E·XFL

Altera - EPF10K50SBC356-1 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	360
Number of Logic Elements/Cells	2880
Total RAM Bits	40960
Number of I/O	220
Number of Gates	199000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	356-LBGA
Supplier Device Package	356-BGA (35x35)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf10k50sbc356-1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800
- Flexible package options
 - Available in a variety of packages with 144 to 672 pins, including the innovative FineLine BGA[™] packages (see Tables 3 and 4)
 - SameFrame[™] pin-out compatibility between FLEX 10KA and FLEX 10KE devices across a range of device densities and pin counts
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic

Table 3. FLEX 10KE Package Options & I/O Pin Count Notes (1), (2)									
Device	144-Pin TQFP	208-Pin PQFP	240-Pin PQFP RQFP	256-Pin FineLine BGA	356-Pin BGA	484-Pin FineLine BGA	599-Pin PGA	600-Pin BGA	672-Pin FineLine BGA
EPF10K30E	102	147		176		220			220 (3)
EPF10K50E	102	147	189	191		254			254 (3)
EPF10K50S	102	147	189	191	220	254			254 (3)
EPF10K100E		147	189	191	274	338			338 (3)
EPF10K130E			186		274	369		424	413
EPF10K200E							470	470	470
EPF10K200S			182		274	369	470	470	470

Notes:

- (1) FLEX 10KE device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), pin-grid array (PGA), and ball-grid array (BGA) packages.
- (2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When planning device migration, use the I/O pins that are common to all devices.
- (3) This option is supported with a 484-pin FineLine BGA package. By using SameFrame pin migration, all FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin, 484-pin, and 672-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration is set.

Table 5. FLEX TOKE Performance									
Application	Resource	es Used		Performance					
	LEs	EABs	-1 Speed Grade	-2 Speed Grade	-3 Speed Grade				
16-bit loadable counter	16	0	285	250	200	MHz			
16-bit accumulator	16	0	285	250	200	MHz			
16-to-1 multiplexer (1)	10	0	3.5	4.9	7.0	ns			
16-bit multiplier with 3-stage pipeline (2)	592	0	156	131	93	MHz			
256×16 RAM read cycle speed (2)	0	1	196	154	118	MHz			
256×16 RAM write cycle speed (2)	0	1	185	143	106	MHz			

Table 5. FLEX 10KE Performance

Notes:

(1) This application uses combinatorial inputs and outputs.

(2) This application uses registered inputs and outputs.

Table 6 shows FLEX 10KE performance for more complex designs. These designs are available as Altera MegaCore $^{\circ}$ functions.

Table 6. FLEX 10KE Performance for Complex Designs								
Application	LEs Used		Performance		Units			
		-1 Speed Grade	-2 Speed Grade	-3 Speed Grade				
8-bit, 16-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS			
8-bit, 512-point fast Fourier	1,854	23.4	28.7	38.9	µs (1)			
transform (FFT) function		113	92	68	MHz			
a16450 universal asynchronous receiver/transmitter (UART)	342	36	28	20.5	MHz			

Note:

(1) These values are for calculation time. Calculation time = number of clocks required / f_{max} . Number of clocks required = ceiling [log 2 (points)/2] × [points +14 + ceiling]

Similar to the FLEX 10KE architecture, embedded gate arrays are the fastest-growing segment of the gate array market. As with standard gate arrays, embedded gate arrays implement general logic in a conventional "sea-of-gates" architecture. Additionally, embedded gate arrays have dedicated die areas for implementing large, specialized functions. By embedding functions in silicon, embedded gate arrays reduce die area and increase speed when compared to standard gate arrays. While embedded megafunctions typically cannot be customized, FLEX 10KE devices are programmable, providing the designer with full control over embedded megafunctions and general logic, while facilitating iterative design changes during debugging.

Each FLEX 10KE device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and datatransformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device.

FLEX 10KE devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers the EPC1, EPC2, and EPC16 configuration devices, which configure FLEX 10KE devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera BitBlasterTM, ByteBlasterMVTM, or MasterBlaster download cables. After a FLEX 10KE device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 85 ms, real-time changes can be made during system operation.

FLEX 10KE devices contain an interface that permits microprocessors to configure FLEX 10KE devices serially or in-parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat a FLEX 10KE device as memory and configure it by writing to a virtual memory location, making it easy to reconfigure the device.

When used as RAM, each EAB can be configured in any of the following sizes: 256×16 , 512×8 , $1,024 \times 4$, or $2,048 \times 2$ (see Figure 5).

Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block; two 512×8 RAM blocks can be combined to form a 512×16 block (see Figure 6).

If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. The Altera software automatically combines EABs to meet a designer's RAM specifications.

EABs provide flexible options for driving and controlling clock signals. Different clocks and clock enables can be used for reading and writing to the EAB. Registers can be independently inserted on the data input, EAB output, write address, write enable signals, read address, and read enable signals. The global signals and the EAB local interconnect can drive write enable, read enable, and clock enable signals. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control write enable, read enable, clear, clock, and clock enable signals.

An EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs (see Figures 2 and 4). The column interconnect, which is adjacent to the EAB, has twice as many channels as other columns in the device.

Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the FLEX 10KE architecture, facilitating efficient routing with optimum device utilization and high performance (see Figure 7).

Figure 7. FLEX 10KE LAB

Notes:

- (1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26.
- (2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 34.

SameFrame Pin-Outs FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ballcount packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K30E device in a 256-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 18).

Printed Circuit Board Designed for 672-Pin FineLine BGA Package

 256-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements)
 672-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements)

Table 13. ClockLock & ClockBoost Parameters for -2 Speed-Grade Devices									
Symbol	Parameter	Max	Unit						
t _R	Input rise time				5	ns			
t _F	Input fall time				5	ns			
t _{INDUTY}	Input duty cycle		40		60	%			
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		75	MHz			
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		37.5	MHz			
f _{CLKDEV}	Input deviation from user specification in the MAX+PLUS II software (1)				25,000 (2)	PPM			
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps			
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs			
t _{JITTER}	Jitter on ClockLock or ClockBoost-	$t_{INCLKSTB} < 100$			250	ps			
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps			
toutduty	Duty cycle for ClockLock or ClockBoost-generated clock		40	50	60	%			

Notes to tables:

- (1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{ITTER} specification is measured under long-term observation. The maximum value for t_{ITTER} is 200 ps if t_{INCLKSTB} is lower than 50 ps.

I/O Configuration

This section discusses the peripheral component interconnect (PCI) pull-up clamping diode option, slew-rate control, open-drain output option, and MultiVolt I/O interface for FLEX 10KE devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera software logic options. The MultiVolt I/O interface is controlled by connecting V_{CCIO} to a different voltage than V_{CCINT} . Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu).

The VCCINT pins must always be connected to a 2.5-V power supply. With a 2.5-V V_{CCINT} level, input voltages are compatible with 2.5-V, 3.3-V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V_{CCIO} levels higher than 3.0 V achieve a faster timing delay of t_{OD2} instead of t_{OD1} .

Table 14. FLEX 10KE MultiVolt I/O Support							
V _{CCIO} (V)	Inp	out Signal	(V)	Out	out Signal	(V)	
	2.5 3.3 5.0 2.5 3.3 5.0						
2.5	~	✓(1)	✓ (1)	~			
3.3	\checkmark	\checkmark	✓ (1)	✓(2)	\checkmark	~	

Table 14 summarizes FLEX 10KE MultiVolt I/O support.

Notes:

(1) The PCI clamping diode must be disabled to drive an input with voltages higher than $V_{\rm CCIO}$.

(2) When V_{CCIO} = 3.3 V, a FLEX 10KE device can drive a 2.5-V device that has 3.3-V tolerant inputs.

Open-drain output pins on FLEX 10KE devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor.

Power Sequencing & Hot-Socketing

Because FLEX 10KE devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order.

Signals can be driven into FLEX 10KE devices before and during power up without damaging the device. Additionally, FLEX 10KE devices do not drive out during power up. Once operating conditions are reached, FLEX 10KE devices operate as specified by the user.

Generic Testing

Each FLEX 10KE device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for FLEX 10KE devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 21. FLEX 10KE AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V. devices or outputs.

Operating Conditions

Tables 19 through 23 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V FLEX 10KE devices.

Table 19. FLEX 10KE 2.5-V Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit				
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	3.6	V				
V _{CCIO}			-0.5	4.6	V				
VI	DC input voltage		-2.0	5.75	V				
IOUT	DC output current, per pin		-25	25	mA				
T _{STG}	Storage temperature	No bias	-65	150	°C				
T _{AMB}	Ambient temperature	Under bias	-65	135	°C				
TJ	Junction temperature	PQFP, TQFP, BGA, and FineLine BGA		135	°C				
		packages, under blas							
		Ceramic PGA packages, under bias		150	°C				

Table 20. 2.5-V EPF10K50E & EPF10K200E Device Recommended Operating Conditions								
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	2.30 (2.30)	2.70 (2.70)	V			
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V			
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.30 (2.30)	2.70 (2.70)	V			
VI	Input voltage	(5)	-0.5	5.75	V			
Vo	Output voltage		0	V _{CCIO}	V			
Τ _A	Ambient temperature	For commercial use	0	70	°C			
		For industrial use	-40	85	°C			
TJ	Operating temperature	For commercial use	0	85	°C			
		For industrial use	-40	100	°C			
t _R	Input rise time			40	ns			
t _F	Input fall time			40	ns			

Table 21. 2.5-V EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E & EPF10K200S Device Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	2.375 (2.375)	2.625 (2.625)	V
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V
VI	Input voltage	(5)	-0.5	5.75	V
Vo	Output voltage		0	V _{CCIO}	V
Τ _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
Τ _J	Operating temperature	For commercial use	0	85	°C
		For industrial use	-40	100	°C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

FLEX 10KE Embedded Programmable Logic Devices Data Sheet

Table 23. FLEX 10KE Device Capacitance Note (14)								
Symbol	Parameter	Conditions	Min	Max	Unit			
CIN	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF			
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF			
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF			

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V.
- (7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21.
 (8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS
- signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22.
- (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (11) This value is specified for normal device operation. The value may vary during power-up.
- (12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial temperature devices.
- (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source.
- (14) Capacitance is sample-tested only.

Figure 22 shows the required relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance.

Figure 23 shows the typical output drive characteristics of FLEX 10KE devices with 3.3-V and 2.5-V V_{CCIO}. The output driver is compliant to the 3.3-V *PCI Local Bus Specification*, *Revision 2.2* (when VCCIO pins are connected to 3.3 V). FLEX 10KE devices with a -1 speed grade also comply with the drive strength requirements of the *PCI Local Bus Specification*, *Revision 2.2* (when VCCINT pins are powered with a minimum supply of 2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices can be used in open 5.0-V PCI systems.

Timing simulation and delay prediction are available with the Altera Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis.

Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the FLEX 10KE device.

Figures 25 through 28 show the delays that correspond to various paths and functions within the LE, IOE, EAB, and bidirectional timing models.

Figure 26. FLEX 10KE Device IOE Timing Model

Figure 27. FLEX 10KE Device EAB Timing Model

Figures 29 and 30 show the asynchronous and synchronous timing waveforms, respectively, or the EAB macroparameters in Tables 26 and 27.

EAB Asynchronous Read WE _ a0 a2 Address a1 a3 – t_{EABAA}t_{EABRCCOMB} Data-Out d0 d3 d1 d2 **EAB Asynchronous Write** WE t_{EABWP} ► t_{EABWDH} t_{EABWDSU} Þ. din0 din1 Data-In t_{EABWASU} t_{EABWAH} t_{EABWCCOMB} Address a0 a1 a2 t_{EABDD} Data-Out din0 din1 dout2

Figure 29. EAB Asynchronous Timing Waveforms

Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Write (EAB Output Registers Used)

Tables 31 through 37 show EPF10K30E device internal and external timing parameters.

Table 31. EPF10K30E Device LE Timing Microparameters (Part 1 of 2) Note (1)								
Symbol	-1 Spee	ed Grade	-2 Spee	Speed Grade -3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max		
t _{LUT}		0.7		0.8		1.1	ns	
t _{CLUT}		0.5		0.6		0.8	ns	
t _{RLUT}		0.6		0.7		1.0	ns	
t _{PACKED}		0.3		0.4		0.5	ns	
t _{EN}		0.6		0.8		1.0	ns	
t _{CICO}		0.1		0.1		0.2	ns	
t _{CGEN}		0.4		0.5		0.7	ns	

FLEX 10KE Embedded Programmable Logic Devices Data Sheet

Table 34. EPF10K30E Device EAB Internal Timing Macroparameters Note (1)								
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Мах		
t _{EABAA}		6.4		7.6		8.8	ns	
t _{EABRCOMB}	6.4		7.6		8.8		ns	
t _{EABRCREG}	4.4		5.1		6.0		ns	
t _{EABWP}	2.5		2.9		3.3		ns	
t _{EABWCOMB}	6.0		7.0		8.0		ns	
t _{EABWCREG}	6.8		7.8		9.0		ns	
t _{EABDD}		5.7		6.7		7.7	ns	
t _{EABDATACO}		0.8		0.9		1.1	ns	
t _{EABDATASU}	1.5		1.7		2.0		ns	
t _{EABDATAH}	0.0		0.0		0.0		ns	
t _{EABWESU}	1.3		1.4		1.7		ns	
t _{EABWEH}	0.0		0.0		0.0		ns	
t _{EABWDSU}	1.5		1.7		2.0		ns	
t _{EABWDH}	0.0		0.0		0.0		ns	
t _{EABWASU}	3.0		3.6		4.3		ns	
t _{EABWAH}	0.5		0.5		0.4		ns	
t _{EABWO}		5.1		6.0		6.8	ns	

Table 48. EPF10K100E Device EAB Internal Timing Macroparameters (Part 2 of 2) Note (1)										
Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max				
t _{EABWCOMB}	5.9		7.7		10.3		ns			
t _{EABWCREG}	5.4		7.0		9.4		ns			
t _{EABDD}		3.4		4.5		5.9	ns			
t _{EABDATACO}		0.5		0.7		0.8	ns			
t _{EABDATASU}	0.8		1.0		1.4		ns			
t _{EABDATAH}	0.1		0.1		0.2		ns			
t _{EABWESU}	1.1		1.4		1.9		ns			
t _{EABWEH}	0.0		0.0		0.0		ns			
t _{EABWDSU}	1.0		1.3		1.7		ns			
t _{EABWDH}	0.2		0.2		0.3		ns			
t _{EABWASU}	4.1		5.2		6.8		ns			
t _{EABWAH}	0.0		0.0		0.0		ns			
t _{EABWO}		3.4		4.5		5.9	ns			

 Table 49. EPF10K100E Device Interconnect Timing Microparameters
 Note (1)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		3.1		3.6		4.4	ns
t _{DIN2LE}		0.3		0.4		0.5	ns
t _{DIN2DATA}		1.6		1.8		2.0	ns
t _{DCLK2IOE}		0.8		1.1		1.4	ns
t _{DCLK2LE}		0.3		0.4		0.5	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.5		2.5		3.4	ns
t _{SAMECOLUMN}		0.4		1.0		1.6	ns
t _{DIFFROW}		1.9		3.5		5.0	ns
t _{TWOROWS}		3.4		6.0		8.4	ns
t _{LEPERIPH}		4.3		5.4		6.5	ns
t _{LABCARRY}		0.5		0.7		0.9	ns
t _{LABCASC}		0.8		1.0		1.4	ns

To better reflect actual designs, the power model (and the constant K in the power calculation equations) for continuous interconnect FLEX devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results when compared to measured power consumption for actual designs in segmented FPGAs.

Figure 31 shows the relationship between the current and operating frequency of FLEX 10KE devices.

Figure 31. FLEX 10KE I_{CCACTIVE} vs. Operating Frequency (Part 1 of 2)