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General 
Description

Altera FLEX 10KE devices are enhanced versions of FLEX 10K devices. 
Based on reconfigurable CMOS SRAM elements, the FLEX architecture 
incorporates all features necessary to implement common gate array 
megafunctions. With up to 200,000 typical gates, FLEX 10KE devices 
provide the density, speed, and features to integrate entire systems, 
including multiple 32-bit buses, into a single device. 

The ability to reconfigure FLEX 10KE devices enables 100% testing prior 
to shipment and allows the designer to focus on simulation and design 
verification. FLEX 10KE reconfigurability eliminates inventory 
management for gate array designs and generation of test vectors for fault 
coverage.

Table 5 shows FLEX 10KE performance for some common designs. All 
performance values were obtained with Synopsys DesignWare or LPM 
functions. Special design techniques are not required to implement the 
applications; the designer simply infers or instantiates a function in a 
Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or 
schematic design file.

Table 4. FLEX 10KE Package Sizes 

Device 144-
Pin 

TQFP

208-Pin 
PQFP

240-Pin
PQFP
RQFP

256-Pin
FineLine 

BGA

356-
Pin 
BGA

484-Pin
FineLine 

BGA

599-Pin 
PGA

600-
Pin 
BGA

672-Pin
FineLine 

BGA

Pitch (mm) 0.50 0.50 0.50 1.0 1.27 1.0 – 1.27 1.0

Area (mm2) 484 936 1,197 289 1,225 529 3,904 2,025 729

Length × width
(mm × mm)

22 × 22 30.6 × 30.6 34.6 × 34.6 17 × 17 35 × 35 23 × 23 62.5 × 62.5 45 × 45 27 × 27
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Functional 
Description

Each FLEX 10KE device contains an enhanced embedded array to 
implement memory and specialized logic functions, and a logic array to 
implement general logic.

The embedded array consists of a series of EABs. When implementing 
memory functions, each EAB provides 4,096 bits, which can be used to 
create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. 
When implementing logic, each EAB can contribute 100 to 600 gates 
towards complex logic functions, such as multipliers, microcontrollers, 
state machines, and DSP functions. EABs can be used independently, or 
multiple EABs can be combined to implement larger functions.

The logic array consists of logic array blocks (LABs). Each LAB contains 
eight LEs and a local interconnect. An LE consists of a four-input look-up 
table (LUT), a programmable flipflop, and dedicated signal paths for carry 
and cascade functions. The eight LEs can be used to create medium-sized 
blocks of logic—such as 8-bit counters, address decoders, or state 
machines—or combined across LABs to create larger logic blocks. Each 
LAB represents about 96 usable gates of logic.

Signal interconnections within FLEX 10KE devices (as well as to and from 
device pins) are provided by the FastTrack Interconnect routing structure, 
which is a series of fast, continuous row and column channels that run the 
entire length and width of the device. 

Each I/O pin is fed by an I/O element (IOE) located at the end of each row 
and column of the FastTrack Interconnect routing structure. Each IOE 
contains a bidirectional I/O buffer and a flipflop that can be used as either 
an output or input register to feed input, output, or bidirectional signals. 
When used with a dedicated clock pin, these registers provide exceptional 
performance. As inputs, they provide setup times as low as 0.9 ns and 
hold times of 0 ns. As outputs, these registers provide clock-to-output 
times as low as 3.0 ns. IOEs provide a variety of features, such as JTAG 
BST support, slew-rate control, tri-state buffers, and open-drain outputs. 
8 Altera Corporation
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Embedded Array Block

The EAB is a flexible block of RAM, with registers on the input and output 
ports, that is used to implement common gate array megafunctions. 
Because it is large and flexible, the EAB is suitable for functions such as 
multipliers, vector scalars, and error correction circuits. These functions 
can be combined in applications such as digital filters and 
microcontrollers. 

Logic functions are implemented by programming the EAB with a read-
only pattern during configuration, thereby creating a large LUT. With 
LUTs, combinatorial functions are implemented by looking up the results, 
rather than by computing them. This implementation of combinatorial 
functions can be faster than using algorithms implemented in general 
logic, a performance advantage that is further enhanced by the fast access 
times of EABs. The large capacity of EABs enables designers to implement 
complex functions in one logic level without the routing delays associated 
with linked LEs or field-programmable gate array (FPGA) RAM blocks. 
For example, a single EAB can implement any function with 8 inputs and 
16 outputs. Parameterized functions such as LPM functions can take 
advantage of the EAB automatically.

The FLEX 10KE EAB provides advantages over FPGAs, which implement 
on-board RAM as arrays of small, distributed RAM blocks. These small 
FPGA RAM blocks must be connected together to make RAM blocks of 
manageable size. The RAM blocks are connected together using 
multiplexers implemented with more logic blocks. These extra 
multiplexers cause extra delay, which slows down the RAM block. FPGA 
RAM blocks are also prone to routing problems because small blocks of 
RAM must be connected together to make larger blocks. In contrast, EABs 
can be used to implement large, dedicated blocks of RAM that eliminate 
these timing and routing concerns. 

The FLEX 10KE enhanced EAB adds dual-port capability to the existing 
EAB structure. The dual-port structure is ideal for FIFO buffers with one 
or two clocks. The FLEX 10KE EAB can also support up to 16-bit-wide 
RAM blocks and is backward-compatible with any design containing 
FLEX 10K EABs. The FLEX 10KE EAB can act in dual-port or single-port 
mode. When in dual-port mode, separate clocks may be used for EAB read 
and write sections, which allows the EAB to be written and read at 
different rates. It also has separate synchronous clock enable signals for 
the EAB read and write sections, which allow independent control of 
these sections.
10 Altera Corporation
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Cascade Chain

With the cascade chain, the FLEX 10KE architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. An a delay as low as 0.6 ns per LE, each additional LE 
provides four more inputs to the effective width of a function. Cascade 
chain logic can be created automatically by the Altera Compiler during 
design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EPF10K50E device, the 
cascade chain stops at the eighteenth LAB and a new one begins at the 
nineteenth LAB). This break is due to the EAB’s placement in the middle 
of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to 
form functions with a wide fan-in. These examples show functions of 
4n variables implemented with n LEs. The LE delay is 0.9 ns; the cascade 
chain delay is 0.6 ns. With the cascade chain, 2.7 ns are needed to decode 
a 16-bit address.

Figure 10. FLEX 10KE Cascade Chain Operation

LE1

LUT

LE2

LUT

d[3..0]

d[7..4]

d[(4n – 1)..(4n – 4)]

d[3..0]

d[7..4]

LEn

LE1

LE2

LEn

LUT

LUT

LUT

LUT

AND Cascade Chain OR Cascade Chain

d[(4n – 1)..(4n – 4)]
20 Altera Corporation



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a four-input LUT. The Altera Compiler automatically selects 
the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT 
output can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect routing 
structure at the same time. 

The LUT and the register in the LE can be used independently (register 
packing). To support register packing, the LE has two outputs; one drives 
the local interconnect, and the other drives the FastTrack Interconnect 
routing structure. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a three-input function can be computed in the LUT, and 
a fourth independent signal can be registered. Alternatively, a four-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect routing structure while the LUT drives 
the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a three-input function; the other generates a carry output. As 
shown in Figure 11 on page 22, the first LUT uses the carry-in signal and 
two data inputs from the LAB local interconnect to generate a 
combinatorial or registered output. For example, in an adder, this output 
is the sum of three signals: a, b, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
Use 2 three-input LUTs: one generates the counter data, and the other 
generates the fast carry bit. A 2-to-1 multiplexer provides synchronous 
loading. Data can also be loaded asynchronously with the clear and preset 
register control signals without using the LUT resources.
Altera Corporation 23 
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In addition to the six clear and preset modes, FLEX 10KE devices provide 
a chip-wide reset pin that can reset all registers in the device. Use of this 
feature is set during design entry. In any of the clear and preset modes, the 
chip-wide reset overrides all other signals. Registers with asynchronous 
presets may be preset when the chip-wide reset is asserted. Inversion can 
be used to implement the asynchronous preset. Figure 12 shows examples 
of how to setup the preset and clear inputs for the desired functionality.

Figure 12. FLEX 10KE LE Clear & Preset Modes
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Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this 
mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with 
an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 
asynchronously loads a one into the register. Alternatively, the Altera 
software can provide preset control by using the clear and inverting the 
input and output of the register. Inversion control is available for the 
inputs to both LEs and IOEs. Therefore, if a register is preset by only one 
of the two LABCTRL signals, the DATA3 input is not needed and can be 
used for one of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls 
the preset and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that 
asserting LABCTRL1 asynchronously loads a one into the register, 
effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear. LABCTRL2 implements the clear by 
controlling the register clear; LABCTRL2 does not have to feed the preset 
circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the 
Altera software provides preset control by using the clear and inverting 
the input and output of the register. Asserting LABCTRL2 presets the 
register, while asserting LABCTRL1 loads the register. The Altera software 
inverts the signal that drives DATA3 to account for the inversion of the 
register’s output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear.
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Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row 
channels. The signal is accessible by all LEs within that row. When an IOE 
is used as an output, the signal is driven by a multiplexer that selects a 
signal from the row channels. Up to eight IOEs connect to each side of 
each row channel (see Figure 16).

Figure 16. FLEX 10KE Row-to-IOE Connections

Table 10 lists the FLEX 10KE row-to-IOE interconnect resources. 

n

n

Each IOE is driven by an
m-to-1 multiplexer.

Each IOE can drive two
row channels.

IOE8

IOE1
m

m

Row FastTrack
Interconnect

n

The values for m and n are provided in Table 10.

Table 10. FLEX 10KE Row-to-IOE Interconnect Resources

Device Channels per Row (n) Row Channels per Pin (m)

EPF10K30E 216 27

EPF10K50E
EPF10K50S

216 27

EPF10K100E 312 39

EPF10K130E 312 39

EPF10K200E
EPF10K200S

312 39
Altera Corporation 35 



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
IEEE Std. 
1149.1 (JTAG) 
Boundary-Scan 
Support

All FLEX 10KE devices provide JTAG BST circuitry that complies with the 
IEEE Std. 1149.1-1990 specification. FLEX 10KE devices can also be 
configured using the JTAG pins through the BitBlaster or ByteBlasterMV 
download cable, or via hardware that uses the JamTM STAPL 
programming and test language. JTAG boundary-scan testing can be 
performed before or after configuration, but not during configuration. 
FLEX 10KE devices support the JTAG instructions shown in Table 15.

The instruction register length of FLEX 10KE devices is 10 bits. The 
USERCODE register length in FLEX 10KE devices is 32 bits; 7 bits are 
determined by the user, and 25 bits are pre-determined. Tables 16 and 17 
show the boundary-scan register length and device IDCODE information 
for FLEX 10KE devices.

Table 15. FLEX 10KE JTAG Instructions

JTAG Instruction Description

SAMPLE/PRELOAD Allows a snapshot of signals at the device pins to be captured and examined during 
normal device operation, and permits an initial data pattern to be output at the device 
pins.

EXTEST Allows the external circuitry and board-level interconnections to be tested by forcing a 
test pattern at the output pins and capturing test results at the input pins.

BYPASS Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST 
data to pass synchronously through a selected device to adjacent devices during normal 
device operation.

USERCODE Selects the user electronic signature (USERCODE) register and places it between the 
TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.

IDCODE Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE 
to be serially shifted out of TDO.

ICR Instructions These instructions are used when configuring a FLEX 10KE device via JTAG ports with 
a BitBlaster or ByteBlasterMV download cable, or using a Jam File (.jam) or 
Jam Byte-Code File (.jbc) via an embedded processor.

Table 16. FLEX 10KE Boundary-Scan Register Length

Device Boundary-Scan Register Length

EPF10K30E 690

EPF10K50E
EPF10K50S

798

EPF10K100E 1,050

EPF10K130E 1,308

EPF10K200E
EPF10K200S

1,446
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Notes:
(1) The most significant bit (MSB) is on the left.
(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

FLEX 10KE devices include weak pull-up resistors on the JTAG pins.

f For more information, see the following documents:

■ Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in 
Altera Devices) 

■ BitBlaster Serial Download Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ Jam Programming & Test Language Specification

Table 17. 32-Bit IDCODE for FLEX 10KE Devices Note (1)

Device IDCODE (32 Bits)

Version 
(4 Bits)

Part Number (16 Bits) Manufacturer’s
Identity (11 Bits)

1 (1 Bit) 
(2)

EPF10K30E 0001 0001 0000 0011 0000 00001101110 1

EPF10K50E
EPF10K50S

0001 0001 0000 0101 0000 00001101110 1

EPF10K100E 0010 0000 0001 0000 0000 00001101110 1

EPF10K130E 0001 0000 0001 0011 0000 00001101110 1

EPF10K200E
EPF10K200S

0001 0000 0010 0000 0000 00001101110 1
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Figure 26. FLEX 10KE Device IOE Timing Model

Figure 27. FLEX 10KE Device EAB Timing Model
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tCLR LE register clear delay

tCH Minimum clock high time from clock pin

tCL Minimum clock low time from clock pin

Table 24. LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Parameter Condition

Table 25. IOE Timing Microparameters Note (1)

Symbol Parameter Conditions

tIOD IOE data delay

tIOC IOE register control signal delay

tIOCO IOE register clock-to-output delay

tIOCOMB IOE combinatorial delay

tIOSU IOE register setup time for data and enable signals before clock; IOE register 
recovery time after asynchronous clear

tIOH IOE register hold time for data and enable signals after clock

tIOCLR IOE register clear time

tOD1 Output buffer and pad delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tOD2 Output buffer and pad delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tOD3 Output buffer and pad delay, slow slew rate = on C1 = 35 pF (4)

tXZ IOE output buffer disable delay

tZX1 IOE output buffer enable delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tZX2 IOE output buffer enable delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tZX3 IOE output buffer enable delay, slow slew rate = on C1 = 35 pF (4)

tINREG IOE input pad and buffer to IOE register delay

tIOFD IOE register feedback delay

tINCOMB IOE input pad and buffer to FastTrack Interconnect delay
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Notes to tables:
(1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be 

measured explicitly.
(2) Operating conditions: VCCIO = 3.3 V ±10% for commercial or industrial use.
(3) Operating conditions: VCCIO = 2.5 V ±5% for commercial or industrial use in EPF10K30E, EPF10K50S, 

EPF10K100E, EPF10K130E, and EPF10K200S devices.
(4) Operating conditions: VCCIO = 3.3 V.
(5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. 
(6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; 

these parameters are calculated by summing selected microparameters. 
(7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing 

analysis are required to determine actual worst-case performance.
(8) Contact Altera Applications for test circuit specifications and test conditions.
(9) This timing parameter is sample-tested only.
(10) This parameter is measured with the measurement and test conditions, including load, specified in the PCI Local 

Bus Specification, revision 2.2.

Table 30. External Bidirectional Timing Parameters Note (9)

Symbol Parameter Conditions

tINSUBIDIR Setup time for bi-directional pins with global clock at same-row or same-
column LE register

tINHBIDIR Hold time for bidirectional pins with global clock at same-row or same-column 
LE register

tINH Hold time with global clock at IOE register

tOUTCOBIDIR Clock-to-output delay for bidirectional pins with global clock at IOE register C1 = 35 pF

tXZBIDIR Synchronous IOE output buffer disable delay C1 = 35 pF

tZXBIDIR Synchronous IOE output buffer enable delay, slow slew rate= off C1 = 35 pF
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Table 35. EPF10K30E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 1.8 2.4 2.9 ns

tDIN2LE 1.5 1.8 2.4 ns

tDIN2DATA 1.5 1.8 2.2 ns

tDCLK2IOE 2.2 2.6 3.0 ns

tDCLK2LE 1.5 1.8 2.4 ns

tSAMELAB 0.1 0.2 0.3 ns

tSAMEROW 2.0 2.4 2.7 ns

tSAMECOLUMN 0.7 1.0 0.8 ns

tDIFFROW 2.7 3.4 3.5 ns

tTWOROWS 4.7 5.8 6.2 ns

tLEPERIPH 2.7 3.4 3.8 ns

tLABCARRY 0.3 0.4 0.5 ns

tLABCASC 0.8 0.8 1.1 ns

Table 36. EPF10K30E External Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 8.0 9.5 12.5 ns

tINSU (3) 2.1 2.5 3.9 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0  4.9 2.0 5.9 2.0 7.6 ns

tINSU (4) 1.1 1.5 – ns

tINH (4) 0.0 0.0 – ns

tOUTCO (4) 0.5 3.9 0.5 4.9 – – ns

tPCISU 3.0 4.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 7.5 – – ns
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tH 0.9 1.0 1.4 ns

tPRE 0.5 0.6 0.8 ns

tCLR 0.5 0.6 0.8 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 39. EPF10K50E Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tIOD 2.2 2.4 3.3 ns

tIOC 0.3 0.3 0.5 ns

tIOCO 1.0 1.0 1.4 ns

tIOCOMB 0.0 0.0 0.2 ns

tIOSU 1.0 1.2 1.7 ns

tIOH 0.3 0.3 0.5 ns

tIOCLR 0.9 1.0 1.4 ns

tOD1 0.8 0.9 1.2 ns

tOD2 0.3 0.4 0.7 ns

tOD3 3.0 3.5 3.5 ns

tXZ 1.4 1.7 2.3 ns

tZX1 1.4 1.7 2.3 ns

tZX2 0.9 1.2 1.8 ns

tZX3 3.6 4.3 4.6 ns

tINREG 4.9 5.8 7.8 ns

tIOFD 2.8 3.3 4.5 ns

tINCOMB 2.8 3.3 4.5 ns

Table 38. EPF10K50E Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Table 40. EPF10K50E Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.7 2.0 2.7 ns

tEABDATA1 0.6 0.7 0.9 ns

tEABWE1 1.1 1.3 1.8 ns

tEABWE2 0.4 0.4 0.6 ns

tEABRE1 0.8 0.9 1.2 ns

tEABRE2 0.4 0.4 0.6 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.3 0.5 ns

tEABBYPASS 0.5 0.6 0.8 ns

tEABSU 0.9 1.0 1.4 ns

tEABH 0.4 0.4 0.6 ns

tEABCLR 0.3 0.3 0.5 ns

tAA 3.2 3.8 5.1 ns

tWP 2.5 2.9 3.9 ns

tRP 0.9 1.1 1.5 ns

tWDSU 0.9 1.0 1.4 ns

tWDH 0.1 0.1 0.2 ns

tWASU 1.7 2.0 2.7 ns

tWAH 1.8 2.1 2.9 ns

tRASU 3.1 3.7 5.0 ns

tRAH 0.2 0.2 0.3 ns

tWO 2.5 2.9 3.9 ns

tDD 2.5 2.9 3.9 ns

tEABOUT 0.5 0.6 0.8 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.5 2.9 3.9 ns
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tEABWCOMB 5.9 7.7 10.3 ns

tEABWCREG 5.4 7.0 9.4 ns

tEABDD 3.4 4.5 5.9 ns

tEABDATACO 0.5 0.7 0.8 ns

tEABDATASU 0.8 1.0 1.4 ns

tEABDATAH 0.1 0.1 0.2 ns

tEABWESU 1.1 1.4 1.9 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.0 1.3 1.7 ns

tEABWDH 0.2 0.2 0.3 ns

tEABWASU 4.1 5.2 6.8 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 3.4 4.5 5.9 ns

Table 49. EPF10K100E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 3.1 3.6 4.4 ns

tDIN2LE 0.3 0.4 0.5 ns

tDIN2DATA 1.6 1.8 2.0 ns

tDCLK2IOE 0.8 1.1 1.4 ns

tDCLK2LE 0.3 0.4 0.5 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.5 2.5 3.4 ns

tSAMECOLUMN 0.4 1.0 1.6 ns

tDIFFROW 1.9 3.5 5.0 ns

tTWOROWS 3.4 6.0 8.4 ns

tLEPERIPH 4.3 5.4 6.5 ns

tLABCARRY 0.5 0.7 0.9 ns

tLABCASC 0.8 1.0 1.4 ns

Table 48. EPF10K100E Device EAB Internal Timing Macroparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Table 56. EPF10K130E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 2.8 3.5 4.4 ns

tDIN2LE 0.7 1.2 1.6 ns

tDIN2DATA 1.6 1.9 2.2 ns

tDCLK2IOE 1.6 2.1 2.7 ns

tDCLK2LE 0.7 1.2 1.6 ns

tSAMELAB 0.1 0.2 0.2 ns

tSAMEROW 1.9 3.4 5.1 ns

tSAMECOLUMN 0.9 2.6 4.4 ns

tDIFFROW 2.8 6.0 9.5 ns

tTWOROWS 4.7 9.4 14.6 ns

tLEPERIPH 3.1 4.7 6.9 ns

tLABCARRY 0.6 0.8 1.0 ns

tLABCASC 0.9 1.2 1.6 ns

Table 57. EPF10K130E External Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR  9.0 12.0 16.0 ns

tINSU (3) 1.9  2.1 3.0 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0 5.0 2.0 7.0 2.0 9.2 ns

tINSU (4) 0.9 1.1 – ns

tINH (4) 0.0 0.0 – ns

tOUTCO (4) 0.5 4.0 0.5 6.0 – – ns

tPCISU 3.0 6.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 6.9 – – ns
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 59 through 65 show EPF10K200E device internal and external 
timing parameters.   

Table 58. EPF10K130E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (3) 2.2 2.4 3.2 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 2.8 3.0 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 5.0 2.0 7.0 2.0 9.2 ns

tXZBIDIR (3) 5.6 8.1 10.8 ns

tZXBIDIR (3) 5.6 8.1  10.8 ns

tOUTCOBIDIR (4) 0.5 4.0 0.5 6.0 – – ns

tXZBIDIR (4) 4.6 7.1 – ns

tZXBIDIR (4) 4.6 7.1 – ns

Table 59. EPF10K200E Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.7 0.8 1.2 ns

tCLUT 0.4 0.5 0.6 ns

tRLUT 0.6 0.7 0.9 ns

tPACKED 0.3 0.5 0.7 ns

tEN 0.4 0.5 0.6 ns

tCICO 0.2 0.2 0.3 ns

tCGEN 0.4 0.4 0.6 ns

tCGENR 0.2 0.2 0.3 ns

tCASC 0.7 0.8 1.2 ns

tC 0.5 0.6 0.8 ns

tCO 0.5 0.6 0.8 ns

tCOMB 0.4 0.6 0.8 ns

tSU 0.4 0.6 0.7 ns
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(3) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

tLABCASC 0.5 1.0 1.4 ns

Table 78. EPF10K200S External Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 9.0 12.0 16.0 ns

tINSU (2) 3.1 3.7 4.7 ns

tINH (2) 0.0 0.0 0.0 ns

tOUTCO (2) 2.0 3.7 2.0 4.4 2.0 6.3 ns

tINSU(3) 2.1 2.7 – ns

tINH (3) 0.0 0.0 – ns

tOUTCO(3) 0.5 2.7 0.5 3.4 – – ns

tPCISU 3.0 4.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 8.9 – – ns

Table 79. EPF10K200S External Bidirectional Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (2) 2.3 3.4 4.4 ns

tINHBIDIR (2) 0.0 0.0 0.0 ns

tINSUBIDIR (3) 3.3 4.4 – ns

tINHBIDIR (3) 0.0 0.0 – ns

tOUTCOBIDIR (2) 2.0 3.7 2.0 4.4 2.0 6.3 ns

tXZBIDIR (2) 6.9 7.6 9.2 ns

tZXBIDIR (2) 5.9 6.6 – ns

tOUTCOBIDIR (3) 0.5 2.7 0.5 3.4 – – ns

tXZBIDIR (3) 6.9 7.6 9.2 ns

tZXBIDIR (3) 5.9 6.6 – ns

Table 77. EPF10K200S Device Interconnect Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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