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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 10KE Embedded Programmable Logic Devices Data Sheet
■ Software design support and automatic place-and-route provided by 
Altera’s development systems for Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800

■ Flexible package options
– Available in a variety of packages with 144 to 672 pins, including 

the innovative FineLine BGATM packages (see Tables 3 and 4)
– SameFrameTM pin-out compatibility between FLEX 10KA and 

FLEX 10KE devices across a range of device densities and pin 
counts

■ Additional design entry and simulation support provided by EDIF 
2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), 
DesignWare components, Verilog HDL, VHDL, and other interfaces 
to popular EDA tools from manufacturers such as Cadence, 
Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, 
VeriBest, and Viewlogic 

Notes:
(1) FLEX 10KE device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat 

pack (RQFP), pin-grid array (PGA), and ball-grid array (BGA) packages.
(2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When 

planning device migration, use the I/O pins that are common to all devices. 
(3) This option is supported with a 484-pin FineLine BGA package. By using SameFrame pin migration, all 

FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin, 484-pin, and 
672-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration 
is set.

Table 3. FLEX 10KE Package Options & I/O Pin Count  Notes (1), (2)

Device 144-Pin 
TQFP

208-Pin 
PQFP

240-Pin
PQFP
RQFP

256-Pin
FineLine 

BGA

356-Pin 
BGA

484-Pin
FineLine 

BGA

599-Pin 
PGA

600-Pin 
BGA

672-Pin
FineLine 

BGA

EPF10K30E 102 147 176 220 220 (3)

EPF10K50E 102 147 189 191 254 254 (3)

EPF10K50S 102 147 189 191 220 254 254 (3)

EPF10K100E 147 189 191 274 338 338 (3)

EPF10K130E 186 274 369 424 413

EPF10K200E 470 470 470

EPF10K200S 182 274 369 470 470 470
Altera Corporation 3 
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Figure 7. FLEX 10KE LAB

Notes:
(1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the 

row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26.
(2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, 

EPF10K130E, EPF10K200E, and EPF10K200S devices have 34.
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Figure 9 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for an accumulator function. Another portion of the LUT and the carry 
chain logic generates the carry-out signal, which is routed directly to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it can be used as a general-purpose signal. 

Figure 9. FLEX 10KE Carry Chain Operation (n-Bit Full Adder)
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a four-input LUT. The Altera Compiler automatically selects 
the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT 
output can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect routing 
structure at the same time. 

The LUT and the register in the LE can be used independently (register 
packing). To support register packing, the LE has two outputs; one drives 
the local interconnect, and the other drives the FastTrack Interconnect 
routing structure. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a three-input function can be computed in the LUT, and 
a fourth independent signal can be registered. Alternatively, a four-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect routing structure while the LUT drives 
the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a three-input function; the other generates a carry output. As 
shown in Figure 11 on page 22, the first LUT uses the carry-in signal and 
two data inputs from the LAB local interconnect to generate a 
combinatorial or registered output. For example, in an adder, this output 
is the sum of three signals: a, b, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
Use 2 three-input LUTs: one generates the counter data, and the other 
generates the fast carry bit. A 2-to-1 multiplexer provides synchronous 
loading. Data can also be loaded asynchronously with the clear and preset 
register control signals without using the LUT resources.
Altera Corporation 23 
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FastTrack Interconnect Routing Structure

In the FLEX 10KE architecture, connections between LEs, EABs, and 
device I/O pins are provided by the FastTrack Interconnect routing 
structure, which is a series of continuous horizontal and vertical routing 
channels that traverses the device. This global routing structure provides 
predictable performance, even in complex designs. In contrast, the 
segmented routing in FPGAs requires switch matrices to connect a 
variable number of routing paths, increasing the delays between logic 
resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column 
interconnect channels that span the entire device. Each row of LABs is 
served by a dedicated row interconnect. The row interconnect can drive 
I/O pins and feed other LABs in the row. The column interconnect routes 
signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row 
signal is buffered at every LAB or EAB to reduce the effect of fan-out on 
delay. A row channel can be driven by an LE or by one of three column 
channels. These four signals feed dual 4-to-1 multiplexers that connect to 
two specific row channels. These multiplexers, which are connected to 
each LE, allow column channels to drive row channels even when all eight 
LEs in a LAB drive the row interconnect. 

Each column of LABs or EABs is served by a dedicated column 
interconnect. The column interconnect that serves the EABs has twice as 
many channels as other column interconnects. The column interconnect 
can then drive I/O pins or another row’s interconnect to route the signals 
to other LABs or EABs in the device. A signal from the column 
interconnect, which can be either the output of a LE or an input from an 
I/O pin, must be routed to the row interconnect before it can enter a LAB 
or EAB. Each row channel that is driven by an IOE or EAB can drive one 
specific column channel.

Access to row and column channels can be switched between LEs in 
adjacent pairs of LABs. For example, a LE in one LAB can drive the row 
and column channels normally driven by a particular LE in the adjacent 
LAB in the same row, and vice versa. This flexibility enables routing 
resources to be used more efficiently (see Figure 13).
Altera Corporation 27 
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For improved routing, the row interconnect consists of a combination of 
full-length and half-length channels. The full-length channels connect to 
all LABs in a row; the half-length channels connect to the LABs in half of 
the row. The EAB can be driven by the half-length channels in the left half 
of the row and by the full-length channels. The EAB drives out to the full-
length channels. In addition to providing a predictable, row-wide 
interconnect, this architecture provides increased routing resources. Two 
neighboring LABs can be connected using a half-row channel, thereby 
saving the other half of the channel for the other half of the row.

Table 7 summarizes the FastTrack Interconnect routing structure 
resources available in each FLEX 10KE device.

In addition to general-purpose I/O pins, FLEX 10KE devices have six 
dedicated input pins that provide low-skew signal distribution across the 
device. These six inputs can be used for global clock, clear, preset, and 
peripheral output enable and clock enable control signals. These signals 
are available as control signals for all LABs and IOEs in the device. The 
dedicated inputs can also be used as general-purpose data inputs because 
they can feed the local interconnect of each LAB in the device. 

Figure 14 shows the interconnection of adjacent LABs and EABs, with 
row, column, and local interconnects, as well as the associated cascade 
and carry chains. Each LAB is labeled according to its location: a letter 
represents the row and a number represents the column. For example, 
LAB B3 is in row B, column 3.

Table 7. FLEX 10KE FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per
Column

EPF10K30E 6 216 36 24

EPF10K50E
EPF10K50S

10 216 36 24

EPF10K100E 12 312 52 24

EPF10K130E 16 312 52 32

EPF10K200E
EPF10K200S

24 312 52 48
Altera Corporation 29 
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Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column 
channels. When an IOE is used as an output, the signal is driven by a 
multiplexer that selects a signal from the column channels. Two IOEs 
connect to each side of the column channels. Each IOE can be driven by 
column channels via a multiplexer. The set of column channels is different 
for each IOE (see Figure 17).

Figure 17. FLEX 10KE Column-to-IOE Connections   

Table 11 lists the FLEX 10KE column-to-IOE interconnect resources. 

Each IOE is driven by
a m-to-1 multiplexer

Each IOE can drive two
column channels.

Column
Interconnect
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The values for m and n are provided in Table 11.

Table 11. FLEX 10KE Column-to-IOE Interconnect Resources

Device Channels per Column (n) Column Channels per Pin (m)

EPF10K30E 24 16

EPF10K50E
EPF10K50S

24 16

EPF10K100E 24 16

EPF10K130E 32 24

EPF10K200E
EPF10K200S

48 40
36 Altera Corporation
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Tables 12 and 13 summarize the ClockLock and ClockBoost parameters 
for -1 and -2 speed-grade devices, respectively.

Table 12. ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices

Symbol Parameter Condition Min Typ Max Unit
tR Input rise time 5 ns

tF Input fall time 5 ns

t INDUTY Input duty cycle 40 60 %

fCLK1 Input clock frequency (ClockBoost 

clock multiplication factor equals 1)

25 180 MHz

fCLK2 Input clock frequency (ClockBoost 

clock multiplication factor equals 2)

16 90 MHz

fCLKDEV Input deviation from user 

specification in the MAX+PLUS II 

software (1)

25,000 (2) PPM

t INCLKSTB Input clock stability (measured 

between adjacent clocks)

100 ps

tLOCK Time required for ClockLock or 

ClockBoost to acquire lock (3)
10 µs

t JITTER Jitter on ClockLock or ClockBoost-

generated clock (4)
tINCLKSTB < 100 250 ps

t INCLKSTB < 50 200 (4) ps

tOUTDUTY Duty cycle for ClockLock or 

ClockBoost-generated clock

40 50 60 %
40 Altera Corporation
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Figure 25. FLEX 10KE Device LE Timing Model
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Table 27. EAB Timing Macroparameters  Note (1), (6)

Symbol Parameter Conditions

tEABAA EAB address access delay

tEABRCCOMB EAB asynchronous read cycle time

tEABRCREG EAB synchronous read cycle time

tEABWP EAB write pulse width

tEABWCCOMB EAB asynchronous write cycle time

tEABWCREG EAB synchronous write cycle time

tEABDD EAB data-in to data-out valid delay

tEABDATACO EAB clock-to-output delay when using output registers

tEABDATASU EAB data/address setup time before clock when using input register

tEABDATAH EAB data/address hold time after clock when using input register

tEABWESU EAB WE setup time before clock when using input register

tEABWEH EAB WE hold time after clock when using input register

tEABWDSU EAB data setup time before falling edge of write pulse when not using input 
registers

tEABWDH EAB data hold time after falling edge of write pulse when not using input 
registers

tEABWASU EAB address setup time before rising edge of write pulse when not using 
input registers

tEABWAH EAB address hold time after falling edge of write pulse when not using input 
registers

tEABWO EAB write enable to data output valid delay
Altera Corporation 59 
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Notes to tables:
(1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be 

measured explicitly.
(2) Operating conditions: VCCIO = 3.3 V ±10% for commercial or industrial use.
(3) Operating conditions: VCCIO = 2.5 V ±5% for commercial or industrial use in EPF10K30E, EPF10K50S, 

EPF10K100E, EPF10K130E, and EPF10K200S devices.
(4) Operating conditions: VCCIO = 3.3 V.
(5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. 
(6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; 

these parameters are calculated by summing selected microparameters. 
(7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing 

analysis are required to determine actual worst-case performance.
(8) Contact Altera Applications for test circuit specifications and test conditions.
(9) This timing parameter is sample-tested only.
(10) This parameter is measured with the measurement and test conditions, including load, specified in the PCI Local 

Bus Specification, revision 2.2.

Table 30. External Bidirectional Timing Parameters Note (9)

Symbol Parameter Conditions

tINSUBIDIR Setup time for bi-directional pins with global clock at same-row or same-
column LE register

tINHBIDIR Hold time for bidirectional pins with global clock at same-row or same-column 
LE register

tINH Hold time with global clock at IOE register

tOUTCOBIDIR Clock-to-output delay for bidirectional pins with global clock at IOE register C1 = 35 pF

tXZBIDIR Synchronous IOE output buffer disable delay C1 = 35 pF

tZXBIDIR Synchronous IOE output buffer enable delay, slow slew rate= off C1 = 35 pF
Altera Corporation 61 
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Figures 29 and 30 show the asynchronous and synchronous timing 
waveforms, respectively, or the EAB macroparameters in Tables 26 
and 27.

Figure 29. EAB Asynchronous Timing Waveforms
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Figure 30. EAB Synchronous Timing Waveforms

Tables 31 through 37 show EPF10K30E device internal and external 
timing parameters.
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Table 31. EPF10K30E Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.7 0.8 1.1 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.6 0.7 1.0 ns

tPACKED 0.3 0.4 0.5 ns

tEN 0.6 0.8 1.0 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.5 0.7 ns
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 38 through 44 show EPF10K50E device internal and external 
timing parameters.  

Table 37. EPF10K30E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (3) 2.8 3.9 5.2 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 3.8 4.9 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 4.9 2.0 5.9 2.0 7.6 ns

tXZBIDIR (3) 6.1 7.5 9.7 ns

tZXBIDIR (3) 6.1 7.5 9.7 ns

tOUTCOBIDIR (4)  0.5 3.9 0.5 4.9 – – ns

tXZBIDIR (4) 5.1  6.5 – ns

tZXBIDIR (4) 5.1  6.5 – ns

Table 38. EPF10K50E Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.6 0.9 1.3 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.7 0.8 1.1 ns

tPACKED 0.4 0.5 0.6 ns

tEN 0.6 0.7 0.9 ns

tCICO 0.2 0.2 0.3 ns

tCGEN 0.5 0.5 0.8 ns

tCGENR 0.2 0.2 0.3 ns

tCASC 0.8 1.0 1.4 ns

tC 0.5 0.6 0.8 ns

tCO 0.7 0.7 0.9 ns

tCOMB 0.5 0.6 0.8 ns

tSU 0.7 0.7 0.8 ns
68 Altera Corporation



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external 
timing parameters.  

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 8.5 10.0 13.5 ns

tINSU 2.7 3.2 4.3 ns

tINH 0.0 0.0 0.0 ns

tOUTCO 2.0 4.5 2.0 5.2 2.0 7.3 ns

tPCISU  3.0  4.2 - ns

tPCIH  0.0  0.0 - ns

tPCICO  2.0  6.0  2.0  7.7 -  - ns

Table 44. EPF10K50E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 2.7 3.2 4.3 ns

tINHBIDIR 0.0 0.0 0.0 ns

tOUTCOBIDIR 2.0 4.5 2.0 5.2 2.0 7.3 ns

tXZBIDIR 6.8 7.8 10.1 ns

tZXBIDIR  6.8  7.8 10.1 ns

Table 45. EPF10K100E Device LE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.7 1.0 1.5 ns

tCLUT 0.5 0.7 0.9 ns

tRLUT 0.6 0.8 1.1 ns

tPACKED 0.3 0.4 0.5 ns

tEN 0.2 0.3 0.3 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.5 0.7 ns
72 Altera Corporation
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tEABWCOMB 5.9 7.7 10.3 ns

tEABWCREG 5.4 7.0 9.4 ns

tEABDD 3.4 4.5 5.9 ns

tEABDATACO 0.5 0.7 0.8 ns

tEABDATASU 0.8 1.0 1.4 ns

tEABDATAH 0.1 0.1 0.2 ns

tEABWESU 1.1 1.4 1.9 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.0 1.3 1.7 ns

tEABWDH 0.2 0.2 0.3 ns

tEABWASU 4.1 5.2 6.8 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 3.4 4.5 5.9 ns

Table 49. EPF10K100E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 3.1 3.6 4.4 ns

tDIN2LE 0.3 0.4 0.5 ns

tDIN2DATA 1.6 1.8 2.0 ns

tDCLK2IOE 0.8 1.1 1.4 ns

tDCLK2LE 0.3 0.4 0.5 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.5 2.5 3.4 ns

tSAMECOLUMN 0.4 1.0 1.6 ns

tDIFFROW 1.9 3.5 5.0 ns

tTWOROWS 3.4 6.0 8.4 ns

tLEPERIPH 4.3 5.4 6.5 ns

tLABCARRY 0.5 0.7 0.9 ns

tLABCASC 0.8 1.0 1.4 ns

Table 48. EPF10K100E Device EAB Internal Timing Macroparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Table 76. EPF10K200S Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 3.9 6.4 8.4 ns

tEABRCOMB 3.9 6.4 8.4 ns

tEABRCREG 3.6 5.7 7.6 ns

tEABWP 2.1 4.0 5.3 ns

tEABWCOMB 4.8 8.1 10.7 ns

tEABWCREG 5.4 8.0 10.6 ns

tEABDD 3.8 5.1 6.7 ns

tEABDATACO 0.8 1.0 1.3 ns

tEABDATASU 1.1 1.6 2.1 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 0.7 1.1 1.5 ns

tEABWEH 0.4 0.5 0.6 ns

tEABWDSU 1.2 1.8 2.4 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 1.9 3.6 4.7 ns

tEABWAH 0.8 0.5 0.7 ns

tEABWO 3.1 4.4 5.8 ns

Table 77. EPF10K200S Device Interconnect Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 4.4 4.8 5.5 ns

tDIN2LE 0.6 0.6 0.9 ns

tDIN2DATA 1.8 2.1 2.8 ns

tDCLK2IOE 1.7 2.0 2.8 ns

tDCLK2LE 0.6 0.6 0.9 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 3.0 4.6 5.7 ns

tSAMECOLUMN 3.5 4.9 6.4 ns

tDIFFROW 6.5 9.5 12.1 ns

tTWOROWS 9.5 14.1 17.8 ns

tLEPERIPH 5.5 6.2 7.2 ns

tLABCARRY 0.3 0.1 0.2 ns
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Power 
Consumption

The supply power (P) for FLEX 10KE devices can be calculated with the 
following equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

The ICCACTIVE value depends on the switching frequency and the 
application logic. This value is calculated based on the amount of current 
that each LE typically consumes. The PIO value, which depends on the 
device output load characteristics and switching frequency, can be 
calculated using the guidelines given in Application Note 74 (Evaluating 
Power for Altera Devices).

Compared to the rest of the device, the embedded array consumes a 
negligible amount of power. Therefore, the embedded array can be 
ignored when calculating supply current.

The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K × fMAX × N × togLC × 

Where:

fMAX = Maximum operating frequency in MHz
N = Total number of LEs used in the device
togLC = Average percent of LEs toggling at each clock 

(typically 12.5%)
K = Constant

Table 80 provides the constant (K) values for FLEX 10KE devices.

This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions.

Table 80. FLEX 10KE K Constant Values

Device K Value

EPF10K30E 4.5

EPF10K50E 4.8

EPF10K50S 4.5

EPF10K100E 4.5

EPF10K130E 4.6

EPF10K200E 4.8

EPF10K200S 4.6

µA
MHz LE×
---------------------------
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Figure 31. FLEX 10KE ICCACTIVE vs. Operating Frequency (Part 2 of 2)

Configuration & 
Operation

The FLEX 10KE architecture supports several configuration schemes. This 
section summarizes the device operating modes and available device 
configuration schemes. 

Operating Modes

The FLEX 10KE architecture uses SRAM configuration elements that 
require configuration data to be loaded every time the circuit powers up. 
The process of physically loading the SRAM data into the device is called 
configuration. Before configuration, as VCC rises, the device initiates a 
Power-On Reset (POR). This POR event clears the device and prepares it 
for configuration. The FLEX 10KE POR time does not exceed 50 µs.

When configuring with a configuration device, refer to the respective 
configuration device data sheet for POR timing information.
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During initialization, which occurs immediately after configuration, the 
device resets registers, enables I/O pins, and begins to operate as a logic 
device. The I/O pins are tri-stated during power-up, and before and 
during configuration. Together, the configuration and initialization 
processes are called command mode; normal device operation is called user 
mode.

SRAM configuration elements allow FLEX 10KE devices to be 
reconfigured in-circuit by loading new configuration data into the device. 
Real-time reconfiguration is performed by forcing the device into 
command mode with a device pin, loading different configuration data, 
reinitializing the device, and resuming user-mode operation. The entire 
reconfiguration process requires less than 85 ms and can be used to 
reconfigure an entire system dynamically. In-field upgrades can be 
performed by distributing new configuration files.

Before and during configuration, all I/O pins (except dedicated inputs, 
clock, or configuration pins) are pulled high by a weak pull-up resistor.

Programming Files

Despite being function- and pin-compatible, FLEX 10KE devices are not 
programming- or configuration file-compatible with FLEX 10K or 
FLEX 10KA devices. A design therefore must be recompiled before it is 
transferred from a FLEX 10K or FLEX 10KA device to an equivalent 
FLEX 10KE device. This recompilation should be performed both to create 
a new programming or configuration file and to check design timing in 
FLEX 10KE devices, which has different timing characteristics than 
FLEX 10K or FLEX 10KA devices.

FLEX 10KE devices are generally pin-compatible with equivalent 
FLEX 10KA devices. In some cases, FLEX 10KE devices have fewer I/O 
pins than the equivalent FLEX 10KA devices. Table 81 shows which 
FLEX 10KE devices have fewer I/O pins than equivalent FLEX 10KA 
devices. However, power, ground, JTAG, and configuration pins are the 
same on FLEX 10KA and FLEX 10KE devices, enabling migration from a 
FLEX 10KA design to a FLEX 10KE design.
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