E·XFL

Intel - EPF10K50SFC256-3 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	360
Number of Logic Elements/Cells	2880
Total RAM Bits	40960
Number of I/O	191
Number of Gates	199000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k50sfc256-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. FLEX 10KE Device Features									
Feature	EPF10K100E (2)	EPF10K130E	EPF10K200E EPF10K200S						
Typical gates (1)	100,000	130,000	200,000						
Maximum system gates	257,000	342,000	513,000						
Logic elements (LEs)	4,992	6,656	9,984						
EABs	12	16	24						
Total RAM bits	49,152	65,536	98,304						
Maximum user I/O pins	338	413	470						

Note to tables:

- (1) The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum system gates.
- (2) New EPF10K100B designs should use EPF10K100E devices.

...and More

- Fabricated on an advanced process and operate with a 2.5-V internal supply voltage
- In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port
- ClockLock[™] and ClockBoost[™] options for reduced clock _ delay/skew and clock multiplication
- Built-in low-skew clock distribution trees
- 100% functional testing of all devices; test vectors or scan chains are not required
- Pull-up on I/O pins before and during configuration
- Flexible interconnect
 - FastTrack[®] Interconnect continuous routing structure for fast, predictable interconnect delays
 - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
 - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
 - Tri-state emulation that implements internal tri-state buses
 - Up to six global clock signals and four global clear signals
 - Powerful I/O pins
 - Individual tri-state output enable control for each pin
 - Open-drain option on each I/O pin
 - Programmable output slew-rate control to reduce switching noise
 - Clamp to V_{CCIO} user-selectable on a pin-by-pin basis
 - Supports hot-socketing

Table 4. FLEX 10KE Package Sizes										
Device	144- Pin TQFP	208-Pin PQFP	240-Pin PQFP RQFP	256-Pin FineLine BGA	356- Pin BGA	484-Pin FineLine BGA	599-Pin PGA	600- Pin BGA	672-Pin FineLine BGA	
Pitch (mm)	0.50	0.50	0.50	1.0	1.27	1.0	-	1.27	1.0	
Area (mm ²)	484	936	1,197	289	1,225	529	3,904	2,025	729	
$\begin{array}{l} \text{Length} \times \text{width} \\ \text{(mm} \times \text{mm)} \end{array}$	22 × 22	30.6 × 30.6	34.6×34.6	17 × 17	35×35	23 × 23	62.5 × 62.5	45×45	27 × 27	

General Description

Altera FLEX 10KE devices are enhanced versions of FLEX 10K devices. Based on reconfigurable CMOS SRAM elements, the FLEX architecture incorporates all features necessary to implement common gate array megafunctions. With up to 200,000 typical gates, FLEX 10KE devices provide the density, speed, and features to integrate entire systems, including multiple 32-bit buses, into a single device.

The ability to reconfigure FLEX 10KE devices enables 100% testing prior to shipment and allows the designer to focus on simulation and design verification. FLEX 10KE reconfigurability eliminates inventory management for gate array designs and generation of test vectors for fault coverage.

Table 5 shows FLEX 10KE performance for some common designs. All performance values were obtained with Synopsys DesignWare or LPM functions. Special design techniques are not required to implement the applications; the designer simply infers or instantiates a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file.

For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the fulllength channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row.

Table 7 summarizes the FastTrack Interconnect routing structure resources available in each FLEX 10KE device.

Table 7. FLEX 10KE FastTrack Interconnect Resources									
Device	Rows	Channels per Row	Columns	Channels per Column					
EPF10K30E	6	216	36	24					
EPF10K50E EPF10K50S	10	216	36	24					
EPF10K100E	12	312	52	24					
EPF10K130E	16	312	52	32					
EPF10K200E EPF10K200S	24	312	52	48					

In addition to general-purpose I/O pins, FLEX 10KE devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output enable and clock enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3. On all FLEX 10KE devices (except EPF10K50E and EPF10K200E devices), the input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. EPF10K50S and EPF10K200S devices also support this feature. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time or turn it off to minimize setup time. This feature is used to reduce setup time for complex pin-to-register paths (e.g., PCI designs).

Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across the device and provides up to 12 peripheral control signals that can be allocated as follows:

- Up to eight output enable signals
- Up to six clock enable signals
- Up to two clock signals
- Up to two clear signals

If more than six clock enable or eight output enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, a LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chipwide reset signal resets all IOE registers, overriding any other control signals.

When a dedicated clock pin drives IOE registers, it can be inverted for all IOEs in the device. All IOEs must use the same sense of the clock. For example, if any IOE uses the inverted clock, all IOEs must use the inverted clock and no IOE can use the non-inverted clock. However, LEs can still use the true or complement of the clock on a LAB-by-LAB basis.

The incoming signal may be inverted at the dedicated clock pin and will drive all IOEs. For the true and complement of a clock to be used to drive IOEs, drive it into both global clock pins. One global clock pin will supply the true, and the other will supply the complement.

When the true and complement of a dedicated input drives IOE clocks, two signals on the peripheral control bus are consumed, one for each sense of the clock.

Table 13. ClockLock & ClockBoost Parameters for -2 Speed-Grade Devices										
Symbol	Parameter	Condition	Min	Тур	Max	Unit				
t _R	Input rise time				5	ns				
t _F	Input fall time				5	ns				
t _{INDUTY}	Input duty cycle		40		60	%				
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		75	MHz				
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		37.5	MHz				
f _{CLKDEV}	Input deviation from user specification in the MAX+PLUS II software (1)				25,000 (2)	PPM				
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps				
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs				
t _{JITTER}	Jitter on ClockLock or ClockBoost-	$t_{INCLKSTB} < 100$			250	ps				
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps				
toutduty	Duty cycle for ClockLock or ClockBoost-generated clock		40	50	60	%				

Notes to tables:

- (1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{ITTER} specification is measured under long-term observation. The maximum value for t_{ITTER} is 200 ps if t_{INCLKSTB} is lower than 50 ps.

I/O Configuration

This section discusses the peripheral component interconnect (PCI) pull-up clamping diode option, slew-rate control, open-drain output option, and MultiVolt I/O interface for FLEX 10KE devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera software logic options. The MultiVolt I/O interface is controlled by connecting V_{CCIO} to a different voltage than V_{CCINT} . Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu).

Figure 20 shows the timing requirements for the JTAG signals.

Figure 20. FLEX 10KE JTAG Waveforms

Table 18 shows the timing parameters and values for FLEX 10KE devices.

Table 18. FLEX 10KE JTAG Timing Parameters & Values									
Symbol	Parameter	Min	Мах	Unit					
t _{JCP}	TCK clock period	100		ns					
t _{JCH}	TCK clock high time	50		ns					
t _{JCL}	TCK clock low time	50		ns					
t _{JPSU}	JTAG port setup time	20		ns					
t _{JPH}	JTAG port hold time	45		ns					
t _{JPCO}	JTAG port clock to output		25	ns					
t _{JPZX}	JTAG port high impedance to valid output		25	ns					
t _{JPXZ}	JTAG port valid output to high impedance		25	ns					
t _{JSSU}	Capture register setup time	20		ns					
t _{JSH}	Capture register hold time	45		ns					
t _{JSCO}	Update register clock to output		35	ns					
t _{JSZX}	Update register high impedance to valid output		35	ns					
t _{JSXZ}	Update register valid output to high impedance		35	ns					

Table 22	Table 22. FLEX 10KE 2.5-V Device DC Operating Conditions Notes (6), (7)									
Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
V _{IH}	High-level input voltage		$1.7, 0.5 \times V_{CCIO}$ (8)		5.75	V				
V _{IL}	Low-level input voltage		-0.5		0.8, 0.3 × V _{CCIO} <i>(8)</i>	V				
V _{OH}	3.3-V high-level TTL output voltage	I _{OH} = -8 mA DC, V _{CCIO} = 3.00 V <i>(</i> 9 <i>)</i>	2.4			V				
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V <i>(</i> 9 <i>)</i>	V _{CCIO} – 0.2			V				
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V} (9)$	$0.9 imes V_{CCIO}$			V				
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V <i>(</i> 9 <i>)</i>	2.1			V				
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V <i>(9)</i>	2.0			V				
		$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (9)$	1.7			V				
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (10)			0.45	V				
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (10)			0.2	V				
	3.3-V low-level PCI output voltage	I_{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (10)			$0.1 \times V_{CCIO}$	V				
	2.5-V low-level output voltage	$I_{OL} = 0.1 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (10)$			0.2	V				
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (10)			0.4	V				
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (10)			0.7	V				
I _I	Input pin leakage current	$V_{I} = V_{CCIOmax}$ to 0 V (11)	-10		10	μA				
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = V_{CCIOmax}$ to 0 V (11)	-10		10	μA				
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load, no toggling inputs		5		mA				
		V _I = ground, no load, no toggling inputs <i>(12)</i>		10		mA				
R _{CONF}	Value of I/O pin pull-	V _{CCIO} = 3.0 V (13)	20		50	k¾				
	up resistor before and during configuration	$V_{CCIO} = 2.3 V (13)$	30		80	k¾				

Table 26. EAB Timing Microparameters Note (1)								
Symbol	Parameter	Conditions						
t _{EABDATA1}	Data or address delay to EAB for combinatorial input							
t _{EABDATA2}	Data or address delay to EAB for registered input							
t _{EABWE1}	Write enable delay to EAB for combinatorial input							
t _{EABWE2}	Write enable delay to EAB for registered input							
t _{EABRE1}	Read enable delay to EAB for combinatorial input							
t _{EABRE2}	Read enable delay to EAB for registered input							
t _{EABCLK}	EAB register clock delay							
t _{EABCO}	EAB register clock-to-output delay							
t _{EABBYPASS}	Bypass register delay							
t _{EABSU}	EAB register setup time before clock							
t _{EABH}	EAB register hold time after clock							
t _{EABCLR}	EAB register asynchronous clear time to output delay							
t _{AA}	Address access delay (including the read enable to output delay)							
t _{WP}	Write pulse width							
t _{RP}	Read pulse width							
t _{WDSU}	Data setup time before falling edge of write pulse	(5)						
t _{WDH}	Data hold time after falling edge of write pulse	(5)						
t _{WASU}	Address setup time before rising edge of write pulse	(5)						
t _{WAH}	Address hold time after falling edge of write pulse	(5)						
t _{RASU}	Address setup time with respect to the falling edge of the read enable							
t _{RAH}	Address hold time with respect to the falling edge of the read enable							
t _{WO}	Write enable to data output valid delay							
t _{DD}	Data-in to data-out valid delay							
t _{EABOUT}	Data-out delay							
t _{EABCH}	Clock high time							
t _{EABCL}	Clock low time							

Table 27. EAE	3 Timing Macroparameters Note (1), (6)	
Symbol	Parameter	Conditions
t _{EABAA}	EAB address access delay	
t _{EABRCCOMB}	EAB asynchronous read cycle time	
t _{EABRCREG}	EAB synchronous read cycle time	
t _{EABWP}	EAB write pulse width	
t _{EABWCCOMB}	EAB asynchronous write cycle time	
t _{EABWCREG}	EAB synchronous write cycle time	
t _{EABDD}	EAB data-in to data-out valid delay	
t _{EABDATACO}	EAB clock-to-output delay when using output registers	
t _{EABDATASU}	EAB data/address setup time before clock when using input register	
t _{EABDATAH}	EAB data/address hold time after clock when using input register	
t _{EABWESU}	EAB WE setup time before clock when using input register	
t _{EABWEH}	EAB WE hold time after clock when using input register	
t _{EABWDSU}	EAB data setup time before falling edge of write pulse when not using input registers	
t _{EABWDH}	EAB data hold time after falling edge of write pulse when not using input registers	
t _{EABWASU}	EAB address setup time before rising edge of write pulse when not using	
	input registers	
t _{EABWAH}	EAB address hold time after falling edge of write pulse when not using input	
	registers	
t _{EABWO}	EAB write enable to data output valid delay	

Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Write (EAB Output Registers Used)

Tables 31 through 37 show EPF10K30E device internal and external timing parameters.

Table 31. EPF10K30E Device LE Timing Microparameters (Part 1 of 2) Note (1)									
Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Spee	d Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{LUT}		0.7		0.8		1.1	ns		
t _{CLUT}		0.5		0.6		0.8	ns		
t _{RLUT}		0.6		0.7		1.0	ns		
t _{PACKED}		0.3		0.4		0.5	ns		
t _{EN}		0.6		0.8		1.0	ns		
t _{CICO}		0.1		0.1		0.2	ns		
t _{CGEN}		0.4		0.5		0.7	ns		

Symbol	-1 Spee	ed Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.0		2.3	ns
t _{EABDATA1}		0.6		0.7		0.8	ns
t _{EABWE1}		1.1		1.3		1.4	ns
t _{EABWE2}		0.4		0.4		0.5	ns
t _{EABRE1}		0.8		0.9		1.0	ns
t _{EABRE2}		0.4		0.4		0.5	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.3		0.4	ns
t _{EABBYPASS}		0.5		0.6		0.7	ns
t _{EABSU}	0.9		1.0		1.2		ns
t _{EABH}	0.4		0.4		0.5		ns
t _{EABCLR}	0.3		0.3		0.3		ns
t _{AA}		3.2		3.8		4.4	ns
t _{WP}	2.5		2.9		3.3		ns
t _{RP}	0.9		1.1		1.2		ns
t _{WDSU}	0.9		1.0		1.1		ns
t _{WDH}	0.1		0.1		0.1		ns
t _{WASU}	1.7		2.0		2.3		ns
t _{WAH}	1.8		2.1		2.4		ns
t _{RASU}	3.1		3.7		4.2		ns
t _{RAH}	0.2		0.2		0.2		ns
t _{WO}		2.5		2.9		3.3	ns
t _{DD}		2.5		2.9		3.3	ns
t _{EABOUT}		0.5		0.6		0.7	ns
t _{EABCH}	1.5		2.0		2.3		ns
t _{EABCL}	2.5		2.9		3.3		ns

Table 34. EPF10K30E Device EAB Internal Timing Macroparameters Note (1)								
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit	
	Min	Max	Min	Max	Min	Мах		
t _{EABAA}		6.4		7.6		8.8	ns	
t _{EABRCOMB}	6.4		7.6		8.8		ns	
t _{EABRCREG}	4.4		5.1		6.0		ns	
t _{EABWP}	2.5		2.9		3.3		ns	
t _{EABWCOMB}	6.0		7.0		8.0		ns	
t _{EABWCREG}	6.8		7.8		9.0		ns	
t _{EABDD}		5.7		6.7		7.7	ns	
t _{EABDATACO}		0.8		0.9		1.1	ns	
t _{EABDATASU}	1.5		1.7		2.0		ns	
t _{EABDATAH}	0.0		0.0		0.0		ns	
t _{EABWESU}	1.3		1.4		1.7		ns	
t _{EABWEH}	0.0		0.0		0.0		ns	
t _{EABWDSU}	1.5		1.7		2.0		ns	
t _{EABWDH}	0.0		0.0		0.0		ns	
t _{EABWASU}	3.0		3.6		4.3		ns	
t _{EABWAH}	0.5		0.5		0.4		ns	
t _{EABWO}		5.1		6.0		6.8	ns	

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Мах	Min	Max	Min	Max			
t _{DRR}		8.5		10.0		13.5	ns		
t _{INSU}	2.7		3.2		4.3		ns		
t _{INH}	0.0		0.0		0.0		ns		
t _{оитсо}	2.0	4.5	2.0	5.2	2.0	7.3	ns		
t _{PCISU}	3.0		4.2		-		ns		
t _{PCIH}	0.0		0.0		-		ns		
t _{PCICO}	2.0	6.0	2.0	7.7	-	-	ns		

 Table 44. EPF10K50E External Bidirectional Timing Parameters
 Notes (1), (2)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{INSUBIDIR}	2.7		3.2		4.3		ns		
t _{INHBIDIR}	0.0		0.0		0.0		ns		
t _{OUTCOBIDIR}	2.0	4.5	2.0	5.2	2.0	7.3	ns		
t _{XZBIDIR}		6.8		7.8		10.1	ns		
tZXBIDIR		6.8		7.8		10.1	ns		

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external timing parameters.

Table 45. EPF10K100E Device LE Timing Microparameters Note (1)									
Symbol	Symbol -1 Speed		d Grade -2 Speed		-3 Spee	d Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{LUT}		0.7		1.0		1.5	ns		
t _{CLUT}		0.5		0.7		0.9	ns		
t _{RLUT}		0.6		0.8		1.1	ns		
t _{PACKED}		0.3		0.4		0.5	ns		
t _{EN}		0.2		0.3		0.3	ns		
t _{CICO}		0.1		0.1		0.2	ns		
t _{CGEN}		0.4		0.5		0.7	ns		

Table 47. EPF10K100E Device EAB Internal Microparameters Note (1)								
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit	
	Min	Max	Min	Max	Min	Мах		
t _{EABDATA1}		1.5		2.0		2.6	ns	
t _{EABDATA1}		0.0		0.0		0.0	ns	
t _{EABWE1}		1.5		2.0		2.6	ns	
t _{EABWE2}		0.3		0.4		0.5	ns	
t _{EABRE1}		0.3		0.4		0.5	ns	
t _{EABRE2}		0.0		0.0		0.0	ns	
t _{EABCLK}		0.0		0.0		0.0	ns	
t _{EABCO}		0.3		0.4		0.5	ns	
t _{EABBYPASS}		0.1		0.1		0.2	ns	
t _{EABSU}	0.8		1.0		1.4		ns	
t _{EABH}	0.1		0.1		0.2		ns	
t _{EABCLR}	0.3		0.4		0.5		ns	
t _{AA}		4.0		5.1		6.6	ns	
t _{WP}	2.7		3.5		4.7		ns	
t _{RP}	1.0		1.3		1.7		ns	
t _{WDSU}	1.0		1.3		1.7		ns	
t _{WDH}	0.2		0.2		0.3		ns	
t _{WASU}	1.6		2.1		2.8		ns	
t _{WAH}	1.6		2.1		2.8		ns	
t _{RASU}	3.0		3.9		5.2		ns	
t _{RAH}	0.1		0.1		0.2		ns	
t _{WO}		1.5		2.0		2.6	ns	
t _{DD}		1.5		2.0		2.6	ns	
t _{EABOUT}		0.2		0.3		0.3	ns	
t _{EABCH}	1.5		2.0		2.5		ns	
t _{EABCL}	2.7		3.5		4.7		ns	

Table 48. EPF10K100E Device EAB Internal Timing Macroparameters (Part 1 of

2)	Note	(1)
-/		· · /

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.9		7.6		9.9	ns
t _{EABRCOMB}	5.9		7.6		9.9		ns
t _{EABRCREG}	5.1		6.5		8.5		ns
t _{EABWP}	2.7		3.5		4.7		ns

Table 58. EPF10K130E External Bidirectional Timing Parameters Notes (1), (2)									
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		ed Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{INSUBIDIR} (3)	2.2		2.4		3.2		ns		
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns		
t _{INSUBIDIR} (4)	2.8		3.0		-		ns		
t _{INHBIDIR} (4)	0.0		0.0		-		ns		
toutcobidir (3)	2.0	5.0	2.0	7.0	2.0	9.2	ns		
t _{XZBIDIR} (3)		5.6		8.1		10.8	ns		
t _{ZXBIDIR} (3)		5.6		8.1		10.8	ns		
toutcobidir (4)	0.5	4.0	0.5	6.0	_	-	ns		
t _{XZBIDIR} (4)		4.6		7.1		-	ns		
t _{ZXBIDIR} (4)		4.6		7.1		-	ns		

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 59 through 65 show EPF10K200E device internal and external timing parameters.

Table 59. EPF10K200E Device LE Timing Microparameters (Part 1 of 2) Note (1)									
Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Spee	d Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{LUT}		0.7		0.8		1.2	ns		
t _{CLUT}		0.4		0.5		0.6	ns		
t _{RLUT}		0.6		0.7		0.9	ns		
t _{PACKED}		0.3		0.5		0.7	ns		
t _{EN}		0.4		0.5		0.6	ns		
t _{CICO}		0.2		0.2		0.3	ns		
t _{CGEN}		0.4		0.4		0.6	ns		
t _{CGENR}		0.2		0.2		0.3	ns		
t _{CASC}		0.7		0.8		1.2	ns		
t _C		0.5		0.6		0.8	ns		
t _{CO}		0.5		0.6		0.8	ns		
t _{COMB}		0.4		0.6		0.8	ns		
t _{SU}	0.4		0.6		0.7		ns		

Table 61. EPF10K200E Device EAB Internal Microparameters Note (1)									
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		ed Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{EABDATA1}		2.0		2.4		3.2	ns		
t _{EABDATA1}		0.4		0.5		0.6	ns		
t _{EABWE1}		1.4		1.7		2.3	ns		
t _{EABWE2}		0.0		0.0		0.0	ns		
t _{EABRE1}		0		0		0	ns		
t _{EABRE2}		0.4		0.5		0.6	ns		
t _{EABCLK}		0.0		0.0		0.0	ns		
t _{EABCO}		0.8		0.9		1.2	ns		
t _{EABBYPASS}		0.0		0.1		0.1	ns		
t _{EABSU}	0.9		1.1		1.5		ns		
t _{EABH}	0.4		0.5		0.6		ns		
t _{EABCLR}	0.8		0.9		1.2		ns		
t _{AA}		3.1		3.7		4.9	ns		
t _{WP}	3.3		4.0		5.3		ns		
t _{RP}	0.9		1.1		1.5		ns		
t _{WDSU}	0.9		1.1		1.5		ns		
t _{WDH}	0.1		0.1		0.1		ns		
t _{WASU}	1.3		1.6		2.1		ns		
t _{WAH}	2.1		2.5		3.3		ns		
t _{RASU}	2.2		2.6		3.5		ns		
t _{RAH}	0.1		0.1		0.2		ns		
t _{WO}		2.0		2.4		3.2	ns		
t _{DD}		2.0		2.4		3.2	ns		
t _{EABOUT}		0.0		0.1		0.1	ns		
t _{EABCH}	1.5		2.0		2.5		ns		
t _{EABCL}	3.3		4.0		5.3		ns		

Table 62. EPF10K200E Device EAB Internal Timing Macroparameters (Part 1 of 2)

Note (1)
---------	---

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.1		6.4		8.4	ns
t _{EABRCOMB}	5.1		6.4		8.4		ns
t _{EABRCREG}	4.8		5.7		7.6		ns
t _{EABWP}	3.3		4.0		5.3		ns

Table 64. EPF10K200E External Timing Parameters Notes (1), (2)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{DRR}		10.0		12.0		16.0	ns		
t _{INSU}	2.8		3.4		4.4		ns		
t _{INH}	0.0		0.0		0.0		ns		
t _{оитсо}	2.0	4.5	2.0	5.3	2.0	7.8	ns		
t _{PCISU}	3.0		6.2		-		ns		
t _{PCIH}	0.0		0.0		-		ns		
t _{PCICO}	2.0	6.0	2.0	8.9	-	-	ns		

Table 65. EPF10K200E External Bidirectional Timing Parameters Notes (1), (2)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	3.0		4.0		5.5		ns
t _{INHBIDIR}	0.0		0.0		0.0		ns
t _{OUTCOBIDIR}	2.0	4.5	2.0	5.3	2.0	7.8	ns
t _{XZBIDIR}		8.1		9.5		13.0	ns
tZXBIDIR		8.1		9.5		13.0	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

Tables 66 through 79 show EPF10K50S and EPF10K200S device external timing parameters.

Table 66. EPF10K50S Device LE Timing Microparameters (Part 1 of 2) Note (1)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{LUT}		0.6		0.8		1.1	ns	
t _{CLUT}		0.5		0.6		0.8	ns	
t _{RLUT}		0.6		0.7		0.9	ns	
t _{PACKED}		0.2		0.3		0.4	ns	
t _{EN}		0.6		0.7		0.9	ns	
t _{CICO}		0.1		0.1		0.1	ns	
t _{CGEN}		0.4		0.5		0.6	ns	

Table 69. EPF10K50S Device EAB Internal Timing Macroparameters Note (1)								
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		ed Grade	Unit	
	Min	Max	Min	Мах	Min	Max		
t _{EABAA}		3.7		5.2		7.0	ns	
t _{EABRCCOMB}	3.7		5.2		7.0		ns	
t _{EABRCREG}	3.5		4.9		6.6		ns	
t _{EABWP}	2.0		2.8		3.8		ns	
t _{EABWCCOMB}	4.5		6.3		8.6		ns	
t _{EABWCREG}	5.6		7.8		10.6		ns	
t _{EABDD}		3.8		5.3		7.2	ns	
t _{EABDATACO}		0.8		1.1		1.5	ns	
t _{EABDATASU}	1.1		1.6		2.1		ns	
t _{EABDATAH}	0.0		0.0		0.0		ns	
t _{EABWESU}	0.7		1.0		1.3		ns	
t _{EABWEH}	0.4		0.6		0.8		ns	
t _{EABWDSU}	1.2		1.7		2.2		ns	
t _{EABWDH}	0.0		0.0		0.0		ns	
t _{EABWASU}	1.6		2.3		3.0		ns	
t _{EABWAH}	0.9		1.2		1.8		ns	
t _{EABWO}		3.1		4.3		5.9	ns	

Table 70. EPF10K50S Device Interconnect Timing Microparameters Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Мах			
t _{DIN2IOE}		3.1		3.7		4.6	ns		
t _{DIN2LE}		1.7		2.1		2.7	ns		
t _{DIN2DATA}		2.7		3.1		5.1	ns		
t _{DCLK2IOE}		1.6		1.9		2.6	ns		
t _{DCLK2LE}		1.7		2.1		2.7	ns		
t _{SAMELAB}		0.1		0.1		0.2	ns		
t _{SAMEROW}		1.5		1.7		2.4	ns		
t _{SAMECOLUMN}		1.0		1.3		2.1	ns		
t _{DIFFROW}		2.5		3.0		4.5	ns		
t _{TWOROWS}		4.0		4.7		6.9	ns		
t _{LEPERIPH}		2.6		2.9		3.4	ns		
t _{LABCARRY}		0.1		0.2		0.2	ns		
t _{LABCASC}		0.8		1.0		1.3	ns		

Table 74. EPF10K200S Device IOE Timing Microparameters (Part 2 of 2) Note (1)									
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{ZX2}		4.5		4.8		6.6	ns		
t _{ZX3}		6.6		7.6		10.1	ns		
t _{INREG}		3.7		5.7		7.7	ns		
t _{IOFD}		1.8		3.4		4.0	ns		
t _{INCOMB}		1.8		3.4		4.0	ns		

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Мах	
t _{EABDATA1}		1.8		2.4		3.2	ns
t _{EABDATA1}		0.4		0.5		0.6	ns
t _{EABWE1}		1.1		1.7		2.3	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0		0		0	ns
t _{EABRE2}		0.4		0.5		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		0.9		1.2	ns
t _{EABBYPASS}		0.0		0.1		0.1	ns
t _{EABSU}	0.7		1.1		1.5		ns
t _{EABH}	0.4		0.5		0.6		ns
t _{EABCLR}	0.8		0.9		1.2		ns
t _{AA}		2.1		3.7		4.9	ns
t _{WP}	2.1		4.0		5.3		ns
t _{RP}	1.1		1.1		1.5		ns
twdsu	0.5		1.1		1.5		ns
t _{WDH}	0.1		0.1		0.1		ns
t _{WASU}	1.1		1.6		2.1		ns
t _{WAH}	1.6		2.5		3.3		ns
t _{RASU}	1.6		2.6		3.5		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{WO}		2.0		2.4		3.2	ns
t _{DD}		2.0		2.4		3.2	ns
t _{EABOUT}		0.0		0.1		0.1	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.1		2.8		3.8		ns

Altera Corporation

To better reflect actual designs, the power model (and the constant K in the power calculation equations) for continuous interconnect FLEX devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results when compared to measured power consumption for actual designs in segmented FPGAs.

Figure 31 shows the relationship between the current and operating frequency of FLEX 10KE devices.

Figure 31. FLEX 10KE I_{CCACTIVE} vs. Operating Frequency (Part 1 of 2)