E·XFL

Intel - EPF10K50ETC144-3N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	360
Number of Logic Elements/Cells	2880
Total RAM Bits	40960
Number of I/O	102
Number of Gates	199000
Voltage - Supply	2.3V ~ 2.7V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k50etc144-3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800
- Flexible package options
 - Available in a variety of packages with 144 to 672 pins, including the innovative FineLine BGA[™] packages (see Tables 3 and 4)
 - SameFrame[™] pin-out compatibility between FLEX 10KA and FLEX 10KE devices across a range of device densities and pin counts
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic

Table 3. FLE	X 10KE Pad	ckage Optio	ons & I/O Pi	n Count	Notes (1),	(2)			
Device	144-Pin TQFP	208-Pin PQFP	240-Pin PQFP RQFP	256-Pin FineLine BGA	356-Pin BGA	484-Pin FineLine BGA	599-Pin PGA	600-Pin BGA	672-Pin FineLine BGA
EPF10K30E	102	147		176		220			220 (3)
EPF10K50E	102	147	189	191		254			254 (3)
EPF10K50S	102	147	189	191	220	254			254 (3)
EPF10K100E		147	189	191	274	338			338 (3)
EPF10K130E			186		274	369		424	413
EPF10K200E							470	470	470
EPF10K200S			182		274	369	470	470	470

Notes:

- (1) FLEX 10KE device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), pin-grid array (PGA), and ball-grid array (BGA) packages.
- (2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When planning device migration, use the I/O pins that are common to all devices.
- (3) This option is supported with a 484-pin FineLine BGA package. By using SameFrame pin migration, all FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin, 484-pin, and 672-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration is set.

Figure 1 shows a block diagram of the FLEX 10KE architecture. Each group of LEs is combined into an LAB; groups of LABs are arranged into rows and columns. Each row also contains a single EAB. The LABs and EABs are interconnected by the FastTrack Interconnect routing structure. IOEs are located at the end of each row and column of the FastTrack Interconnect routing structure.

FLEX 10KE devices provide six dedicated inputs that drive the flipflops' control inputs and ensure the efficient distribution of high-speed, low-skew (less than 1.5 ns) control signals. These signals use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect routing structure. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device.

Embedded Array Block

The EAB is a flexible block of RAM, with registers on the input and output ports, that is used to implement common gate array megafunctions. Because it is large and flexible, the EAB is suitable for functions such as multipliers, vector scalars, and error correction circuits. These functions can be combined in applications such as digital filters and microcontrollers.

Logic functions are implemented by programming the EAB with a readonly pattern during configuration, thereby creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of EABs. The large capacity of EABs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or field-programmable gate array (FPGA) RAM blocks. For example, a single EAB can implement any function with 8 inputs and 16 outputs. Parameterized functions such as LPM functions can take advantage of the EAB automatically.

The FLEX 10KE EAB provides advantages over FPGAs, which implement on-board RAM as arrays of small, distributed RAM blocks. These small FPGA RAM blocks must be connected together to make RAM blocks of manageable size. The RAM blocks are connected together using multiplexers implemented with more logic blocks. These extra multiplexers cause extra delay, which slows down the RAM block. FPGA RAM blocks are also prone to routing problems because small blocks of RAM must be connected together to make larger blocks. In contrast, EABs can be used to implement large, dedicated blocks of RAM that eliminate these timing and routing concerns.

The FLEX 10KE enhanced EAB adds dual-port capability to the existing EAB structure. The dual-port structure is ideal for FIFO buffers with one or two clocks. The FLEX 10KE EAB can also support up to 16-bit-wide RAM blocks and is backward-compatible with any design containing FLEX 10K EABs. The FLEX 10KE EAB can act in dual-port or single-port mode. When in dual-port mode, separate clocks may be used for EAB read and write sections, which allows the EAB to be written and read at different rates. It also has separate synchronous clock enable signals for the EAB read and write sections, which allow independent control of these sections.

Figure 4. FLEX 10KE Device in Single-Port RAM Mode

Note:

(1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 104 EAB local interconnect channels.

EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the write enable signal. In contrast, the EAB's synchronous RAM generates its own write enable signal and is self-timed with respect to the input or write clock. A circuit using the EAB's self-timed RAM must only meet the setup and hold time specifications of the global clock.

Figure 7. FLEX 10KE LAB

Notes:

- (1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26.
- (2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 34.

Figure 9 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal.

Figure 9. FLEX 10KE Carry Chain Operation (n-Bit Full Adder)

Figure 13. FLEX 10KE LAB Connections to Row & Column Interconnect

Figure 15. FLEX 10KE Bidirectional I/O Registers

Note:

(1) All FLEX 10KE devices (except the EPF10K50E and EPF10K200E devices) have a programmable input delay buffer on the input path.

Altera Corporation

Table 17. 32-	Bit IDCOD	E for FLEX 10KE Devices	Note (1)	
Device		IDCODE (32	Bits)	
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)
EPF10K30E	0001	0001 0000 0011 0000	00001101110	1
EPF10K50E EPF10K50S	0001	0001 0000 0101 0000	00001101110	1
EPF10K100E	0010	0000 0001 0000 0000	00001101110	1
EPF10K130E	0001	0000 0001 0011 0000	00001101110	1
EPF10K200E EPF10K200S	0001	0000 0010 0000 0000	00001101110	1

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

FLEX 10KE devices include weak pull-up resistors on the JTAG pins.

For more information, see the following documents:

- Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- Jam Programming & Test Language Specification

Generic Testing

Each FLEX 10KE device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for FLEX 10KE devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 21. FLEX 10KE AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V. devices or outputs.

Operating Conditions

Tables 19 through 23 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V FLEX 10KE devices.

Table 1	9. FLEX 10KE 2.5-V Device A	Absolute Maximum Ratings Note (1)			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	3.6	V
V _{CCIO}			-0.5	4.6	V
VI	DC input voltage		-2.0	5.75	V
IOUT	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
T _{AMB}	Ambient temperature	Under bias	-65	135	°C
Τ _J	Junction temperature	PQFP, TQFP, BGA, and FineLine BGA packages, under bias		135	°C
		Ceramic PGA packages, under bias		150	°C

Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Write (EAB Output Registers Used)

Tables 31 through 37 show EPF10K30E device internal and external timing parameters.

Table 31. EPF10	10K30E Device LE Timing Microparameters (Part 1 of 2) Note (1)								
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{LUT}		0.7		0.8		1.1	ns		
t _{CLUT}		0.5		0.6		0.8	ns		
t _{RLUT}		0.6		0.7		1.0	ns		
t _{PACKED}		0.3		0.4		0.5	ns		
t _{EN}		0.6		0.8		1.0	ns		
t _{CICO}		0.1		0.1		0.2	ns		
t _{CGEN}		0.4		0.5		0.7	ns		

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{CGENR}		0.1		0.1		0.2	ns
t _{CASC}		0.6		0.8		1.0	ns
t _C		0.0		0.0		0.0	ns
t _{CO}		0.3		0.4		0.5	ns
t _{COMB}		0.4		0.4		0.6	ns
t _{SU}	0.4		0.6		0.6		ns
t _H	0.7		1.0		1.3		ns
t _{PRE}		0.8		0.9		1.2	ns
t _{CLR}		0.8		0.9		1.2	ns
t _{CH}	2.0		2.5		2.5		ns
t _{CL}	2.0		2.5		2.5		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{IOD}		2.4		2.8		3.8	ns
t _{IOC}		0.3		0.4		0.5	ns
t _{IOCO}		1.0		1.1		1.6	ns
t _{IOCOMB}		0.0		0.0		0.0	ns
t _{IOSU}	1.2		1.4		1.9		ns
t _{IOH}	0.3		0.4		0.5		ns
t _{IOCLR}		1.0		1.1		1.6	ns
t _{OD1}		1.9		2.3		3.0	ns
t _{OD2}		1.4		1.8		2.5	ns
t _{OD3}		4.4		5.2		7.0	ns
t _{XZ}		2.7		3.1		4.3	ns
t _{ZX1}		2.7		3.1		4.3	ns
t _{ZX2}		2.2		2.6		3.8	ns
t _{ZX3}		5.2		6.0		8.3	ns
t _{INREG}		3.4		4.1		5.5	ns
t _{IOFD}		0.8		1.3		2.4	ns
t _{INCOMB}		0.8		1.3		2.4	ns

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.0		2.3	ns
t _{EABDATA1}		0.6		0.7		0.8	ns
t _{EABWE1}		1.1		1.3		1.4	ns
t _{EABWE2}		0.4		0.4		0.5	ns
t _{EABRE1}		0.8		0.9		1.0	ns
t _{EABRE2}		0.4		0.4		0.5	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.3		0.4	ns
t _{EABBYPASS}		0.5		0.6		0.7	ns
t _{EABSU}	0.9		1.0		1.2		ns
t _{EABH}	0.4		0.4		0.5		ns
t _{EABCLR}	0.3		0.3		0.3		ns
t _{AA}		3.2		3.8		4.4	ns
t _{WP}	2.5		2.9		3.3		ns
t _{RP}	0.9		1.1		1.2		ns
t _{WDSU}	0.9		1.0		1.1		ns
t _{WDH}	0.1		0.1		0.1		ns
t _{WASU}	1.7		2.0		2.3		ns
t _{WAH}	1.8		2.1		2.4		ns
t _{RASU}	3.1		3.7		4.2		ns
t _{RAH}	0.2		0.2		0.2		ns
t _{WO}		2.5		2.9		3.3	ns
t _{DD}		2.5		2.9		3.3	ns
t _{EABOUT}		0.5		0.6		0.7	ns
t _{EABCH}	1.5		2.0		2.3		ns
t _{EABCL}	2.5		2.9		3.3		ns

FLEX 10KE Embedded Programmable Logic Devices Data Sheet

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.0		2.7	ns
t _{EABDATA1}		0.6		0.7		0.9	ns
t _{EABWE1}		1.1		1.3		1.8	ns
t _{EABWE2}		0.4		0.4		0.6	ns
t _{EABRE1}		0.8		0.9		1.2	ns
t _{EABRE2}		0.4		0.4		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.3		0.5	ns
t _{EABBYPASS}		0.5		0.6		0.8	ns
t _{EABSU}	0.9		1.0		1.4		ns
t _{EABH}	0.4		0.4		0.6		ns
t _{EABCLR}	0.3		0.3		0.5		ns
t _{AA}		3.2		3.8		5.1	ns
t _{WP}	2.5		2.9		3.9		ns
t _{RP}	0.9		1.1		1.5		ns
t _{WDSU}	0.9		1.0		1.4		ns
t _{WDH}	0.1		0.1		0.2		ns
t _{WASU}	1.7		2.0		2.7		ns
t _{WAH}	1.8		2.1		2.9		ns
t _{RASU}	3.1		3.7		5.0		ns
t _{RAH}	0.2		0.2		0.3		ns
t _{WO}		2.5		2.9		3.9	ns
t _{DD}		2.5		2.9		3.9	ns
t _{EABOUT}		0.5		0.6		0.8	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.5		2.9		3.9		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{CGENR}		0.1		0.1		0.2	ns
t _{CASC}		0.6		0.9		1.2	ns
t _C		0.8		1.0		1.4	ns
t _{CO}		0.6		0.8		1.1	ns
t _{COMB}		0.4		0.5		0.7	ns
t _{SU}	0.4		0.6		0.7		ns
t _H	0.5		0.7		0.9		ns
t _{PRE}		0.8		1.0		1.4	ns
t _{CLR}		0.8		1.0		1.4	ns
t _{CH}	1.5		2.0		2.5		ns
t _{CL}	1.5		2.0		2.5		ns

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Мах	Min	Max	Min	Max	
t _{IOD}		1.7		2.0		2.6	ns
t _{IOC}		0.0		0.0		0.0	ns
t _{IOCO}		1.4		1.6		2.1	ns
t _{IOCOMB}		0.5		0.7		0.9	ns
t _{IOSU}	0.8		1.0		1.3		ns
t _{IOH}	0.7		0.9		1.2		ns
t _{IOCLR}		0.5		0.7		0.9	ns
t _{OD1}		3.0		4.2		5.6	ns
t _{OD2}		3.0		4.2		5.6	ns
t _{OD3}		4.0		5.5		7.3	ns
t _{XZ}		3.5		4.6		6.1	ns
t _{ZX1}		3.5		4.6		6.1	ns
t _{ZX2}		3.5		4.6		6.1	ns
t _{ZX3}		4.5		5.9		7.8	ns
t _{INREG}		2.0		2.6		3.5	ns
t _{IOFD}		0.5		0.8		1.2	ns
t _{INCOMB}		0.5		0.8		1.2	ns

Г

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABWCOMB}	5.9		7.7		10.3		ns
t _{EABWCREG}	5.4		7.0		9.4		ns
t _{EABDD}		3.4		4.5		5.9	ns
t _{EABDATACO}		0.5		0.7		0.8	ns
t _{EABDATASU}	0.8		1.0		1.4		ns
t _{EABDATAH}	0.1		0.1		0.2		ns
t _{EABWESU}	1.1		1.4		1.9		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.0		1.3		1.7		ns
t _{EABWDH}	0.2		0.2		0.3		ns
t _{EABWASU}	4.1		5.2		6.8		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		3.4		4.5		5.9	ns

 Table 49. EPF10K100E Device Interconnect Timing Microparameters
 Note (1)

			-				
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Мах	
t _{DIN2IOE}		3.1		3.6		4.4	ns
t _{DIN2LE}		0.3		0.4		0.5	ns
t _{DIN2DATA}		1.6		1.8		2.0	ns
t _{DCLK2IOE}		0.8		1.1		1.4	ns
t _{DCLK2LE}		0.3		0.4		0.5	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.5		2.5		3.4	ns
t _{SAMECOLUMN}		0.4		1.0		1.6	ns
t _{DIFFROW}		1.9		3.5		5.0	ns
t _{TWOROWS}		3.4		6.0		8.4	ns
t _{LEPERIPH}		4.3		5.4		6.5	ns
t _{LABCARRY}		0.5		0.7		0.9	ns
t _{LABCASC}		0.8		1.0		1.4	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		2.0		2.4		3.2	ns
t _{EABDATA1}		0.4		0.5		0.6	ns
t _{EABWE1}		1.4		1.7		2.3	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0		0		0	ns
t _{EABRE2}		0.4		0.5		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		0.9		1.2	ns
t _{EABBYPASS}		0.0		0.1		0.1	ns
t _{EABSU}	0.9		1.1		1.5		ns
t _{EABH}	0.4		0.5		0.6		ns
t _{EABCLR}	0.8		0.9		1.2		ns
t _{AA}		3.1		3.7		4.9	ns
t _{WP}	3.3		4.0		5.3		ns
t _{RP}	0.9		1.1		1.5		ns
t _{WDSU}	0.9		1.1		1.5		ns
t _{WDH}	0.1		0.1		0.1		ns
t _{WASU}	1.3		1.6		2.1		ns
t _{WAH}	2.1		2.5		3.3		ns
t _{RASU}	2.2		2.6		3.5		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{WO}		2.0		2.4		3.2	ns
t _{DD}		2.0		2.4		3.2	ns
t _{EABOUT}		0.0		0.1		0.1	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	3.3		4.0		5.3		ns

Table 62. EPF10K200E Device EAB Internal Timing Macroparameters (Part 1 of 2)

Note	(1)
	(1)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.1		6.4		8.4	ns
t _{EABRCOMB}	5.1		6.4		8.4		ns
t _{EABRCREG}	4.8		5.7		7.6		ns
t _{EABWP}	3.3		4.0		5.3		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Мах	
t _{EABWCOMB}	6.7		8.1		10.7		ns
t _{EABWCREG}	6.6		8.0		10.6		ns
t _{EABDD}		4.0		5.1		6.7	ns
t _{EABDATACO}		0.8		1.0		1.3	ns
t _{EABDATASU}	1.3		1.6		2.1		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	0.9		1.1		1.5		ns
t _{EABWEH}	0.4		0.5		0.6		ns
t _{EABWDSU}	1.5		1.8		2.4		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.0		3.6		4.7		ns
t _{EABWAH}	0.4		0.5		0.7		ns
t _{EABWO}		3.4		4.4		5.8	ns

 Table 63. EPF10K200E Device Interconnect Timing Microparameters
 Note (1)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		4.2		4.6		5.7	ns
t _{DIN2LE}		1.7		1.7		2.0	ns
t _{DIN2DATA}		1.9		2.1		3.0	ns
t _{DCLK2IOE}		2.5		2.9		4.0	ns
t _{DCLK2LE}		1.7		1.7		2.0	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		2.3		2.6		3.6	ns
t _{SAMECOLUMN}		2.5		2.7		4.1	ns
t _{DIFFROW}		4.8		5.3		7.7	ns
t _{TWOROWS}		7.1		7.9		11.3	ns
t _{LEPERIPH}		7.0		7.6		9.0	ns
t _{LABCARRY}		0.1		0.1		0.2	ns
t _{LABCASC}		0.9		1.0		1.4	ns

Power Consumption	The supply power (P) for FLEX 10KE devices can be calculated with the following equation:						
oonoumption	$P = P_{INT} + P_{IO} = (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO}$						
	 The I_{CCACTIVE} value depends on the switching frequency and the application logic. This value is calculated based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in <i>Application Note 74 (Evaluating Power for Altera Devices)</i>. Compared to the rest of the device, the embedded array consumes a negligible amount of power. Therefore, the embedded array can be ignored when calculating supply current. 						
	The $I_{CCACTIVE}$ value can be calculated with the following equation:						
	$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$						
	Where:						
	 f_{MAX} = Maximum operating frequency in MHz N = Total number of LEs used in the device tog_{LC} = Average percent of LEs toggling at each clock (typically 12.5%) K = Constant 						
	Table 80 provides the constant (K) value	S for FLEX TUKE devices.					
	Table 80. FLEX 10KE K Constant Values						
	Device	K Value					
	EPF10K30E	4.5					
	EPF10K50E 4.8						
	EPF10K50S 4.5						
	EPF10K100E	4.5					
	EPF10K130E	4.6					
	EPF10K200E	4.8					

EPF10K200S

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

4.6

During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

SRAM configuration elements allow FLEX 10KE devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 85 ms and can be used to reconfigure an entire system dynamically. In-field upgrades can be performed by distributing new configuration files.

Before and during configuration, all I/O pins (except dedicated inputs, clock, or configuration pins) are pulled high by a weak pull-up resistor.

Programming Files

Despite being function- and pin-compatible, FLEX 10KE devices are not programming- or configuration file-compatible with FLEX 10K or FLEX 10KA devices. A design therefore must be recompiled before it is transferred from a FLEX 10K or FLEX 10KA device to an equivalent FLEX 10KE device. This recompilation should be performed both to create a new programming or configuration file and to check design timing in FLEX 10KE devices, which has different timing characteristics than FLEX 10K or FLEX 10KA devices.

FLEX 10KE devices are generally pin-compatible with equivalent FLEX 10KA devices. In some cases, FLEX 10KE devices have fewer I/O pins than the equivalent FLEX 10KA devices. Table 81 shows which FLEX 10KE devices have fewer I/O pins than equivalent FLEX 10KA devices. However, power, ground, JTAG, and configuration pins are the same on FLEX 10KA and FLEX 10KE devices, enabling migration from a FLEX 10KA design to a FLEX 10KE design.