E·XFL

Intel - EPF10K50SQC208-1X Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	360
Number of Logic Elements/Cells	2880
Total RAM Bits	40960
Number of I/O	147
Number of Gates	199000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k50sqc208-1x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table J. FLEX TOKE FETTOTTIAILE										
Application	Resources Used			Performance						
	LEs	EABs	-1 Speed Grade	-2 Speed Grade	-3 Speed Grade					
16-bit loadable counter	16	0	285	250	200	MHz				
16-bit accumulator	16	0	285	250	200	MHz				
16-to-1 multiplexer (1)	10	0	3.5	4.9	7.0	ns				
16-bit multiplier with 3-stage pipeline (2)	592	0	156	131	93	MHz				
256×16 RAM read cycle speed (2)	0	1	196	154	118	MHz				
256×16 RAM write cycle speed (2)	0	1	185	143	106	MHz				

Table 5. FLEX 10KE Performance

Notes:

(1) This application uses combinatorial inputs and outputs.

(2) This application uses registered inputs and outputs.

Table 6 shows FLEX 10KE performance for more complex designs. These designs are available as Altera MegaCore $^{\circ}$ functions.

Table 6. FLEX 10KE Performance for Complex Designs								
Application	LEs Used	Performance						
		-1 Speed Grade	-2 Speed Grade	-3 Speed Grade				
8-bit, 16-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS			
8-bit, 512-point fast Fourier	1,854	23.4	28.7	38.9	µs (1)			
transform (FFT) function		113	92	68	MHz			
a16450 universal asynchronous receiver/transmitter (UART)	342	36	28	20.5	MHz			

Note:

(1) These values are for calculation time. Calculation time = number of clocks required / f_{max} . Number of clocks required = ceiling [log 2 (points)/2] × [points +14 + ceiling]

Figure 4. FLEX 10KE Device in Single-Port RAM Mode

Note:

(1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 104 EAB local interconnect channels.

EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the write enable signal. In contrast, the EAB's synchronous RAM generates its own write enable signal and is self-timed with respect to the input or write clock. A circuit using the EAB's self-timed RAM must only meet the setup and hold time specifications of the global clock.

Figure 7. FLEX 10KE LAB

Notes:

- (1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26.
- (2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 34.

Figure 9 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal.

Figure 9. FLEX 10KE Carry Chain Operation (n-Bit Full Adder)

In addition to the six clear and preset modes, FLEX 10KE devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality.

FastTrack Interconnect Routing Structure

In the FLEX 10KE architecture, connections between LEs, EABs, and device I/O pins are provided by the FastTrack Interconnect routing structure, which is a series of continuous horizontal and vertical routing channels that traverses the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect. The row interconnect can drive I/O pins and feed other LABs in the row. The column interconnect routes signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row signal is buffered at every LAB or EAB to reduce the effect of fan-out on delay. A row channel can be driven by an LE or by one of three column channels. These four signals feed dual 4-to-1 multiplexers that connect to two specific row channels. These multiplexers, which are connected to each LE, allow column channels to drive row channels even when all eight LEs in a LAB drive the row interconnect.

Each column of LABs or EABs is served by a dedicated column interconnect. The column interconnect that serves the EABs has twice as many channels as other column interconnects. The column interconnect can then drive I/O pins or another row's interconnect to route the signals to other LABs or EABs in the device. A signal from the column interconnect, which can be either the output of a LE or an input from an I/O pin, must be routed to the row interconnect before it can enter a LAB or EAB. Each row channel that is driven by an IOE or EAB can drive one specific column channel.

Access to row and column channels can be switched between LEs in adjacent pairs of LABs. For example, a LE in one LAB can drive the row and column channels normally driven by a particular LE in the adjacent LAB in the same row, and vice versa. This flexibility enables routing resources to be used more efficiently (see Figure 13). Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row channels. The signal is accessible by all LEs within that row. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the row channels. Up to eight IOEs connect to each side of each row channel (see Figure 16).

Figure 16. FLEX 10KE Row-to-IOE Connections The values for m and n are provided in Table 10.

IOE1 m Row FastTrack

Table 10 lists the	FLEX 10KE row-to	o-IOE interconnect resources.
--------------------	------------------	-------------------------------

Table 10. FLEX 10KE Row-to-IOE Interconnect Resources								
Device	Channels per Row (n)	Row Channels per Pin (m)						
EPF10K30E	216	27						
EPF10K50E	216	27						
EPF10K50S								
EPF10K100E	312	39						
EPF10K130E	312	39						
EPF10K200E EPF10K200S	312	39						

 \bigcirc

Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels is different for each IOE (see Figure 17).

The values for m and n are provided in Table 11.

Table 11 lists the FLEX 10KE column-to-IOE interconnect resources.

Table 11. FLEX 10KE Column-to-IOE Interconnect Resources								
Device	Channels per Column (n)	Column Channels per Pin (m)						
EPF10K30E	24	16						
EPF10K50E EPF10K50S	24	16						
EPF10K100E	24	16						
EPF10K130E	32	24						
EPF10K200E EPF10K200S	48	40						

SameFrame Pin-Outs FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ballcount packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K30E device in a 256-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 18).

Printed Circuit Board Designed for 672-Pin FineLine BGA Package

 256-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements)
 672-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements)

Timing simulation and delay prediction are available with the Altera Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis.

Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the FLEX 10KE device.

Figures 25 through 28 show the delays that correspond to various paths and functions within the LE, IOE, EAB, and bidirectional timing models.

Figure 26. FLEX 10KE Device IOE Timing Model

Figure 27. FLEX 10KE Device EAB Timing Model

Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Write (EAB Output Registers Used)

Tables 31 through 37 show EPF10K30E device internal and external timing parameters.

Table 31. EPF10K30E Device LE Timing Microparameters (Part 1 of 2) Note (1)								
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		d Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{LUT}		0.7		0.8		1.1	ns	
t _{CLUT}		0.5		0.6		0.8	ns	
t _{RLUT}		0.6		0.7		1.0	ns	
t _{PACKED}		0.3		0.4		0.5	ns	
t _{EN}		0.6		0.8		1.0	ns	
t _{CICO}		0.1		0.1		0.2	ns	
t _{CGEN}		0.4		0.5		0.7	ns	

FLEX 10KE Embedded Programmable Logic Devices Data Sheet

Table 34. EPF10K30E Device EAB Internal Timing Macroparameters Note (1)							
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Мах	
t _{EABAA}		6.4		7.6		8.8	ns
t _{EABRCOMB}	6.4		7.6		8.8		ns
t _{EABRCREG}	4.4		5.1		6.0		ns
t _{EABWP}	2.5		2.9		3.3		ns
t _{EABWCOMB}	6.0		7.0		8.0		ns
t _{EABWCREG}	6.8		7.8		9.0		ns
t _{EABDD}		5.7		6.7		7.7	ns
t _{EABDATACO}		0.8		0.9		1.1	ns
t _{EABDATASU}	1.5		1.7		2.0		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	1.3		1.4		1.7		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.5		1.7		2.0		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.0		3.6		4.3		ns
t _{EABWAH}	0.5		0.5		0.4		ns
t _{EABWO}		5.1		6.0		6.8	ns

FLEX 10KE Embedded Programmable Logic Devices Data Sheet

Table 47. EPF10K100E Device EAB Internal Microparameters Note (1)							
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Мах	
t _{EABDATA1}		1.5		2.0		2.6	ns
t _{EABDATA1}		0.0		0.0		0.0	ns
t _{EABWE1}		1.5		2.0		2.6	ns
t _{EABWE2}		0.3		0.4		0.5	ns
t _{EABRE1}		0.3		0.4		0.5	ns
t _{EABRE2}		0.0		0.0		0.0	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.4		0.5	ns
t _{EABBYPASS}		0.1		0.1		0.2	ns
t _{EABSU}	0.8		1.0		1.4		ns
t _{EABH}	0.1		0.1		0.2		ns
t _{EABCLR}	0.3		0.4		0.5		ns
t _{AA}		4.0		5.1		6.6	ns
t _{WP}	2.7		3.5		4.7		ns
t _{RP}	1.0		1.3		1.7		ns
t _{WDSU}	1.0		1.3		1.7		ns
t _{WDH}	0.2		0.2		0.3		ns
t _{WASU}	1.6		2.1		2.8		ns
t _{WAH}	1.6		2.1		2.8		ns
t _{RASU}	3.0		3.9		5.2		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{WO}		1.5		2.0		2.6	ns
t _{DD}		1.5		2.0		2.6	ns
t _{EABOUT}		0.2		0.3		0.3	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.7		3.5		4.7		ns

Table 48. EPF10K100E Device EAB Internal Timing Macroparameters (Part 1 of

2)	Note	(1)
-/		· · /

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.9		7.6		9.9	ns
t _{EABRCOMB}	5.9		7.6		9.9		ns
t _{EABRCREG}	5.1		6.5		8.5		ns
t _{EABWP}	2.7		3.5		4.7		ns

Tables 52 through 58 show EPF10K130E device internal and external timing parameters.

Table 52. EPF10K130E Device LE Timing Microparameters Note (1)							
Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Мах	Min	Мах	
t _{LUT}		0.6		0.9		1.3	ns
t _{CLUT}		0.6		0.8		1.0	ns
t _{RLUT}		0.7		0.9		0.2	ns
t _{PACKED}		0.3		0.5		0.6	ns
t _{EN}		0.2		0.3		0.4	ns
t _{CICO}		0.1		0.1		0.2	ns
t _{CGEN}		0.4		0.6		0.8	ns
t _{CGENR}		0.1		0.1		0.2	ns
t _{CASC}		0.6		0.9		1.2	ns
t _C		0.3		0.5		0.6	ns
t _{CO}		0.5		0.7		0.8	ns
t _{COMB}		0.3		0.5		0.6	ns
t _{SU}	0.5		0.7		0.8		ns
t _H	0.6		0.7		1.0		ns
t _{PRE}		0.9		1.2		1.6	ns
t _{CLR}		0.9		1.2		1.6	ns
t _{CH}	1.5		1.5		2.5		ns
t _{CL}	1.5		1.5		2.5		ns

 Table 53. EPF10K130E Device IOE Timing Microparameters
 Note (1)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{IOD}		1.3		1.5		2.0	ns
t _{IOC}		0.0		0.0		0.0	ns
t _{IOCO}		0.6		0.8		1.0	ns
t _{IOCOMB}		0.6		0.8		1.0	ns
t _{IOSU}	1.0		1.2		1.6		ns
t _{IOH}	0.9		0.9		1.4		ns
t _{IOCLR}		0.6		0.8		1.0	ns
t _{OD1}		2.8		4.1		5.5	ns
t _{OD2}		2.8		4.1		5.5	ns

Table 58. EPF10K130E External Bidirectional Timing Parameters Notes (1), (2)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (3)	2.2		2.4		3.2		ns
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (4)	2.8		3.0		-		ns
t _{INHBIDIR} (4)	0.0		0.0		-		ns
toutcobidir (3)	2.0	5.0	2.0	7.0	2.0	9.2	ns
t _{XZBIDIR} (3)		5.6		8.1		10.8	ns
t _{ZXBIDIR} (3)		5.6		8.1		10.8	ns
toutcobidir (4)	0.5	4.0	0.5	6.0	_	-	ns
t _{XZBIDIR} (4)		4.6		7.1		-	ns
t _{ZXBIDIR} (4)		4.6		7.1		-	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 59 through 65 show EPF10K200E device internal and external timing parameters.

Table 59. EPF10K200E Device LE Timing Microparameters (Part 1 of 2) Note (1)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.7		0.8		1.2	ns
t _{CLUT}		0.4		0.5		0.6	ns
t _{RLUT}		0.6		0.7		0.9	ns
t _{PACKED}		0.3		0.5		0.7	ns
t _{EN}		0.4		0.5		0.6	ns
t _{CICO}		0.2		0.2		0.3	ns
t _{CGEN}		0.4		0.4		0.6	ns
t _{CGENR}		0.2		0.2		0.3	ns
t _{CASC}		0.7		0.8		1.2	ns
t _C		0.5		0.6		0.8	ns
t _{CO}		0.5		0.6		0.8	ns
t _{COMB}		0.4		0.6		0.8	ns
t _{SU}	0.4		0.6		0.7		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.4		3.2	ns
t _{EABDATA2}		0.4		0.6		0.8	ns
t _{EABWE1}		1.0		1.4		1.9	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0.0		0.0		0.0	
t _{EABRE2}		0.4		0.6		0.8	
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		1.1		1.5	ns
t _{EABBYPASS}		0.0		0.0		0.0	ns
t _{EABSU}	0.7		1.0		1.3		ns
t _{EABH}	0.4		0.6		0.8		ns
t _{EABCLR}	0.8		1.1		1.5		
t _{AA}		2.0		2.8		3.8	ns
t _{WP}	2.0		2.8		3.8		ns
t _{RP}	1.0		1.4		1.9		
t _{WDSU}	0.5		0.7		0.9		ns
t _{WDH}	0.1		0.1		0.2		ns
t _{WASU}	1.0		1.4		1.9		ns
t _{WAH}	1.5		2.1		2.9		ns
t _{RASU}	1.5		2.1		2.8		
t _{RAH}	0.1		0.1		0.2		
t _{WO}		2.1		2.9		4.0	ns
t _{DD}		2.1		2.9		4.0	ns
t _{EABOUT}		0.0		0.0		0.0	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	1.5		2.0		2.5		ns

Power Consumption	The supply power (P) for FLEX 10KE devices can be calculated with the following equation:						
	$P = P_{INT} + P_{IO} = (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO}$						
	The $I_{CCACTIVE}$ value depends on the switching frequency and the application logic. This value is calculated based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in <i>Application Note 74 (Evaluating Power for Altera Devices)</i> .						
	Compared to the rest of the device, the embedded array consumes a negligible amount of power. Therefore, the embedded array can be ignored when calculating supply current.						
	The $I_{CCACTIVE}$ value can be calculated with the following equation:						
	$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$						
	Where:						
	 f_{MAX} = Maximum operating frequency in MHz N = Total number of LEs used in the device tog_{LC} = Average percent of LEs toggling at each clock (typically 12.5%) K = Constant 						
	Table of provides the constant (K) values for FLEA TOKE devices.						
	Table 80. FLEX 10KE K Constant Values						
	Device	K Value					
	EPF10K30E 4.5						
	EPF10K50E 4.8						
	EPF10K50S 4.5						
	EPF10K100E 4.5						
	EPF10K130E	4.6					
	EPF10K200E 4.8						

EPF10K200S

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

4.6

During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

SRAM configuration elements allow FLEX 10KE devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 85 ms and can be used to reconfigure an entire system dynamically. In-field upgrades can be performed by distributing new configuration files.

Before and during configuration, all I/O pins (except dedicated inputs, clock, or configuration pins) are pulled high by a weak pull-up resistor.

Programming Files

Despite being function- and pin-compatible, FLEX 10KE devices are not programming- or configuration file-compatible with FLEX 10K or FLEX 10KA devices. A design therefore must be recompiled before it is transferred from a FLEX 10K or FLEX 10KA device to an equivalent FLEX 10KE device. This recompilation should be performed both to create a new programming or configuration file and to check design timing in FLEX 10KE devices, which has different timing characteristics than FLEX 10K or FLEX 10KA devices.

FLEX 10KE devices are generally pin-compatible with equivalent FLEX 10KA devices. In some cases, FLEX 10KE devices have fewer I/O pins than the equivalent FLEX 10KA devices. Table 81 shows which FLEX 10KE devices have fewer I/O pins than equivalent FLEX 10KA devices. However, power, ground, JTAG, and configuration pins are the same on FLEX 10KA and FLEX 10KE devices, enabling migration from a FLEX 10KA design to a FLEX 10KE design.

Device Pin-Outs	See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information.					
Revision History	The information contained in the <i>FLEX 10KE Embedded Programmable Logic Data Sheet</i> version 2.5 supersedes information published in previous versions.					
	Version 2.5					
	The following changes were made to the <i>FLEX 10KE Embedded Programmable Logic Data Sheet</i> version 2.5:					
	 <i>Note (1)</i> added to Figure 23. Text added to "I/O Element" section on page 34. Updated Table 22. 					
	Version 2.4					
	The following changes were made to the FLEX 10KE Embedded					

Programmable Logic Data Sheet version 2.4: updated text on page 34 and page 63.