E·XFL

Intel - EPF10K50SQC240-2N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	360
Number of Logic Elements/Cells	2880
Total RAM Bits	40960
Number of I/O	189
Number of Gates	199000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k50sqc240-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

When used as RAM, each EAB can be configured in any of the following sizes: 256×16 , 512×8 , $1,024 \times 4$, or $2,048 \times 2$ (see Figure 5).

Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block; two 512×8 RAM blocks can be combined to form a 512×16 block (see Figure 6).

If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. The Altera software automatically combines EABs to meet a designer's RAM specifications.

LE Operating Modes

The FLEX 10KE LE can operate in the following four modes:

- Normal mode
- Arithmetic mode
- Up/down counter mode
- Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs.

Figure 11. FLEX 10KE LE Operating Modes

Clearable Counter Mode

Normal Mode

The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Altera Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time.

The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a three-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a four-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 11 on page 22, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources.

Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is AND ed with a synchronous clear signal.

Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control

Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register.

During compilation, the Altera Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

The clear and preset logic is implemented in one of the following six modes chosen during design entry:

- Asynchronous clear
- Asynchronous preset
- Asynchronous clear and preset
- Asynchronous load with clear
- Asynchronous load with preset
- Asynchronous load without clear or preset

I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time, or as an output register for data that requires fast clock-to-output performance. In some cases, using an LE register for an input register will result in a faster setup time than using an IOE register. IOEs can be used as input, output, or bidirectional pins. For bidirectional registered I/O implementation, the output register should be in the IOE, and the data input and output enable registers should be LE registers placed adjacent to the bidirectional pin. The Altera Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Figure 15 shows the bidirectional I/O registers.

SameFrame Pin-Outs FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ballcount packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K30E device in a 256-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 18).

Printed Circuit Board Designed for 672-Pin FineLine BGA Package

 256-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements)
 672-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements)

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. Figure 19 shows the incoming and generated clock specifications.

Figure 19. Specifications for Incoming & Generated Clocks

The t_l parameter refers to the nominal input clock period; the t_0 parameter refers to the nominal output clock period.

Table 13. ClockLock & ClockBoost Parameters for -2 Speed-Grade Devices									
Symbol	Parameter	Condition	Min	Тур	Max	Unit			
t _R	Input rise time				5	ns			
t _F	Input fall time				5	ns			
t _{INDUTY}	Input duty cycle		40		60	%			
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		75	MHz			
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		37.5	MHz			
f _{CLKDEV}	Input deviation from user specification in the MAX+PLUS II software (1)				25,000 (2)	PPM			
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps			
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs			
t _{JITTER}	Jitter on ClockLock or ClockBoost-	$t_{INCLKSTB} < 100$			250	ps			
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps			
toutduty	Duty cycle for ClockLock or ClockBoost-generated clock		40	50	60	%			

Notes to tables:

- (1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{ITTER} specification is measured under long-term observation. The maximum value for t_{ITTER} is 200 ps if t_{INCLKSTB} is lower than 50 ps.

I/O Configuration

This section discusses the peripheral component interconnect (PCI) pull-up clamping diode option, slew-rate control, open-drain output option, and MultiVolt I/O interface for FLEX 10KE devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera software logic options. The MultiVolt I/O interface is controlled by connecting V_{CCIO} to a different voltage than V_{CCINT} . Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu).

Generic Testing

Each FLEX 10KE device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for FLEX 10KE devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 21. FLEX 10KE AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V. devices or outputs.

Operating Conditions

Tables 19 through 23 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V FLEX 10KE devices.

Table 19	Table 19. FLEX 10KE 2.5-V Device Absolute Maximum Ratings Note (1)										
Symbol	Parameter	Conditions	Min	Max	Unit						
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	3.6	V						
V _{CCIO}			-0.5	4.6	V						
VI	DC input voltage		-2.0	5.75	V						
IOUT	DC output current, per pin		-25	25	mA						
T _{STG}	Storage temperature	No bias	-65	150	°C						
T _{AMB}	Ambient temperature	Under bias	-65	135	°C						
TJ	Junction temperature	PQFP, TQFP, BGA, and FineLine BGA		135	°C						
		packages, under blas									
		Ceramic PGA packages, under bias		150	°C						

Table 2	Table 23. FLEX 10KE Device Capacitance Note (14)									
Symbol	Parameter	Conditions	Min	Max	Unit					
CIN	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF					
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF					
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF					

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V.
- (7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21.
 (8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS
- signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22.
- (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (11) This value is specified for normal device operation. The value may vary during power-up.
- (12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial temperature devices.
- (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source.
- (14) Capacitance is sample-tested only.

Figure 22 shows the required relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance.

Figure 23 shows the typical output drive characteristics of FLEX 10KE devices with 3.3-V and 2.5-V V_{CCIO}. The output driver is compliant to the 3.3-V *PCI Local Bus Specification*, *Revision 2.2* (when VCCIO pins are connected to 3.3 V). FLEX 10KE devices with a -1 speed grade also comply with the drive strength requirements of the *PCI Local Bus Specification*, *Revision 2.2* (when VCCINT pins are powered with a minimum supply of 2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices can be used in open 5.0-V PCI systems.

Figure 25. FLEX 10KE Device LE Timing Model

Figures 29 and 30 show the asynchronous and synchronous timing waveforms, respectively, or the EAB macroparameters in Tables 26 and 27.

EAB Asynchronous Read WE _ a0 a2 Address a1 a3 – t_{EABAA}t_{EABRCCOMB} Data-Out d0 d3 d1 d2 **EAB Asynchronous Write** WE t_{EABWP} ► t_{EABWDH} t_{EABWDSU} × a din0 din1 Data-In t_{EABWASU} t_{EABWAH} t_{EABWCCOMB} Address a0 a1 a2 t_{EABDD} Data-Out din0 din1 dout2

Figure 29. EAB Asynchronous Timing Waveforms

Table 34. EPF10K30E Device EAB Internal Timing Macroparameters Note (1)								
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit	
	Min	Max	Min	Max	Min	Мах		
t _{EABAA}		6.4		7.6		8.8	ns	
t _{EABRCOMB}	6.4		7.6		8.8		ns	
t _{EABRCREG}	4.4		5.1		6.0		ns	
t _{EABWP}	2.5		2.9		3.3		ns	
t _{EABWCOMB}	6.0		7.0		8.0		ns	
t _{EABWCREG}	6.8		7.8		9.0		ns	
t _{EABDD}		5.7		6.7		7.7	ns	
t _{EABDATACO}		0.8		0.9		1.1	ns	
t _{EABDATASU}	1.5		1.7		2.0		ns	
t _{EABDATAH}	0.0		0.0		0.0		ns	
t _{EABWESU}	1.3		1.4		1.7		ns	
t _{EABWEH}	0.0		0.0		0.0		ns	
t _{EABWDSU}	1.5		1.7		2.0		ns	
t _{EABWDH}	0.0		0.0		0.0		ns	
t _{EABWASU}	3.0		3.6		4.3		ns	
t _{EABWAH}	0.5		0.5		0.4		ns	
t _{EABWO}		5.1		6.0		6.8	ns	

Table 50. EPF10K100E External Timing Parameters Notes (1), (2)								
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{DRR}		9.0		12.0		16.0	ns	
t _{INSU} (3)	2.0		2.5		3.3		ns	
t _{INH} (3)	0.0		0.0		0.0		ns	
t _{оитсо} (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns	
t _{INSU} (4)	2.0		2.2		-		ns	
t _{INH} (4)	0.0		0.0		-		ns	
t _{оитсо} (4)	0.5	3.0	0.5	4.6	-	-	ns	
t _{PCISU}	3.0		6.2		-		ns	
t _{PCIH}	0.0		0.0		-		ns	
t _{PCICO}	2.0	6.0	2.0	6.9	_	_	ns	

 Table 51. EPF10K100E External Bidirectional Timing Parameters
 Notes (1), (2)

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (3)	1.7		2.5		3.3		ns
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (4)	2.0		2.8		-		ns
t _{INHBIDIR} (4)	0.0		0.0		-		ns
t _{OUTCOBIDIR} (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns
t _{XZBIDIR} (3)		5.6		7.5		10.1	ns
t _{ZXBIDIR} (3)		5.6		7.5		10.1	ns
t _{OUTCOBIDIR} (4)	0.5	3.0	0.5	4.6	-	-	ns
t _{XZBIDIR} (4)		4.6		6.5		-	ns
t _{ZXBIDIR} (4)		4.6		6.5		-	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Table 59. EPF10K200E Device LE Timing Microparameters (Part 2 of 2) Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Мах	Min	Max	Min	Max			
t _H	0.9		1.1		1.5		ns		
t _{PRE}		0.5		0.6		0.8	ns		
t _{CLR}		0.5		0.6		0.8	ns		
t _{CH}	2.0		2.5		3.0		ns		
t _{CL}	2.0		2.5		3.0		ns		

Table 60. EPF10K200E Device IOE Timing Microparameters Note (1)								
Symbol	-1 Spee	ed Grade	d Grade -2 Speed		-3 Spee	ed Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{IOD}		1.6		1.9		2.6	ns	
t _{IOC}		0.3		0.3		0.5	ns	
t _{IOCO}		1.6		1.9		2.6	ns	
t _{IOCOMB}		0.5		0.6		0.8	ns	
t _{IOSU}	0.8		0.9		1.2		ns	
t _{IOH}	0.7		0.8		1.1		ns	
t _{IOCLR}		0.2		0.2		0.3	ns	
t _{OD1}		0.6		0.7		0.9	ns	
t _{OD2}		0.1		0.2		0.7	ns	
t _{OD3}		2.5		3.0		3.9	ns	
t _{XZ}		4.4		5.3		7.1	ns	
t _{ZX1}		4.4		5.3		7.1	ns	
t _{ZX2}		3.9		4.8		6.9	ns	
t _{ZX3}		6.3		7.6		10.1	ns	
t _{INREG}		4.8		5.7		7.7	ns	
t _{IOFD}		1.5		1.8		2.4	ns	
t _{INCOMB}		1.5		1.8		2.4	ns	

Table 61. EPF10	K200E Device	e EAB Interna	al Micropara	ameters	Note (1)		
Symbol	-1 Spee	ed Grade	d Grade -2 Speed Grade		-2 Speed Grade -3 Speed Grade Unit		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		2.0		2.4		3.2	ns
t _{EABDATA1}		0.4		0.5		0.6	ns
t _{EABWE1}		1.4		1.7		2.3	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0		0		0	ns
t _{EABRE2}		0.4		0.5		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		0.9		1.2	ns
t _{EABBYPASS}		0.0		0.1		0.1	ns
t _{EABSU}	0.9		1.1		1.5		ns
t _{EABH}	0.4		0.5		0.6		ns
t _{EABCLR}	0.8		0.9		1.2		ns
t _{AA}		3.1		3.7		4.9	ns
t _{WP}	3.3		4.0		5.3		ns
t _{RP}	0.9		1.1		1.5		ns
t _{WDSU}	0.9		1.1		1.5		ns
t _{WDH}	0.1		0.1		0.1		ns
t _{WASU}	1.3		1.6		2.1		ns
t _{WAH}	2.1		2.5		3.3		ns
t _{RASU}	2.2		2.6		3.5		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{WO}		2.0		2.4		3.2	ns
t _{DD}		2.0		2.4		3.2	ns
t _{EABOUT}		0.0		0.1		0.1	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	3.3		4.0		5.3		ns

Table 62. EPF10K200E Device EAB Internal Timing Macroparameters (Part 1 of 2)

Note (1)
---------	---

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.1		6.4		8.4	ns
t _{EABRCOMB}	5.1		6.4		8.4		ns
t _{EABRCREG}	4.8		5.7		7.6		ns
t _{EABWP}	3.3		4.0		5.3		ns

Table 64. EPF10K200E External Timing Parameters Notes (1), (2)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{DRR}		10.0		12.0		16.0	ns	
t _{INSU}	2.8		3.4		4.4		ns	
t _{INH}	0.0		0.0		0.0		ns	
t _{оитсо}	2.0	4.5	2.0	5.3	2.0	7.8	ns	
t _{PCISU}	3.0		6.2		-		ns	
t _{PCIH}	0.0		0.0		-		ns	
t _{PCICO}	2.0	6.0	2.0	8.9	-	-	ns	

Table 65. EPF10K200E External Bidirectional Timing Parameters Notes (1), (2)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	3.0		4.0		5.5		ns
t _{INHBIDIR}	0.0		0.0		0.0		ns
t _{OUTCOBIDIR}	2.0	4.5	2.0	5.3	2.0	7.8	ns
t _{XZBIDIR}		8.1		9.5		13.0	ns
tZXBIDIR		8.1		9.5		13.0	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

Tables 66 through 79 show EPF10K50S and EPF10K200S device external timing parameters.

Table 66. EPF10K50S Device LE Timing Microparameters (Part 1 of 2) Note (1)								
Symbol	Symbol -1 Speed C		d Grade -2 Spee		d Grade -3 Spee		Unit	
	Min	Max	Min	Max	Min	Max		
t _{LUT}		0.6		0.8		1.1	ns	
t _{CLUT}		0.5		0.6		0.8	ns	
t _{RLUT}		0.6		0.7		0.9	ns	
t _{PACKED}		0.2		0.3		0.4	ns	
t _{EN}		0.6		0.7		0.9	ns	
t _{CICO}		0.1		0.1		0.1	ns	
t _{CGEN}		0.4		0.5		0.6	ns	

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit_reg@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending

applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation

100