Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 360 | | Number of Logic Elements/Cells | 2880 | | Total RAM Bits | 40960 | | Number of I/O | 220 | | Number of Gates | 199000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 484-BBGA | | Supplier Device Package | 484-FBGA (23x23) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k50sfc484-2xb | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 - Flexible package options - Available in a variety of packages with 144 to 672 pins, including the innovative FineLine BGATM packages (see Tables 3 and 4) - SameFrame[™] pin-out compatibility between FLEX 10KA and FLEX 10KE devices across a range of device densities and pin counts - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic | Table 3. FLEX | X 10KE Pad | ckage Optio | ons & I/O Pi | n Count | Notes (1), | (2) | | | | |---------------|-----------------|-----------------|-------------------------|----------------------------|----------------|----------------------------|----------------|----------------|----------------------------| | Device | 144-Pin
TQFP | 208-Pin
PQFP | 240-Pin
PQFP
RQFP | 256-Pin
FineLine
BGA | 356-Pin
BGA | 484-Pin
FineLine
BGA | 599-Pin
PGA | 600-Pin
BGA | 672-Pin
FineLine
BGA | | EPF10K30E | 102 | 147 | | 176 | | 220 | | | 220 (3) | | EPF10K50E | 102 | 147 | 189 | 191 | | 254 | | | 254 (3) | | EPF10K50S | 102 | 147 | 189 | 191 | 220 | 254 | | | 254 (3) | | EPF10K100E | | 147 | 189 | 191 | 274 | 338 | | | 338 (3) | | EPF10K130E | | | 186 | | 274 | 369 | | 424 | 413 | | EPF10K200E | | | | | | | 470 | 470 | 470 | | EPF10K200S | | | 182 | | 274 | 369 | 470 | 470 | 470 | #### Notes: - (1) FLEX 10KE device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), pin-grid array (PGA), and ball-grid array (BGA) packages. - (2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When planning device migration, use the I/O pins that are common to all devices. - (3) This option is supported with a 484-pin FineLine BGA package. By using SameFrame pin migration, all FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin, 484-pin, and 672-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration is set. Similar to the FLEX 10KE architecture, embedded gate arrays are the fastest-growing segment of the gate array market. As with standard gate arrays, embedded gate arrays implement general logic in a conventional "sea-of-gates" architecture. Additionally, embedded gate arrays have dedicated die areas for implementing large, specialized functions. By embedding functions in silicon, embedded gate arrays reduce die area and increase speed when compared to standard gate arrays. While embedded megafunctions typically cannot be customized, FLEX 10KE devices are programmable, providing the designer with full control over embedded megafunctions and general logic, while facilitating iterative design changes during debugging. Each FLEX 10KE device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and data-transformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device. FLEX 10KE devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers the EPC1, EPC2, and EPC16 configuration devices, which configure FLEX 10KE devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera BitBlasterTM, ByteBlasterMVTM, or MasterBlaster download cables. After a FLEX 10KE device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 85 ms, real-time changes can be made during system operation. FLEX 10KE devices contain an interface that permits microprocessors to configure FLEX 10KE devices serially or in-parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat a FLEX 10KE device as memory and configure it by writing to a virtual memory location, making it easy to reconfigure the device. The EAB can also be used for bidirectional, dual-port memory applications where two ports read or write simultaneously. To implement this type of dual-port memory, two EABs are used to support two simultaneous read or writes. Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers (see Figure 2). Dedicated Inputs & Global Signals **Dedicated Clocks** Row Interconnect RAM/ROM 256 × 16 512 × 8 data[] 2.048 × 2 ENA FNA rdaddress[] EAB Local ENA Interconnect (2) wraddress[] 4, 8, 16, 32 FΝΔ rden wren outclocken Write Enable inclocken Multiplexers allow read address and read inclock enable registers to be clocked by inclock or outclock outclock signals. Figure 2. FLEX 10KE Device in Dual-Port RAM Mode Notes (1) #### Notes: (1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset. Column Interconnect (2) EPF10K30E and EPF10K50E devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, and EPF10K200E devices have 104 EAB local interconnect channels. Each LAB provides four control signals with programmable inversion that can be used in all eight LEs. Two of these signals can be used as clocks, the other two can be used for clear/preset control. The LAB clocks can be driven by the dedicated clock input pins, global signals, I/O signals, or internal signals via the LAB local interconnect. The LAB preset and clear control signals can be driven by the global signals, I/O signals, or internal signals via the LAB local interconnect. The global control signals are typically used for global clock, clear, or preset signals because they provide asynchronous control with very low skew across the device. If logic is required on a control signal, it can be generated in one or more LE in any LAB and driven into the local interconnect of the target LAB. In addition, the global control signals can be generated from LE outputs. ### Logic Element The LE, the smallest unit of logic in the FLEX 10KE architecture, has a compact size that provides efficient logic utilization. Each LE contains a four-input LUT, which is a function generator that can quickly compute any function of four variables. In addition, each LE contains a programmable flipflop with a synchronous clock enable, a carry chain, and a cascade chain. Each LE drives both the local and the FastTrack Interconnect routing structure (see Figure 8). Altera Corporation 17 Cascade-Out Carry-Out ## FastTrack Interconnect Routing Structure In the FLEX 10KE architecture, connections between LEs, EABs, and device I/O pins are provided by the FastTrack Interconnect routing structure, which is a series of continuous horizontal and vertical routing channels that traverses the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance. The FastTrack Interconnect routing structure consists of row and column interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect. The row interconnect can drive I/O pins and feed other LABs in the row. The column interconnect routes signals between rows and can drive I/O pins. Row channels drive into the LAB or EAB local interconnect. The row signal is buffered at every LAB or EAB to reduce the effect of fan-out on delay. A row channel can be driven by an LE or by one of three column channels. These four signals feed dual 4-to-1 multiplexers that connect to two specific row channels. These multiplexers, which are connected to each LE, allow column channels to drive row channels even when all eight LEs in a LAB drive the row interconnect. Each column of LABs or EABs is served by a dedicated column interconnect. The column interconnect that serves the EABs has twice as many channels as other column interconnects. The column interconnect can then drive I/O pins or another row's interconnect to route the signals to other LABs or EABs in the device. A signal from the column interconnect, which can be either the output of a LE or an input from an I/O pin, must be routed to the row interconnect before it can enter a LAB or EAB. Each row channel that is driven by an IOE or EAB can drive one specific column channel. Access to row and column channels can be switched between LEs in adjacent pairs of LABs. For example, a LE in one LAB can drive the row and column channels normally driven by a particular LE in the adjacent LAB in the same row, and vice versa. This flexibility enables routing resources to be used more efficiently (see Figure 13). When dedicated inputs drive non-inverted and inverted peripheral clears, clock enables, and output enables, two signals on the peripheral control bus will be used. Tables 8 and 9 list the sources for each peripheral control signal, and show how the output enable, clock enable, clock, and clear signals share 12 peripheral control signals. The tables also show the rows that can drive global signals. | Peripheral
Control Signal | EPF10K30E | EPF10K50E
EPF10K50S | | |------------------------------|-----------|------------------------|--| | OE0 | Row A | Row A | | | OE1 | Row B | Row B | | | OE2 | Row C | Row D | | | OE3 | Row D | Row F | | | OE4 | Row E | Row H | | | OE5 | Row F | Row J | | | CLKENA0/CLK0/GLOBAL0 | Row A | Row A | | | CLKENA1/OE6/GLOBAL1 | Row B | Row C | | | CLKENA2/CLR0 | Row C | Row E | | | CLKENA3/OE7/GLOBAL2 | Row D | Row G | | | CLKENA4/CLR1 | Row E | Row I | | | CLKENA5/CLK1/GLOBAL3 | Row F | Row J | | | Peripheral
Control Signal | EPF10K100E | EPF10K130E | EPF10K200E
EPF10K200S | |------------------------------|------------|------------|--------------------------| | OE0 | Row A | Row C | Row G | | OE1 | Row C | Row E | Row I | | OE2 | Row E | Row G | Row K | | OE3 | Row L | Row N | Row R | | OE4 | Row I | Row K | Row O | | OE5 | Row K | Row M | Row Q | | CLKENA0/CLK0/GLOBAL0 | Row F | Row H | Row L | | CLKENA1/OE6/GLOBAL1 | Row D | Row F | Row J | | CLKENA2/CLR0 | Row B | Row D | Row H | | CLKENA3/OE7/GLOBAL2 | Row H | Row J | Row N | | CLKENA4/CLR1 | Row J | Row L | Row P | | CLKENA5/CLK1/GLOBAL3 | Row G | Row I | Row M | Signals on the peripheral control bus can also drive the four global signals, referred to as <code>GLOBALO</code> through <code>GLOBALO</code> in Tables 8 and 9. An internally generated signal can drive a global signal, providing the same low-skew, low-delay characteristics as a signal driven by an input pin. An LE drives the global signal by driving a row line that drives the peripheral bus, which then drives the global signal. This feature is ideal for internally generated clear or clock signals with high fan-out. However, internally driven global signals offer no advantage over the general-purpose interconnect for routing data signals. The dedicated input pin should be driven to a known logic state (such as ground) and not be allowed to float. The chip-wide output enable pin is an active-high pin (DEV_OE) that can be used to tri-state all pins on the device. This option can be set in the Altera software. On EPF10K50E and EPF10K200E devices, the built-in I/O pin pull-up resistors (which are active during configuration) are active when the chip-wide output enable pin is asserted. The registers in the IOE can also be reset by the chip-wide reset pin. # SameFrame Pin-Outs FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K30E device in a 256-pin FineLine BGA package to an EPF10K200S device in a 672-pin FineLine BGA package. The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 18). Figure 18. SameFrame Pin-Out Example 256-Pin FineLine BGA Packag (Reduced I/O Count or Logic Requirements) 672-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements) ## ClockLock & ClockBoost Timing Parameters For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. Figure 19 shows the incoming and generated clock specifications. Figure 19. Specifications for Incoming & Generated Clocks The t_l parameter refers to the nominal input clock period; the t_0 parameter refers to the nominal output clock period. The VCCINT pins must always be connected to a 2.5-V power supply. With a 2.5-V $V_{\rm CCINT}$ level, input voltages are compatible with 2.5-V, 3.3-V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels higher than 3.0 V achieve a faster timing delay of t_{OD2} instead of t_{OD1} . Table 14 summarizes FLEX 10KE MultiVolt I/O support. | Table 14. FLEX 10 | Table 14. FLEX 10KE MultiVolt I/O Support | | | | | | | | | | | |-----------------------|---|--------------|--------------|--------------|------------|----------|--|--|--|--|--| | V _{CCIO} (V) | Inj | out Signal | (V) | Out | put Signal | (V) | | | | | | | | 2.5 | 3.3 | 5.0 | 2.5 | 3.3 | 5.0 | | | | | | | 2.5 | ✓ | √ (1) | √ (1) | ✓ | | | | | | | | | 3.3 | ✓ | ✓ | √ (1) | √ (2) | ✓ | ✓ | | | | | | #### Notes: - (1) The PCI clamping diode must be disabled to drive an input with voltages higher than $V_{\rm CCIO}$. - (2) When $V_{\rm CCIO}$ = 3.3 V, a FLEX 10KE device can drive a 2.5-V device that has 3.3-V tolerant inputs. Open-drain output pins on FLEX 10KE devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor. ## Power Sequencing & Hot-Socketing Because FLEX 10KE devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order. Signals can be driven into FLEX 10KE devices before and during power up without damaging the device. Additionally, FLEX 10KE devices do not drive out during power up. Once operating conditions are reached, FLEX 10KE devices operate as specified by the user. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-------------------|---|---|----------------------------------|-----|-------------------------------------|------| | V _{IH} | High-level input voltage | | 1.7, 0.5 × V _{CCIO} (8) | | 5.75 | V | | V _{IL} | Low-level input voltage | | -0.5 | | 0.8,
0.3 × V _{CCIO} (8) | V | | V _{OH} | 3.3-V high-level TTL output voltage | $I_{OH} = -8 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ V } (9)$ | 2.4 | | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ V } (9)$ | V _{CCIO} – 0.2 | | | V | | | 3.3-V high-level PCI output voltage | $I_{OH} = -0.5 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V } (9)$ | 0.9 × V _{CCIO} | | | V | | | 2.5-V high-level output voltage | $I_{OH} = -0.1 \text{ mA DC},$
$V_{CCIO} = 2.30 \text{ V } (9)$ | 2.1 | | | V | | | | $I_{OH} = -1 \text{ mA DC},$
$V_{CCIO} = 2.30 \text{ V } (9)$ | 2.0 | | | V | | | | $I_{OH} = -2 \text{ mA DC},$
$V_{CCIO} = 2.30 \text{ V } (9)$ | 1.7 | | | V | | V _{OL} | 3.3-V low-level TTL output voltage | I _{OL} = 12 mA DC,
V _{CCIO} = 3.00 V (10) | | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 3.00 V (10) | | | 0.2 | V | | | 3.3-V low-level PCI output voltage | I _{OL} = 1.5 mA DC,
V _{CCIO} = 3.00 to 3.60 V
(10) | | | 0.1 × V _{CCIO} | V | | | 2.5-V low-level output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 2.30 V (10) | | | 0.2 | V | | | | I _{OL} = 1 mA DC,
V _{CCIO} = 2.30 V (10) | | | 0.4 | V | | | | I _{OL} = 2 mA DC,
V _{CCIO} = 2.30 V (10) | | | 0.7 | V | | I _I | Input pin leakage current | $V_I = V_{CCIOmax}$ to 0 V (11) | -10 | | 10 | μA | | I _{OZ} | Tri-stated I/O pin leakage current | $V_O = V_{CCIOmax}$ to 0 V (11) | -10 | | 10 | μA | | I _{CC0} | V _{CC} supply current (standby) | V _I = ground, no load, no toggling inputs | | 5 | | mA | | | | V _I = ground, no load, no toggling inputs (12) | | 10 | | mA | | R _{CONF} | Value of I/O pin pull- | V _{CCIO} = 3.0 V (13) | 20 | | 50 | k¾ | | | up resistor before and during configuration | V _{CCIO} = 2.3 V (13) | 30 | | 80 | k¾ | Figure 25. FLEX 10KE Device LE Timing Model | 3 Timing Macroparameters Note (1), (6) | | |---|--| | Parameter | Conditions | | EAB address access delay | | | EAB asynchronous read cycle time | | | EAB synchronous read cycle time | | | EAB write pulse width | | | EAB asynchronous write cycle time | | | EAB synchronous write cycle time | | | EAB data-in to data-out valid delay | | | EAB clock-to-output delay when using output registers | | | EAB data/address setup time before clock when using input register | | | EAB data/address hold time after clock when using input register | | | EAB WE setup time before clock when using input register | | | EAB WE hold time after clock when using input register | | | EAB data setup time before falling edge of write pulse when not using input registers | | | EAB data hold time after falling edge of write pulse when not using input registers | | | EAB address setup time before rising edge of write pulse when not using input registers | | | EAB address hold time after falling edge of write pulse when not using input registers | | | EAB write enable to data output valid delay | | | | Parameter EAB address access delay EAB asynchronous read cycle time EAB synchronous read cycle time EAB write pulse width EAB asynchronous write cycle time EAB synchronous write cycle time EAB data-in to data-out valid delay EAB clock-to-output delay when using output registers EAB data/address setup time before clock when using input register EAB we setup time before clock when using input register EAB we hold time after clock when using input register EAB data setup time before falling edge of write pulse when not using input registers EAB data hold time after falling edge of write pulse when not using input registers EAB address setup time before rising edge of write pulse when not using input registers EAB address setup time before rising edge of write pulse when not using input registers EAB address hold time after falling edge of write pulse when not using input registers | | Symbol | -1 Spee | -1 Speed Grade | | -2 Speed Grade | | ed Grade | Unit | |--------------------------|---------|----------------|-----|----------------|-----|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 1.8 | | 2.4 | | 2.9 | ns | | t _{DIN2LE} | | 1.5 | | 1.8 | | 2.4 | ns | | t _{DIN2DATA} | | 1.5 | | 1.8 | | 2.2 | ns | | t _{DCLK2IOE} | | 2.2 | | 2.6 | | 3.0 | ns | | t _{DCLK2LE} | | 1.5 | | 1.8 | | 2.4 | ns | | t _{SAMELAB} | | 0.1 | | 0.2 | | 0.3 | ns | | t _{SAMEROW} | | 2.0 | | 2.4 | | 2.7 | ns | | t _{SAME} COLUMN | | 0.7 | | 1.0 | | 0.8 | ns | | t _{DIFFROW} | | 2.7 | | 3.4 | | 3.5 | ns | | t _{TWOROWS} | | 4.7 | | 5.8 | | 6.2 | ns | | t _{LEPERIPH} | | 2.7 | | 3.4 | | 3.8 | ns | | t _{LABCARRY} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{LABCASC} | | 0.8 | | 0.8 | | 1.1 | ns | | Symbol | -1 Spec | ed Grade | -2 Spee | -2 Speed Grade | | d Grade | Unit | |------------------------|---------|----------|---------|----------------|-----|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{DRR} | | 8.0 | | 9.5 | | 12.5 | ns | | t _{INSU} (3) | 2.1 | | 2.5 | | 3.9 | | ns | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{оитсо} (3) | 2.0 | 4.9 | 2.0 | 5.9 | 2.0 | 7.6 | ns | | t _{INSU} (4) | 1.1 | | 1.5 | | - | | ns | | t _{INH} (4) | 0.0 | | 0.0 | | - | | ns | | ^t оитсо | 0.5 | 3.9 | 0.5 | 4.9 | - | - | ns | | t _{PCISU} | 3.0 | | 4.2 | | - | | ns | | рсін | 0.0 | | 0.0 | | - | | ns | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 7.5 | _ | _ | ns | | Symbol | -1 Spee | ed Grade | -2 Spee | d Grade | -3 Spee | d Grade | Unit | |------------------------|---------|----------|---------|---------|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.7 | | 2.0 | | 2.7 | ns | | t _{EABDATA1} | | 0.6 | | 0.7 | | 0.9 | ns | | t _{EABWE1} | | 1.1 | | 1.3 | | 1.8 | ns | | t _{EABWE2} | | 0.4 | | 0.4 | | 0.6 | ns | | t _{EABRE1} | | 0.8 | | 0.9 | | 1.2 | ns | | t _{EABRE2} | | 0.4 | | 0.4 | | 0.6 | ns | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCO} | | 0.3 | | 0.3 | | 0.5 | ns | | t _{EABBYPASS} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{EABSU} | 0.9 | | 1.0 | | 1.4 | | ns | | t _{EABH} | 0.4 | | 0.4 | | 0.6 | | ns | | t _{EABCLR} | 0.3 | | 0.3 | | 0.5 | | ns | | t_{AA} | | 3.2 | | 3.8 | | 5.1 | ns | | t_{WP} | 2.5 | | 2.9 | | 3.9 | | ns | | t_{RP} | 0.9 | | 1.1 | | 1.5 | | ns | | t _{WDSU} | 0.9 | | 1.0 | | 1.4 | | ns | | t_{WDH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{WASU} | 1.7 | | 2.0 | | 2.7 | | ns | | t _{WAH} | 1.8 | | 2.1 | | 2.9 | | ns | | t _{RASU} | 3.1 | | 3.7 | | 5.0 | | ns | | t _{RAH} | 0.2 | | 0.2 | | 0.3 | | ns | | t_{WO} | | 2.5 | | 2.9 | | 3.9 | ns | | t_{DD} | | 2.5 | | 2.9 | | 3.9 | ns | | t _{EABOUT} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{EABCH} | 1.5 | | 2.0 | | 2.5 | | ns | | t _{EABCL} | 2.5 | | 2.9 | | 3.9 | | ns | Tables 52 through 58 show EPF10K130E device internal and external timing parameters. | Table 52. EPF10I | 1 | | ····oroparan | | ote (1) | | | |---------------------|----------------|-----|----------------|-----|----------------|-----|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t_{LUT} | | 0.6 | | 0.9 | | 1.3 | ns | | t _{CLUT} | | 0.6 | | 0.8 | | 1.0 | ns | | t _{RLUT} | | 0.7 | | 0.9 | | 0.2 | ns | | t _{PACKED} | | 0.3 | | 0.5 | | 0.6 | ns | | t _{EN} | | 0.2 | | 0.3 | | 0.4 | ns | | t _{CICO} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CGEN} | | 0.4 | | 0.6 | | 0.8 | ns | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CASC} | | 0.6 | | 0.9 | | 1.2 | ns | | t_{C} | | 0.3 | | 0.5 | | 0.6 | ns | | t _{CO} | | 0.5 | | 0.7 | | 0.8 | ns | | t _{COMB} | | 0.3 | | 0.5 | | 0.6 | ns | | t _{SU} | 0.5 | | 0.7 | | 0.8 | | ns | | t_H | 0.6 | | 0.7 | | 1.0 | | ns | | t _{PRE} | | 0.9 | | 1.2 | | 1.6 | ns | | t _{CLR} | | 0.9 | | 1.2 | | 1.6 | ns | | t _{CH} | 1.5 | | 1.5 | | 2.5 | | ns | | t _{CL} | 1.5 | | 1.5 | | 2.5 | | ns | | Symbol | -1 Spec | -1 Speed Grade | | -2 Speed Grade | | ed Grade | Unit | |----------------------|---------|----------------|-----|----------------|-----|----------|------| | | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 1.3 | | 1.5 | | 2.0 | ns | | t _{IOC} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{ioco} | | 0.6 | | 0.8 | | 1.0 | ns | | t _I OCOMB | | 0.6 | | 0.8 | | 1.0 | ns | | iosu | 1.0 | | 1.2 | | 1.6 | | ns | | t _{IOH} | 0.9 | | 0.9 | | 1.4 | | ns | | t _{IOCLR} | | 0.6 | | 0.8 | | 1.0 | ns | | OD1 | | 2.8 | | 4.1 | | 5.5 | ns | | t_{OD2} | | 2.8 | | 4.1 | | 5.5 | ns | | Table 74. EPF10K200S Device IOE Timing Microparameters (Part 2 of 2) Note (1) | | | | | | | | |---|----------------|-----|----------------|-----|----------------|------|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t_{ZX2} | | 4.5 | | 4.8 | | 6.6 | ns | | t_{ZX3} | | 6.6 | | 7.6 | | 10.1 | ns | | t _{INREG} | | 3.7 | | 5.7 | | 7.7 | ns | | t _{IOFD} | | 1.8 | | 3.4 | | 4.0 | ns | | t _{INCOMB} | | 1.8 | | 3.4 | | 4.0 | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |------------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.8 | | 2.4 | | 3.2 | ns | | t _{EABDATA1} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{EABWE1} | | 1.1 | | 1.7 | | 2.3 | ns | | t _{EABWE2} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABRE1} | | 0 | | 0 | | 0 | ns | | t _{EABRE2} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCO} | | 0.8 | | 0.9 | | 1.2 | ns | | t _{EABBYPASS} | | 0.0 | | 0.1 | | 0.1 | ns | | t _{EABSU} | 0.7 | | 1.1 | | 1.5 | | ns | | t _{EABH} | 0.4 | | 0.5 | | 0.6 | | ns | | t _{EABCLR} | 0.8 | | 0.9 | | 1.2 | | ns | | t _{AA} | | 2.1 | | 3.7 | | 4.9 | ns | | t_{WP} | 2.1 | | 4.0 | | 5.3 | | ns | | t _{RP} | 1.1 | | 1.1 | | 1.5 | | ns | | t _{WDSU} | 0.5 | | 1.1 | | 1.5 | | ns | | t _{WDH} | 0.1 | | 0.1 | | 0.1 | | ns | | t _{WASU} | 1.1 | | 1.6 | | 2.1 | | ns | | t _{WAH} | 1.6 | | 2.5 | | 3.3 | | ns | | t _{RASU} | 1.6 | | 2.6 | | 3.5 | | ns | | t _{RAH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{wo} | | 2.0 | | 2.4 | | 3.2 | ns | | t _{DD} | | 2.0 | | 2.4 | | 3.2 | ns | | t _{EABOUT} | | 0.0 | | 0.1 | | 0.1 | ns | | t _{EABCH} | 1.5 | | 2.0 | | 2.5 | | ns | | t _{EABCL} | 2.1 | | 2.8 | | 3.8 | | ns | | Table 77. EPF10K200S Device Interconnect Timing Microparameters (Part 2 of 2) Note (1) | | | | | | | | |--|---------|---------|---------|---------|---------|---------|------| | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{LABCASC} | | 0.5 | | 1.0 | | 1.4 | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |------------------------|----------------|-----|----------------|------|----------------|------|-------| | | Min | Max | Min | Max | Min | Max | Oilit | | t _{DRR} | | 9.0 | | 12.0 | | 16.0 | ns | | t _{INSU} (2) | 3.1 | | 3.7 | | 4.7 | | ns | | t _{INH} (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{оитсо} (2) | 2.0 | 3.7 | 2.0 | 4.4 | 2.0 | 6.3 | ns | | t _{INSU} (3) | 2.1 | | 2.7 | | _ | | ns | | t _{INH} (3) | 0.0 | | 0.0 | | | | ns | | t _{outco(3)} | 0.5 | 2.7 | 0.5 | 3.4 | - | - | ns | | t _{PCISU} | 3.0 | | 4.2 | | _ | | ns | | t _{PCIH} | 0.0 | | 0.0 | | - | | ns | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 8.9 | _ | - | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |-----------------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (2) | 2.3 | | 3.4 | | 4.4 | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{INSUBIDIR} (3) | 3.3 | | 4.4 | | - | | ns | | t _{INHBIDIR} (3) | 0.0 | | 0.0 | | - | | ns | | toutcobidir (2) | 2.0 | 3.7 | 2.0 | 4.4 | 2.0 | 6.3 | ns | | t _{XZBIDIR} (2) | | 6.9 | | 7.6 | | 9.2 | ns | | t _{ZXBIDIR} (2) | | 5.9 | | 6.6 | | _ | ns | | t _{OUTCOBIDIR} (3) | 0.5 | 2.7 | 0.5 | 3.4 | - | - | ns | | t _{XZBIDIR} (3) | | 6.9 | | 7.6 | | 9.2 | ns | | t _{ZXBIDIR} (3) | | 5.9 | | 6.6 | | _ | ns | #### Notes to tables: - All timing parameters are described in Tables 24 through 30 in this data sheet. This parameter is measured without the use of the ClockLock or ClockBoost circuits. (2) - (3) This parameter is measured with the use of the ClockLock or ClockBoost circuits. Additionally, the Altera software offers several features that help plan for future device migration by preventing the use of conflicting I/O pins. | Table 81. I/O Counts for FLEX 10KA & FLEX 10KE Devices | | | | | | |--|-----------|----------------|-----------|--|--| | FLEX 10 | KA | FLEX 10 | KE | | | | Device | I/O Count | Device | I/O Count | | | | EPF10K30AF256 | 191 | EPF10K30EF256 | 176 | | | | EPF10K30AF484 | 246 | EPF10K30EF484 | 220 | | | | EPF10K50VB356 | 274 | EPF10K50SB356 | 220 | | | | EPF10K50VF484 | 291 | EPF10K50EF484 | 254 | | | | EPF10K50VF484 | 291 | EPF10K50SF484 | 254 | | | | EPF10K100AF484 | 369 | EPF10K100EF484 | 338 | | | ### Configuration Schemes The configuration data for a FLEX 10KE device can be loaded with one of five configuration schemes (see Table 82), chosen on the basis of the target application. An EPC1, EPC2, or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of a FLEX 10KE device, allowing automatic configuration on system power-up. Multiple FLEX 10KE devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Additional FLEX 10KA, FLEX 10KE, and FLEX 6000 devices can be configured in the same serial chain. | Table 82. Data Sources for FLEX 10KE Configuration | | | | | |--|--|--|--|--| | Configuration Scheme | Data Source | | | | | Configuration device | EPC1, EPC2, or EPC16 configuration device | | | | | Passive serial (PS) | BitBlaster, ByteBlasterMV, or MasterBlaster download cables, or serial data source | | | | | Passive parallel asynchronous (PPA) | Parallel data source | | | | | Passive parallel synchronous (PPS) | Parallel data source | | | | | JTAG | BitBlaster or ByteBlasterMV download cables, or microprocessor with a Jam STAPL file or JBC file | | | | # Device Pin-Outs See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information. ## Revision History The information contained in the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.5 supersedes information published in previous versions. #### Version 2.5 The following changes were made to the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.5: - Note (1) added to Figure 23. - Text added to "I/O Element" section on page 34. - Updated Table 22. #### Version 2.4 The following changes were made to the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.4: updated text on page 34 and page 63.