.4 | ns | | t _{DCLK2LE} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{SAMEROW} | | 1.5 | | 2.5 | | 3.4 | ns | | t _{SAME} COLUMN | | 0.4 | | 1.0 | | 1.6 | ns | | t _{DIFFROW} | | 1.9 | | 3.5 | | 5.0 | ns | | t _{TWOROWS} | | 3.4 | | 6.0 | | 8.4 | ns | | t _{LEPERIPH} | | 4.3 | | 5.4 | | 6.5 | ns | | t _{LABCARRY} | | 0.5 | | 0.7 | | 0.9 | ns | | t _{LABCASC} | | 0.8 | | 1.0 | | 1.4 | ns | | Symbol | -1 Spee | d Grade | -2 Speed Grade -3 Speed Grade | | -3 Speed Grade | | Unit | |------------------------|---------|---------|-------------------------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.7 | | 2.4 | | 3.2 | ns | | t _{EABDATA2} | | 0.4 | | 0.6 | | 0.8 | ns | | t _{EABWE1} | | 1.0 | | 1.4 | | 1.9 | ns | | t _{EABWE2} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABRE1} | | 0.0 | | 0.0 | | 0.0 | | | t _{EABRE2} | | 0.4 | | 0.6 | | 0.8 | | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCO} | | 0.8 | | 1.1 | | 1.5 | ns | | t _{EABBYPASS} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABSU} | 0.7 | | 1.0 | | 1.3 | | ns | | t _{EABH} | 0.4 | | 0.6 | | 0.8 | | ns | | t _{EABCLR} | 0.8 | | 1.1 | | 1.5 | | | | t_{AA} | | 2.0 | | 2.8 | | 3.8 | ns | | t_{WP} | 2.0 | | 2.8 | | 3.8 | | ns | | t_{RP} | 1.0 | | 1.4 | | 1.9 | | | | t _{WDSU} | 0.5 | | 0.7 | | 0.9 | | ns | | t_{WDH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{WASU} | 1.0 | | 1.4 | | 1.9 | | ns | | t _{WAH} | 1.5 | | 2.1 | | 2.9 | | ns | | t _{RASU} | 1.5 | | 2.1 | | 2.8 | | | | t _{RAH} | 0.1 | | 0.1 | | 0.2 | | | | t_{WO} | | 2.1 | | 2.9 | | 4.0 | ns | | t_{DD} | | 2.1 | | 2.9 | | 4.0 | ns | | t _{EABOUT} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCH} | 1.5 | | 2.0 | | 2.5 | | ns | | t _{EABCL} | 1.5 | | 2.0 | | 2.5 | | ns | Figure 31. FLEX 10KE I_{CCACTIVE} vs. Operating Frequency (Part 2 of 2) # Configuration & Operation The FLEX 10KE architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes. # **Operating Modes** The FLEX 10KE architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. The process of physically loading the SRAM data into the device is called *configuration*. Before configuration, as V_{CC} rises, the device initiates a Power-On Reset (POR). This POR event clears the device and prepares it for configuration. The FLEX 10KE POR time does not exceed 50 μs . When configuring with a configuration device, refer to the respective configuration device data sheet for POR timing information.