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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.
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Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Similar to the FLEX 10KE architecture, embedded gate arrays are the 
fastest-growing segment of the gate array market. As with standard gate 
arrays, embedded gate arrays implement general logic in a conventional 
“sea-of-gates” architecture. Additionally, embedded gate arrays have 
dedicated die areas for implementing large, specialized functions. By 
embedding functions in silicon, embedded gate arrays reduce die area 
and increase speed when compared to standard gate arrays. While 
embedded megafunctions typically cannot be customized, FLEX 10KE 
devices are programmable, providing the designer with full control over 
embedded megafunctions and general logic, while facilitating iterative 
design changes during debugging.

Each FLEX 10KE device contains an embedded array and a logic array. 
The embedded array is used to implement a variety of memory functions 
or complex logic functions, such as digital signal processing (DSP), wide 
data-path manipulation, microcontroller applications, and data-
transformation functions. The logic array performs the same function as 
the sea-of-gates in the gate array and is used to implement general logic 
such as counters, adders, state machines, and multiplexers. The 
combination of embedded and logic arrays provides the high 
performance and high density of embedded gate arrays, enabling 
designers to implement an entire system on a single device.

FLEX 10KE devices are configured at system power-up with data stored 
in an Altera serial configuration device or provided by a system 
controller. Altera offers the EPC1, EPC2, and EPC16 configuration 
devices, which configure FLEX 10KE devices via a serial data stream. 
Configuration data can also be downloaded from system RAM or via the 
Altera BitBlasterTM, ByteBlasterMVTM, or MasterBlaster download cables. 
After a FLEX 10KE device has been configured, it can be reconfigured 
in-circuit by resetting the device and loading new data. Because 
reconfiguration requires less than 85 ms, real-time changes can be made 
during system operation.

FLEX 10KE devices contain an interface that permits microprocessors to 
configure FLEX 10KE devices serially or in-parallel, and synchronously or 
asynchronously. The interface also enables microprocessors to treat a 
FLEX 10KE device as memory and configure it by writing to a virtual 
memory location, making it easy to reconfigure the device.
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When used as RAM, each EAB can be configured in any of the following 
sizes: 256 × 16, 512 × 8, 1,024 × 4, or 2,048 × 2 (see Figure 5). 

Figure 5. FLEX 10KE EAB Memory Configurations

Larger blocks of RAM are created by combining multiple EABs. For 
example, two 256 × 16 RAM blocks can be combined to form a 256 × 32  
block; two 512 × 8 RAM blocks can be combined to form a 512 × 16 block 
(see Figure 6).

Figure 6. Examples of Combining FLEX 10KE EABs

If necessary, all EABs in a device can be cascaded to form a single RAM 
block. EABs can be cascaded to form RAM blocks of up to 2,048 words 
without impacting timing. The Altera software automatically combines 
EABs to meet a designer’s RAM specifications.
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Figure 11 shows the LE operating modes.

Figure 11. FLEX 10KE LE Operating Modes
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a four-input LUT. The Altera Compiler automatically selects 
the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT 
output can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect routing 
structure at the same time. 

The LUT and the register in the LE can be used independently (register 
packing). To support register packing, the LE has two outputs; one drives 
the local interconnect, and the other drives the FastTrack Interconnect 
routing structure. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a three-input function can be computed in the LUT, and 
a fourth independent signal can be registered. Alternatively, a four-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect routing structure while the LUT drives 
the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a three-input function; the other generates a carry output. As 
shown in Figure 11 on page 22, the first LUT uses the carry-in signal and 
two data inputs from the LAB local interconnect to generate a 
combinatorial or registered output. For example, in an adder, this output 
is the sum of three signals: a, b, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
Use 2 three-input LUTs: one generates the counter data, and the other 
generates the fast carry bit. A 2-to-1 multiplexer provides synchronous 
loading. Data can also be loaded asynchronously with the clear and preset 
register control signals without using the LUT resources.
Altera Corporation 23 
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Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but 
supports a synchronous clear instead of the up/down control. The clear 
function is substituted for the cascade-in signal in the up/down counter 
mode. Use 2 three-input LUTs: one generates the counter data, and the 
other generates the fast carry bit. Synchronous loading is provided by a 
2-to-1 multiplexer. The output of this multiplexer is AND ed with a 
synchronous clear signal. 

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer. 

Clear & Preset Logic Control

Logic for the programmable register’s clear and preset functions is 
controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The 
clear and preset control structure of the LE asynchronously loads signals 
into a register. Either LABCTRL1 or LABCTRL2 can control the 
asynchronous clear. Alternatively, the register can be set up so that 
LABCTRL1 implements an asynchronous load. The data to be loaded is 
driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the 
register.

During compilation, the Altera Compiler automatically selects the best 
control signal implementation. Because the clear and preset functions are 
active-low, the Compiler automatically assigns a logic high to an unused 
clear or preset. 

The clear and preset logic is implemented in one of the following six 
modes chosen during design entry: 

■ Asynchronous clear
■ Asynchronous preset
■ Asynchronous clear and preset
■ Asynchronous load with clear
■ Asynchronous load with preset
■ Asynchronous load without clear or preset
24 Altera Corporation
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In addition to the six clear and preset modes, FLEX 10KE devices provide 
a chip-wide reset pin that can reset all registers in the device. Use of this 
feature is set during design entry. In any of the clear and preset modes, the 
chip-wide reset overrides all other signals. Registers with asynchronous 
presets may be preset when the chip-wide reset is asserted. Inversion can 
be used to implement the asynchronous preset. Figure 12 shows examples 
of how to setup the preset and clear inputs for the desired functionality.

Figure 12. FLEX 10KE LE Clear & Preset Modes
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FastTrack Interconnect Routing Structure

In the FLEX 10KE architecture, connections between LEs, EABs, and 
device I/O pins are provided by the FastTrack Interconnect routing 
structure, which is a series of continuous horizontal and vertical routing 
channels that traverses the device. This global routing structure provides 
predictable performance, even in complex designs. In contrast, the 
segmented routing in FPGAs requires switch matrices to connect a 
variable number of routing paths, increasing the delays between logic 
resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column 
interconnect channels that span the entire device. Each row of LABs is 
served by a dedicated row interconnect. The row interconnect can drive 
I/O pins and feed other LABs in the row. The column interconnect routes 
signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row 
signal is buffered at every LAB or EAB to reduce the effect of fan-out on 
delay. A row channel can be driven by an LE or by one of three column 
channels. These four signals feed dual 4-to-1 multiplexers that connect to 
two specific row channels. These multiplexers, which are connected to 
each LE, allow column channels to drive row channels even when all eight 
LEs in a LAB drive the row interconnect. 

Each column of LABs or EABs is served by a dedicated column 
interconnect. The column interconnect that serves the EABs has twice as 
many channels as other column interconnects. The column interconnect 
can then drive I/O pins or another row’s interconnect to route the signals 
to other LABs or EABs in the device. A signal from the column 
interconnect, which can be either the output of a LE or an input from an 
I/O pin, must be routed to the row interconnect before it can enter a LAB 
or EAB. Each row channel that is driven by an IOE or EAB can drive one 
specific column channel.

Access to row and column channels can be switched between LEs in 
adjacent pairs of LABs. For example, a LE in one LAB can drive the row 
and column channels normally driven by a particular LE in the adjacent 
LAB in the same row, and vice versa. This flexibility enables routing 
resources to be used more efficiently (see Figure 13).
Altera Corporation 27 
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SameFrame 
Pin-Outs

FLEX 10KE devices support the SameFrame pin-out feature for 
FineLine BGA packages. The SameFrame pin-out feature is the 
arrangement of balls on FineLine BGA packages such that the lower-ball-
count packages form a subset of the higher-ball-count packages. 
SameFrame pin-outs provide the flexibility to migrate not only from 
device to device within the same package, but also from one package to 
another. A given printed circuit board (PCB) layout can support multiple 
device density/package combinations. For example, a single board layout 
can support a range of devices from an EPF10K30E device in a 256-pin 
FineLine BGA package to an EPF10K200S device in a 672-pin 
FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame 
pin-out devices. Devices can be defined for present and future use. The 
Altera software generates pin-outs describing how to lay out a board to 
take advantage of this migration (see Figure 18).

Figure 18. SameFrame Pin-Out Example
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Notes to tables:
(1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the 

input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. 
The fCLKDEV parameter specifies how much the incoming clock can differ from the specified frequency during 
device operation. Simulation does not reflect this parameter.

(2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
(3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If 

the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during 
configuration because the tLOCK value is less than the time required for configuration.

(4) The tJITTER specification is measured under long-term observation. The maximum value for tJITTER is 200 ps if 
tINCLKSTB is lower than 50 ps.

I/O 
Configuration

This section discusses the peripheral component interconnect (PCI)
pull-up clamping diode option, slew-rate control, open-drain output 
option, and MultiVolt I/O interface for FLEX 10KE devices. The PCI 
pull-up clamping diode, slew-rate control, and open-drain output options 
are controlled pin-by-pin via Altera software logic options. The MultiVolt 
I/O interface is controlled by connecting VCCIO to a different voltage than 
VCCINT. Its effect can be simulated in the Altera software via the Global 
Project Device Options dialog box (Assign menu).

Table 13. ClockLock & ClockBoost Parameters for -2 Speed-Grade Devices

Symbol Parameter Condition Min Typ Max Unit
tR Input rise time 5 ns

tF Input fall time 5 ns

t INDUTY Input duty cycle 40 60 %

fCLK1 Input clock frequency (ClockBoost 

clock multiplication factor equals 1)

25 75 MHz

fCLK2 Input clock frequency (ClockBoost 

clock multiplication factor equals 2)

16 37.5 MHz

fCLKDEV Input deviation from user 

specification in the MAX+PLUS II 

software (1)

25,000 (2) PPM

t INCLKSTB Input clock stability (measured 

between adjacent clocks)

100 ps

tLOCK Time required for ClockLock or 

ClockBoost to acquire lock (3)
10 µs

tJITTER Jitter on ClockLock or ClockBoost-

generated clock (4)
t INCLKSTB < 100 250 ps

t INCLKSTB < 50 200 (4) ps

tOUTDUTY Duty cycle for ClockLock or 
ClockBoost-generated clock

40 50 60 %
Altera Corporation 41 
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PCI Pull-Up Clamping Diode Option

FLEX 10KE devices have a pull-up clamping diode on every I/O, 
dedicated input, and dedicated clock pin. PCI clamping diodes clamp the 
signal to the VCCIO value and are required for 3.3-V PCI compliance. 
Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When VCCIO is 
3.3 V, a pin that has the clamping diode option turned on can be driven by 
a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When VCCIO is 2.5 V, a pin 
that has the clamping diode option turned on can be driven by a 2.5-V 
signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can 
be activated for a subset of pins, which would allow a device to bridge 
between a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can 
be configured for low-noise or high-speed performance. A slower slew 
rate reduces system noise and adds a maximum delay of 4.3 ns. The fast 
slew rate should be used for speed-critical outputs in systems that are 
adequately protected against noise. Designers can specify the slew rate 
pin-by-pin or assign a default slew rate to all pins on a device-wide basis. 
The slow slew rate setting affects the falling edge of the output.

Open-Drain Output Option

FLEX 10KE devices provide an optional open-drain output (electrically 
equivalent to open-collector output) for each I/O pin. This open-drain 
output enables the device to provide system-level control signals (e.g., 
interrupt and write enable signals) that can be asserted by any of several 
devices. It can also provide an additional wired-OR plane. 

MultiVolt I/O Interface 

The FLEX 10KE device architecture supports the MultiVolt I/O interface 
feature, which allows FLEX 10KE devices in all packages to interface with 
systems of differing supply voltages. These devices have one set of VCC 
pins for internal operation and input buffers (VCCINT), and another set for 
I/O output drivers (VCCIO). 
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents 

less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are 

powered.
(6) Typical values are for TA = 25° C, VCCINT = 2.5 V, and VCCIO = 2.5 V or 3.3 V.
(7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21.
(8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS 

signals. Additionally, the input buffers are 3.3-V PCI compliant when VCCIO and VCCINT meet the relationship shown 
in Figure 22.

(9) The IOH parameter refers to high-level TTL, PCI, or CMOS output current.
(10) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(11) This value is specified for normal device operation. The value may vary during power-up.
(12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial 

temperature devices.
(13) Pin pull-up resistance values will be lower if the pin is driven higher than VCCIO by an external source.
(14) Capacitance is sample-tested only.

Table 23. FLEX 10KE Device Capacitance Note (14)

Symbol Parameter Conditions Min Max Unit

CIN Input capacitance VIN = 0 V, f = 1.0 MHz 10 pF

CINCLK Input capacitance on 
dedicated clock pin

VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 10 pF
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Figure 26. FLEX 10KE Device IOE Timing Model

Figure 27. FLEX 10KE Device EAB Timing Model
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tCLR LE register clear delay

tCH Minimum clock high time from clock pin

tCL Minimum clock low time from clock pin

Table 24. LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Parameter Condition

Table 25. IOE Timing Microparameters Note (1)

Symbol Parameter Conditions

tIOD IOE data delay

tIOC IOE register control signal delay

tIOCO IOE register clock-to-output delay

tIOCOMB IOE combinatorial delay

tIOSU IOE register setup time for data and enable signals before clock; IOE register 
recovery time after asynchronous clear

tIOH IOE register hold time for data and enable signals after clock

tIOCLR IOE register clear time

tOD1 Output buffer and pad delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tOD2 Output buffer and pad delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tOD3 Output buffer and pad delay, slow slew rate = on C1 = 35 pF (4)

tXZ IOE output buffer disable delay

tZX1 IOE output buffer enable delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tZX2 IOE output buffer enable delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tZX3 IOE output buffer enable delay, slow slew rate = on C1 = 35 pF (4)

tINREG IOE input pad and buffer to IOE register delay

tIOFD IOE register feedback delay

tINCOMB IOE input pad and buffer to FastTrack Interconnect delay
Altera Corporation 57 
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Table 28. Interconnect Timing Microparameters Note (1)

Symbol Parameter Conditions

tDIN2IOE Delay from dedicated input pin to IOE control input (7)

tDIN2LE Delay from dedicated input pin to LE or EAB control input (7)

tDCLK2IOE Delay from dedicated clock pin to IOE clock (7)

tDCLK2LE Delay from dedicated clock pin to LE or EAB clock (7)

tDIN2DATA Delay from dedicated input or clock to LE or EAB data (7)

tSAMELAB Routing delay for an LE driving another LE in the same LAB

tSAMEROW Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the 
same row

(7)

tSAMECOLUMN Routing delay for an LE driving an IOE in the same column (7)

tDIFFROW Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different 
row

(7)

tTWOROWS Routing delay for a row IOE or EAB driving an LE or EAB in a different row (7)

tLEPERIPH Routing delay for an LE driving a control signal of an IOE via the peripheral 
control bus

(7)

tLABCARRY Routing delay for the carry-out signal of an LE driving the carry-in signal of a 
different LE in a different LAB

tLABCASC Routing delay for the cascade-out signal of an LE driving the cascade-in 
signal of a different LE in a different LAB

Table 29. External Timing Parameters

Symbol Parameter Conditions

tDRR Register-to-register delay via four LEs, three row interconnects, and four local 
interconnects

(8)

tINSU Setup time with global clock at IOE register (9)

tINH Hold time with global clock at IOE register (9)

tOUTCO Clock-to-output delay with global clock at IOE register (9)

tPCISU Setup time with global clock for registers used in PCI designs (9),(10)

tPCIH Hold time with global clock for registers used in PCI designs (9),(10)

tPCICO Clock-to-output delay with global clock for registers used in PCI designs (9),(10)
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tCGENR 0.1 0.1 0.2 ns

tCASC 0.6 0.8 1.0 ns

tC 0.0 0.0 0.0 ns

tCO 0.3 0.4 0.5 ns

tCOMB 0.4 0.4 0.6 ns

tSU 0.4 0.6 0.6 ns

tH 0.7 1.0 1.3 ns

tPRE 0.8 0.9 1.2 ns

tCLR 0.8 0.9 1.2 ns

tCH 2.0 2.5 2.5 ns

tCL 2.0 2.5 2.5 ns

Table 32. EPF10K30E Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tIOD 2.4 2.8 3.8 ns

tIOC 0.3 0.4 0.5 ns

tIOCO 1.0 1.1 1.6 ns

tIOCOMB 0.0 0.0 0.0 ns

tIOSU 1.2 1.4 1.9 ns

tIOH 0.3 0.4 0.5 ns

tIOCLR 1.0 1.1 1.6 ns

tOD1 1.9 2.3 3.0 ns

tOD2 1.4 1.8 2.5 ns

tOD3 4.4 5.2 7.0 ns

tXZ 2.7 3.1 4.3 ns

tZX1 2.7 3.1 4.3 ns

tZX2 2.2 2.6 3.8 ns

tZX3 5.2 6.0 8.3 ns

tINREG 3.4 4.1 5.5 ns

tIOFD 0.8 1.3 2.4 ns

tINCOMB 0.8 1.3 2.4 ns

Table 31. EPF10K30E Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Table 34. EPF10K30E Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 6.4 7.6 8.8 ns

tEABRCOMB 6.4 7.6 8.8 ns

tEABRCREG 4.4 5.1 6.0 ns

tEABWP 2.5 2.9 3.3 ns

tEABWCOMB 6.0 7.0 8.0 ns

tEABWCREG 6.8 7.8 9.0 ns

tEABDD 5.7 6.7 7.7 ns

tEABDATACO 0.8 0.9 1.1 ns

tEABDATASU 1.5 1.7 2.0 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 1.3 1.4 1.7 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.5 1.7 2.0 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.3 ns

tEABWAH 0.5 0.5 0.4 ns

tEABWO 5.1 6.0 6.8 ns
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Table 40. EPF10K50E Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.7 2.0 2.7 ns

tEABDATA1 0.6 0.7 0.9 ns

tEABWE1 1.1 1.3 1.8 ns

tEABWE2 0.4 0.4 0.6 ns

tEABRE1 0.8 0.9 1.2 ns

tEABRE2 0.4 0.4 0.6 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.3 0.5 ns

tEABBYPASS 0.5 0.6 0.8 ns

tEABSU 0.9 1.0 1.4 ns

tEABH 0.4 0.4 0.6 ns

tEABCLR 0.3 0.3 0.5 ns

tAA 3.2 3.8 5.1 ns

tWP 2.5 2.9 3.9 ns

tRP 0.9 1.1 1.5 ns

tWDSU 0.9 1.0 1.4 ns

tWDH 0.1 0.1 0.2 ns

tWASU 1.7 2.0 2.7 ns

tWAH 1.8 2.1 2.9 ns

tRASU 3.1 3.7 5.0 ns

tRAH 0.2 0.2 0.3 ns

tWO 2.5 2.9 3.9 ns

tDD 2.5 2.9 3.9 ns

tEABOUT 0.5 0.6 0.8 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.5 2.9 3.9 ns
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Table 41. EPF10K50E Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 6.4 7.6 10.2 ns

tEABRCOMB 6.4 7.6 10.2 ns

tEABRCREG 4.4 5.1 7.0 ns

tEABWP 2.5 2.9 3.9 ns

tEABWCOMB 6.0 7.0 9.5 ns

tEABWCREG 6.8 7.8 10.6 ns

tEABDD 5.7 6.7 9.0 ns

tEABDATACO 0.8 0.9 1.3 ns

tEABDATASU 1.5 1.7 2.3 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 1.3 1.4 2.0 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.5 1.7 2.3 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.8 ns

tEABWAH 0.5 0.5 0.8 ns

tEABWO 5.1 6.0 8.1 ns

Table 42. EPF10K50E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 3.5 4.3 5.6 ns

tDIN2LE 2.1 2.5 3.4 ns

tDIN2DATA 2.2 2.4 3.1 ns

tDCLK2IOE 2.9 3.5 4.7 ns

tDCLK2LE 2.1 2.5 3.4 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.1 1.1 1.5 ns

tSAMECOLUMN 0.8 1.0 1.3 ns

tDIFFROW 1.9 2.1 2.8 ns

tTWOROWS 3.0 3.2 4.3 ns

tLEPERIPH 3.1 3.3 3.7 ns

tLABCARRY 0.1 0.1 0.2 ns

tLABCASC 0.3 0.3 0.5 ns
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tEABWCOMB 6.7 8.1 10.7 ns

tEABWCREG 6.6 8.0 10.6 ns

tEABDD 4.0 5.1 6.7 ns

tEABDATACO 0.8 1.0 1.3 ns

tEABDATASU 1.3 1.6 2.1 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 0.9 1.1 1.5 ns

tEABWEH 0.4 0.5 0.6 ns

tEABWDSU 1.5 1.8 2.4 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.7 ns

tEABWAH 0.4 0.5 0.7 ns

tEABWO 3.4 4.4 5.8 ns

Table 63. EPF10K200E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 4.2 4.6 5.7 ns

tDIN2LE 1.7 1.7 2.0 ns

tDIN2DATA 1.9 2.1 3.0 ns

tDCLK2IOE 2.5 2.9 4.0 ns

tDCLK2LE 1.7 1.7 2.0 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 2.3 2.6 3.6 ns

tSAMECOLUMN 2.5 2.7 4.1 ns

tDIFFROW 4.8 5.3 7.7 ns

tTWOROWS 7.1 7.9 11.3 ns

tLEPERIPH 7.0 7.6 9.0 ns

tLABCARRY 0.1 0.1 0.2 ns

tLABCASC 0.9 1.0 1.4 ns

Table 62. EPF10K200E Device EAB Internal Timing Macroparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(3) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

tLABCASC 0.5 1.0 1.4 ns

Table 78. EPF10K200S External Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 9.0 12.0 16.0 ns

tINSU (2) 3.1 3.7 4.7 ns

tINH (2) 0.0 0.0 0.0 ns

tOUTCO (2) 2.0 3.7 2.0 4.4 2.0 6.3 ns

tINSU(3) 2.1 2.7 – ns

tINH (3) 0.0 0.0 – ns

tOUTCO(3) 0.5 2.7 0.5 3.4 – – ns

tPCISU 3.0 4.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 8.9 – – ns

Table 79. EPF10K200S External Bidirectional Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (2) 2.3 3.4 4.4 ns

tINHBIDIR (2) 0.0 0.0 0.0 ns

tINSUBIDIR (3) 3.3 4.4 – ns

tINHBIDIR (3) 0.0 0.0 – ns

tOUTCOBIDIR (2) 2.0 3.7 2.0 4.4 2.0 6.3 ns

tXZBIDIR (2) 6.9 7.6 9.2 ns

tZXBIDIR (2) 5.9 6.6 – ns

tOUTCOBIDIR (3) 0.5 2.7 0.5 3.4 – – ns

tXZBIDIR (3) 6.9 7.6 9.2 ns

tZXBIDIR (3) 5.9 6.6 – ns

Table 77. EPF10K200S Device Interconnect Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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