E·XFL

Intel - EPF10K50SQC240-2 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	360
Number of Logic Elements/Cells	2880
Total RAM Bits	40960
Number of I/O	189
Number of Gates	199000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k50sqc240-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

For more information on FLEX device configuration, see the following documents:

- Configuration Devices for APEX & FLEX Devices Data Sheet
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- MasterBlaster Download Cable Data Sheet
- Application Note 116 (Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices)

FLEX 10KE devices are supported by the Altera development systems, which are integrated packages that offer schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration. The Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX workstation-based EDA tools.

The Altera software works easily with common gate array EDA tools for synthesis and simulation. For example, the Altera software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the Altera software contains EDA libraries that use devicespecific features such as carry chains, which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the Altera development system includes DesignWare functions that are optimized for the FLEX 10KE architecture.

The Altera development system runs on Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800.

See the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet for more information. In addition to the six clear and preset modes, FLEX 10KE devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality.

Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear.

Table 9. Peripheral Bus Sources for EPF10K100E, EPF10K130E, EPF10K200E & EPF10K200S Devices							
Peripheral Control Signal	EPF10K100E	EPF10K130E	EPF10K200E EPF10K200S				
OE 0	Row A	Row C	Row G				
OE1	Row C	Row E	Row I				
OE 2	Row E	Row G	Row K				
OE 3	Row L	Row N	Row R				
OE4	Row I	Row K	Row O				
OE5	Row K	Row M	Row Q				
CLKENA0/CLK0/GLOBAL0	Row F	Row H	Row L				
CLKENA1/OE6/GLOBAL1	Row D	Row F	Row J				
CLKENA2/CLR0	Row B	Row D	Row H				
CLKENA3/OE7/GLOBAL2	Row H	Row J	Row N				
CLKENA4/CLR1	Row J	Row L	Row P				
CLKENA5/CLK1/GLOBAL3	Row G	Row I	Row M				

Signals on the peripheral control bus can also drive the four global signals, referred to as GLOBAL0 through GLOBAL3 in Tables 8 and 9. An internally generated signal can drive a global signal, providing the same low-skew, low-delay characteristics as a signal driven by an input pin. An LE drives the global signal by driving a row line that drives the peripheral bus, which then drives the global signal. This feature is ideal for internally generated clear or clock signals with high fan-out. However, internally driven global signals offer no advantage over the general-purpose interconnect for routing data signals. The dedicated input pin should be driven to a known logic state (such as ground) and not be allowed to float.

The chip-wide output enable pin is an active-high pin (DEV_OE) that can be used to tri-state all pins on the device. This option can be set in the Altera software. On EPF10K50E and EPF10K200E devices, the built-in I/O pin pull-up resistors (which are active during configuration) are active when the chip-wide output enable pin is asserted. The registers in the IOE can also be reset by the chip-wide reset pin.

ClockLock & ClockBoost Features

To support high-speed designs, FLEX 10KE devices offer optional ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) used to increase design speed and reduce resource usage. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by resource sharing within the device. The ClockBoost feature allows the designer to distribute a low-speed clock and multiply that clock on-device. Combined, the ClockLock and ClockBoost features provide significant improvements in system performance and bandwidth.

All FLEX 10KE devices, except EPF10K50E and EPF10K200E devices, support ClockLock and ClockBoost circuitry. EPF10K50S and EPF10K200S devices support this circuitry. Devices that support Clock-Lock and ClockBoost circuitry are distinguished with an "X" suffix in the ordering code; for instance, the EPF10K200SFC672-1X device supports this circuit.

The ClockLock and ClockBoost features in FLEX 10KE devices are enabled through the Altera software. External devices are not required to use these features. The output of the ClockLock and ClockBoost circuits is not available at any of the device pins.

The ClockLock and ClockBoost circuitry locks onto the rising edge of the incoming clock. The circuit output can drive the clock inputs of registers only; the generated clock cannot be gated or inverted.

The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and ClockBoost circuitry. When the dedicated clock pin is driving the ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to the GCLK1 pin. In the Altera software, the GCLK1 pin can feed both the ClockLock and ClockBoost circuitry in the FLEX 10KE device. However, when both circuits are used, the other clock pin cannot be used.

Table 17. 32-Bit IDCODE for FLEX 10KE Devices Note (1)								
Device	IDCODE (32 Bits)							
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)				
EPF10K30E	0001	0001 0000 0011 0000	00001101110	1				
EPF10K50E EPF10K50S	0001	0001 0000 0101 0000	00001101110	1				
EPF10K100E	0010	0000 0001 0000 0000	00001101110	1				
EPF10K130E	0001	0000 0001 0011 0000	00001101110	1				
EPF10K200E EPF10K200S	0001	0000 0010 0000 0000	00001101110	1				

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

FLEX 10KE devices include weak pull-up resistors on the JTAG pins.

For more information, see the following documents:

- Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- Jam Programming & Test Language Specification

Table 20. 2.5-V EPF10K50E & EPF10K200E Device Recommended Operating Conditions								
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	2.30 (2.30)	2.70 (2.70)	V			
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V			
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.30 (2.30)	2.70 (2.70)	V			
VI	Input voltage	(5)	-0.5	5.75	V			
Vo	Output voltage		0	V _{CCIO}	V			
Τ _A	Ambient temperature	For commercial use	0	70	°C			
		For industrial use	-40	85	°C			
TJ	Operating temperature	For commercial use	0	85	°C			
		For industrial use	-40	100	°C			
t _R	Input rise time			40	ns			
t _F	Input fall time			40	ns			

Table 21. 2.5-V EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E & EPF10K200S Device Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	2.375 (2.375)	2.625 (2.625)	V
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V
VI	Input voltage	(5)	-0.5	5.75	V
Vo	Output voltage		0	V _{CCIO}	V
Τ _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
Τ _J	Operating temperature	For commercial use	0	85	°C
		For industrial use	-40	100	°C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Table 23. FLEX 10KE Device Capacitance Note (14)								
Symbol	Symbol Parameter Conditions Min Max Uni							
CIN	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF			
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF			
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF			

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V.
- (7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21.
 (8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS
- signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22.
- (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (11) This value is specified for normal device operation. The value may vary during power-up.
- (12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial temperature devices.
- (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source.
- (14) Capacitance is sample-tested only.

Table 26. EAB Timing Microparameters Note (1)					
Symbol	Parameter	Conditions			
t _{EABDATA1}	Data or address delay to EAB for combinatorial input				
t _{EABDATA2}	Data or address delay to EAB for registered input				
t _{EABWE1}	Write enable delay to EAB for combinatorial input				
t _{EABWE2}	Write enable delay to EAB for registered input				
t _{EABRE1}	Read enable delay to EAB for combinatorial input				
t _{EABRE2}	Read enable delay to EAB for registered input				
t _{EABCLK}	EAB register clock delay				
t _{EABCO}	EAB register clock-to-output delay				
t _{EABBYPASS}	Bypass register delay				
t _{EABSU}	EAB register setup time before clock				
t _{EABH}	EAB register hold time after clock				
t _{EABCLR}	EAB register asynchronous clear time to output delay				
t _{AA}	Address access delay (including the read enable to output delay)				
t _{WP}	Write pulse width				
t _{RP}	Read pulse width				
t _{WDSU}	Data setup time before falling edge of write pulse	(5)			
t _{WDH}	Data hold time after falling edge of write pulse	(5)			
t _{WASU}	Address setup time before rising edge of write pulse	(5)			
t _{WAH}	Address hold time after falling edge of write pulse	(5)			
t _{RASU}	Address setup time with respect to the falling edge of the read enable				
t _{RAH}	Address hold time with respect to the falling edge of the read enable				
t _{WO}	Write enable to data output valid delay				
t _{DD}	Data-in to data-out valid delay				
t _{EABOUT}	Data-out delay				
t _{EABCH}	Clock high time				
t _{EABCL}	Clock low time				

Table 28. Interconnect Timing Microparameters Note (1)						
Symbol	Parameter	Conditions				
t _{DIN2IOE}	Delay from dedicated input pin to IOE control input	(7)				
t _{DIN2LE}	Delay from dedicated input pin to LE or EAB control input	(7)				
t _{DCLK2IOE}	Delay from dedicated clock pin to IOE clock	(7)				
t _{DCLK2LE}	Delay from dedicated clock pin to LE or EAB clock	(7)				
t _{DIN2DATA}	Delay from dedicated input or clock to LE or EAB data	(7)				
t _{SAMELAB}	Routing delay for an LE driving another LE in the same LAB					
t _{SAMEROW}	Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row	(7)				
t _{SAMECOLUMN}	Routing delay for an LE driving an IOE in the same column	(7)				
t _{DIFFROW}	Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row	(7)				
t _{TWOROWS}	Routing delay for a row IOE or EAB driving an LE or EAB in a different row	(7)				
t _{LEPERIPH}	Routing delay for an LE driving a control signal of an IOE via the peripheral control bus	(7)				
t _{LABCARRY}	Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB					
t _{LABCASC}	Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB					

Table 29. External Timing Parameters						
Symbol	Parameter	Conditions				
t _{DRR}	Register-to-register delay via four LEs, three row interconnects, and four local interconnects	(8)				
t _{INSU}	Setup time with global clock at IOE register	(9)				
t _{INH}	Hold time with global clock at IOE register	(9)				
t _{outco}	Clock-to-output delay with global clock at IOE register	(9)				
t _{PCISU}	Setup time with global clock for registers used in PCI designs	(9),(10)				
t _{PCIH}	Hold time with global clock for registers used in PCI designs	(9),(10)				
t _{PCICO}	Clock-to-output delay with global clock for registers used in PCI designs	(9),(10)				

Table 37. EPF10K30E External Bidirectional Timing Parameters Notes (1), (2)								
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR} (3)	2.8		3.9		5.2		ns	
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns	
t _{INSUBIDIR} (4)	3.8		4.9		-		ns	
t _{INHBIDIR} (4)	0.0		0.0		-		ns	
t _{outcobidir} (3)	2.0	4.9	2.0	5.9	2.0	7.6	ns	
t _{XZBIDIR} (3)		6.1		7.5		9.7	ns	
t _{ZXBIDIR} (3)		6.1		7.5		9.7	ns	
t _{OUTCOBIDIR} (4)	0.5	3.9	0.5	4.9	-	_	ns	
t _{XZBIDIR} (4)		5.1		6.5		-	ns	
t _{ZXBIDIR} (4)		5.1		6.5		-	ns	

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 38 through 44 show EPF10K50E device internal and external timing parameters.

Table 38. EPF10K50E Device LE Timing Microparameters (Part 1 of 2) Note (1)							
Symbol	bol -1 Speed Grade -2 Speed Grade -3 Speed Grade		Unit				
	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.6		0.9		1.3	ns
t _{CLUT}		0.5		0.6		0.8	ns
t _{RLUT}		0.7		0.8		1.1	ns
t _{PACKED}		0.4		0.5		0.6	ns
t _{EN}		0.6		0.7		0.9	ns
t _{CICO}		0.2		0.2		0.3	ns
t _{CGEN}		0.5		0.5		0.8	ns
t _{CGENR}		0.2		0.2		0.3	ns
t _{CASC}		0.8		1.0		1.4	ns
t _C		0.5		0.6		0.8	ns
t _{CO}		0.7		0.7		0.9	ns
t _{COMB}		0.5		0.6		0.8	ns
t _{SU}	0.7		0.7		0.8		ns

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Мах	Min	Max	Min	Max	
t _{DRR}		8.5		10.0		13.5	ns
t _{INSU}	2.7		3.2		4.3		ns
t _{INH}	0.0		0.0		0.0		ns
t _{оитсо}	2.0	4.5	2.0	5.2	2.0	7.3	ns
t _{PCISU}	3.0		4.2		-		ns
t _{PCIH}	0.0		0.0		-		ns
t _{PCICO}	2.0	6.0	2.0	7.7	-	-	ns

 Table 44. EPF10K50E External Bidirectional Timing Parameters
 Notes (1), (2)

					-		
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	2.7		3.2		4.3		ns
t _{INHBIDIR}	0.0		0.0		0.0		ns
t _{OUTCOBIDIR}	2.0	4.5	2.0	5.2	2.0	7.3	ns
t _{XZBIDIR}		6.8		7.8		10.1	ns
tZXBIDIR		6.8		7.8		10.1	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external timing parameters.

Table 45. EPF10K100E Device LE Timing Microparameters Note (1)										
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max				
t _{LUT}		0.7		1.0		1.5	ns			
t _{CLUT}		0.5		0.7		0.9	ns			
t _{RLUT}		0.6		0.8		1.1	ns			
t _{PACKED}		0.3		0.4		0.5	ns			
t _{EN}		0.2		0.3		0.3	ns			
t _{CICO}		0.1		0.1		0.2	ns			
t _{CGEN}		0.4		0.5		0.7	ns			

Table 47. EPF10K100E Device EAB Internal Microparameters Note (1)									
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit		
	Min	Max	Min	Max	Min	Мах			
t _{EABDATA1}		1.5		2.0		2.6	ns		
t _{EABDATA1}		0.0		0.0		0.0	ns		
t _{EABWE1}		1.5		2.0		2.6	ns		
t _{EABWE2}		0.3		0.4		0.5	ns		
t _{EABRE1}		0.3		0.4		0.5	ns		
t _{EABRE2}		0.0		0.0		0.0	ns		
t _{EABCLK}		0.0		0.0		0.0	ns		
t _{EABCO}		0.3		0.4		0.5	ns		
t _{EABBYPASS}		0.1		0.1		0.2	ns		
t _{EABSU}	0.8		1.0		1.4		ns		
t _{EABH}	0.1		0.1		0.2		ns		
t _{EABCLR}	0.3		0.4		0.5		ns		
t _{AA}		4.0		5.1		6.6	ns		
t _{WP}	2.7		3.5		4.7		ns		
t _{RP}	1.0		1.3		1.7		ns		
t _{WDSU}	1.0		1.3		1.7		ns		
t _{WDH}	0.2		0.2		0.3		ns		
t _{WASU}	1.6		2.1		2.8		ns		
t _{WAH}	1.6		2.1		2.8		ns		
t _{RASU}	3.0		3.9		5.2		ns		
t _{RAH}	0.1		0.1		0.2		ns		
t _{WO}		1.5		2.0		2.6	ns		
t _{DD}		1.5		2.0		2.6	ns		
t _{EABOUT}		0.2		0.3		0.3	ns		
t _{EABCH}	1.5		2.0		2.5		ns		
t _{EABCL}	2.7		3.5		4.7		ns		

Table 48. EPF10K100E Device EAB Internal Timing Macroparameters (Part 1 of

2)	Note	(1)
-/		· · /

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.9		7.6		9.9	ns
t _{EABRCOMB}	5.9		7.6		9.9		ns
t _{EABRCREG}	5.1		6.5		8.5		ns
t _{EABWP}	2.7		3.5		4.7		ns

Table 50. EPF10K100E External Timing Parameters Notes (1), (2)										
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{DRR}		9.0		12.0		16.0	ns			
t _{INSU} (3)	2.0		2.5		3.3		ns			
t _{INH} (3)	0.0		0.0		0.0		ns			
t _{оитсо} (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns			
t _{INSU} (4)	2.0		2.2		-		ns			
t _{INH} (4)	0.0		0.0		-		ns			
t _{оитсо} (4)	0.5	3.0	0.5	4.6	-	-	ns			
t _{PCISU}	3.0		6.2		-		ns			
t _{PCIH}	0.0		0.0		-		ns			
t _{PCICO}	2.0	6.0	2.0	6.9	_	_	ns			

 Table 51. EPF10K100E External Bidirectional Timing Parameters
 Notes (1), (2)

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (3)	1.7		2.5		3.3		ns
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (4)	2.0		2.8		-		ns
t _{INHBIDIR} (4)	0.0		0.0		-		ns
t _{OUTCOBIDIR} (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns
t _{XZBIDIR} (3)		5.6		7.5		10.1	ns
t _{ZXBIDIR} (3)		5.6		7.5		10.1	ns
t _{OUTCOBIDIR} (4)	0.5	3.0	0.5	4.6	-	-	ns
t _{XZBIDIR} (4)		4.6		6.5		-	ns
t _{ZXBIDIR} (4)		4.6		6.5		-	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Table 53. EPF10K130E Device IOE Timing Microparameters Note (1)										
Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max				
t _{OD3}		4.0		5.6		7.5	ns			
t _{XZ}		2.8		4.1		5.5	ns			
t _{ZX1}		2.8		4.1		5.5	ns			
t _{ZX2}		2.8		4.1		5.5	ns			
t _{ZX3}		4.0		5.6		7.5	ns			
t _{INREG}		2.5		3.0		4.1	ns			
t _{IOFD}		0.4		0.5		0.6	ns			
t _{INCOMB}		0.4		0.5		0.6	ns			

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade	
	Min	Max	Min	Max	Min	Мах	-
t _{EABDATA1}		1.5		2.0		2.6	ns
t _{EABDATA2}		0.0		0.0		0.0	ns
t _{EABWE1}		1.5		2.0		2.6	ns
t _{EABWE2}		0.3		0.4		0.5	ns
t _{EABRE1}		0.3		0.4		0.5	ns
t _{EABRE2}		0.0		0.0		0.0	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.4		0.5	ns
t _{EABBYPASS}		0.1		0.1		0.2	ns
t _{EABSU}	0.8		1.0		1.4		ns
t _{EABH}	0.1		0.2		0.2		ns
t _{EABCLR}	0.3		0.4		0.5		ns
t _{AA}		4.0		5.0		6.6	ns
t _{WP}	2.7		3.5		4.7		ns
t _{RP}	1.0		1.3		1.7		ns
t _{WDSU}	1.0		1.3		1.7		ns
t _{WDH}	0.2		0.2		0.3		ns
t _{WASU}	1.6		2.1		2.8		ns
t _{WAH}	1.6		2.1		2.8		ns
t _{RASU}	3.0		3.9		5.2		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{WO}		1.5		2.0		2.6	ns

Table 58. EPF10K130E External Bidirectional Timing Parameters Notes (1), (2)										
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		ed Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{INSUBIDIR} (3)	2.2		2.4		3.2		ns			
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns			
t _{INSUBIDIR} (4)	2.8		3.0		-		ns			
t _{INHBIDIR} (4)	0.0		0.0		-		ns			
toutcobidir (3)	2.0	5.0	2.0	7.0	2.0	9.2	ns			
t _{XZBIDIR} (3)		5.6		8.1		10.8	ns			
t _{ZXBIDIR} (3)		5.6		8.1		10.8	ns			
toutcobidir (4)	0.5	4.0	0.5	6.0	_	-	ns			
t _{XZBIDIR} (4)		4.6		7.1		-	ns			
t _{ZXBIDIR} (4)		4.6		7.1		-	ns			

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 59 through 65 show EPF10K200E device internal and external timing parameters.

Table 59. EPF10K200E Device LE Timing Microparameters (Part 1 of 2) Note (1)										
Symbol	-1 Spee	ed Grade	-2 Spee	-2 Speed Grade		d Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{LUT}		0.7		0.8		1.2	ns			
t _{CLUT}		0.4		0.5		0.6	ns			
t _{RLUT}		0.6		0.7		0.9	ns			
t _{PACKED}		0.3		0.5		0.7	ns			
t _{EN}		0.4		0.5		0.6	ns			
t _{CICO}		0.2		0.2		0.3	ns			
t _{CGEN}		0.4		0.4		0.6	ns			
t _{CGENR}		0.2		0.2		0.3	ns			
t _{CASC}		0.7		0.8		1.2	ns			
t _C		0.5		0.6		0.8	ns			
t _{CO}		0.5		0.6		0.8	ns			
t _{COMB}		0.4		0.6		0.8	ns			
t _{SU}	0.4		0.6		0.7		ns			

Table 61. EPF10K200E Device EAB Internal Microparameters Note (1)									
Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{EABDATA1}		2.0		2.4		3.2	ns		
t _{EABDATA1}		0.4		0.5		0.6	ns		
t _{EABWE1}		1.4		1.7		2.3	ns		
t _{EABWE2}		0.0		0.0		0.0	ns		
t _{EABRE1}		0		0		0	ns		
t _{EABRE2}		0.4		0.5		0.6	ns		
t _{EABCLK}		0.0		0.0		0.0	ns		
t _{EABCO}		0.8		0.9		1.2	ns		
t _{EABBYPASS}		0.0		0.1		0.1	ns		
t _{EABSU}	0.9		1.1		1.5		ns		
t _{EABH}	0.4		0.5		0.6		ns		
t _{EABCLR}	0.8		0.9		1.2		ns		
t _{AA}		3.1		3.7		4.9	ns		
t _{WP}	3.3		4.0		5.3		ns		
t _{RP}	0.9		1.1		1.5		ns		
t _{WDSU}	0.9		1.1		1.5		ns		
t _{WDH}	0.1		0.1		0.1		ns		
t _{WASU}	1.3		1.6		2.1		ns		
t _{WAH}	2.1		2.5		3.3		ns		
t _{RASU}	2.2		2.6		3.5		ns		
t _{RAH}	0.1		0.1		0.2		ns		
t _{WO}		2.0		2.4		3.2	ns		
t _{DD}		2.0		2.4		3.2	ns		
t _{EABOUT}		0.0		0.1		0.1	ns		
t _{EABCH}	1.5		2.0		2.5		ns		
t _{EABCL}	3.3		4.0		5.3		ns		

Table 62. EPF10K200E Device EAB Internal Timing Macroparameters (Part 1 of 2)

Note (1)
---------	---

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.1		6.4		8.4	ns
t _{EABRCOMB}	5.1		6.4		8.4		ns
t _{EABRCREG}	4.8		5.7		7.6		ns
t _{EABWP}	3.3		4.0		5.3		ns

Table 74. EPF10K200S Device IOE Timing Microparameters (Part 2 of 2) Note (1)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{ZX2}		4.5		4.8		6.6	ns
t _{ZX3}		6.6		7.6		10.1	ns
t _{INREG}		3.7		5.7		7.7	ns
t _{IOFD}		1.8		3.4		4.0	ns
t _{INCOMB}		1.8		3.4		4.0	ns

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Мах	
t _{EABDATA1}		1.8		2.4		3.2	ns
t _{EABDATA1}		0.4		0.5		0.6	ns
t _{EABWE1}		1.1		1.7		2.3	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0		0		0	ns
t _{EABRE2}		0.4		0.5		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		0.9		1.2	ns
t _{EABBYPASS}		0.0		0.1		0.1	ns
t _{EABSU}	0.7		1.1		1.5		ns
t _{EABH}	0.4		0.5		0.6		ns
t _{EABCLR}	0.8		0.9		1.2		ns
t _{AA}		2.1		3.7		4.9	ns
t _{WP}	2.1		4.0		5.3		ns
t _{RP}	1.1		1.1		1.5		ns
twdsu	0.5		1.1		1.5		ns
t _{WDH}	0.1		0.1		0.1		ns
t _{WASU}	1.1		1.6		2.1		ns
t _{WAH}	1.6		2.5		3.3		ns
t _{RASU}	1.6		2.6		3.5		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{WO}		2.0		2.4		3.2	ns
t _{DD}		2.0		2.4		3.2	ns
t _{EABOUT}		0.0		0.1		0.1	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.1		2.8		3.8		ns

Altera Corporation

Figure 31. FLEX 10KE I_{CCACTIVE} vs. Operating Frequency (Part 2 of 2)

Configuration & Operation

The FLEX 10KE architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The FLEX 10KE architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. The process of physically loading the SRAM data into the device is called *configuration*. Before configuration, as V_{CC} rises, the device initiates a Power-On Reset (POR). This POR event clears the device and prepares it for configuration. The FLEX 10KE POR time does not exceed 50 µs.

When configuring with a configuration device, refer to the respective configuration device data sheet for POR timing information.

Additionally, the Altera software offers several features that help plan for future device migration by preventing the use of conflicting I/O pins.

Table 81. I/O Counts for FLEX 10KA & FLEX 10KE Devices					
FLEX 10	KA	FLEX 10	KE		
Device	I/O Count	Device	I/O Count		
EPF10K30AF256	191	EPF10K30EF256	176		
EPF10K30AF484	246	EPF10K30EF484	220		
EPF10K50VB356	274	EPF10K50SB356	220		
EPF10K50VF484	291	EPF10K50EF484	254		
EPF10K50VF484	291	EPF10K50SF484	254		
EPF10K100AF484	369	EPF10K100EF484	338		

Configuration Schemes

The configuration data for a FLEX 10KE device can be loaded with one of five configuration schemes (see Table 82), chosen on the basis of the target application. An EPC1, EPC2, or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of a FLEX 10KE device, allowing automatic configuration on system power-up.

Multiple FLEX 10KE devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Additional FLEX 10K, FLEX 10KA, FLEX 10KE, and FLEX 6000 devices can be configured in the same serial chain.

Table 82. Data Sources for FLEX 10KE Configuration				
Configuration Scheme	Data Source			
Configuration device	EPC1, EPC2, or EPC16 configuration device			
Passive serial (PS)	BitBlaster, ByteBlasterMV, or MasterBlaster download cables, or serial data source			
Passive parallel asynchronous (PPA)	Parallel data source			
Passive parallel synchronous (PPS)	Parallel data source			
JTAG	BitBlaster or ByteBlasterMV download cables, or microprocessor with a Jam STAPL file or JBC file			