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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 10KE Embedded Programmable Logic Devices Data Sheet
■ Software design support and automatic place-and-route provided by 
Altera’s development systems for Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800

■ Flexible package options
– Available in a variety of packages with 144 to 672 pins, including 

the innovative FineLine BGATM packages (see Tables 3 and 4)
– SameFrameTM pin-out compatibility between FLEX 10KA and 

FLEX 10KE devices across a range of device densities and pin 
counts

■ Additional design entry and simulation support provided by EDIF 
2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), 
DesignWare components, Verilog HDL, VHDL, and other interfaces 
to popular EDA tools from manufacturers such as Cadence, 
Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, 
VeriBest, and Viewlogic 

Notes:
(1) FLEX 10KE device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat 

pack (RQFP), pin-grid array (PGA), and ball-grid array (BGA) packages.
(2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When 

planning device migration, use the I/O pins that are common to all devices. 
(3) This option is supported with a 484-pin FineLine BGA package. By using SameFrame pin migration, all 

FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin, 484-pin, and 
672-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration 
is set.

Table 3. FLEX 10KE Package Options & I/O Pin Count  Notes (1), (2)

Device 144-Pin 
TQFP

208-Pin 
PQFP

240-Pin
PQFP
RQFP

256-Pin
FineLine 

BGA

356-Pin 
BGA

484-Pin
FineLine 

BGA

599-Pin 
PGA

600-Pin 
BGA

672-Pin
FineLine 

BGA

EPF10K30E 102 147 176 220 220 (3)

EPF10K50E 102 147 189 191 254 254 (3)

EPF10K50S 102 147 189 191 220 254 254 (3)

EPF10K100E 147 189 191 274 338 338 (3)

EPF10K130E 186 274 369 424 413

EPF10K200E 470 470 470

EPF10K200S 182 274 369 470 470 470
Altera Corporation 3 
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Figure 1 shows a block diagram of the FLEX 10KE architecture. Each 
group of LEs is combined into an LAB; groups of LABs are arranged into 
rows and columns. Each row also contains a single EAB. The LABs and 
EABs are interconnected by the FastTrack Interconnect routing structure. 
IOEs are located at the end of each row and column of the FastTrack 
Interconnect routing structure.

Figure 1. FLEX 10KE Device Block Diagram

FLEX 10KE devices provide six dedicated inputs that drive the flipflops’ 
control inputs and ensure the efficient distribution of high-speed, low-
skew (less than 1.5 ns) control signals. These signals use dedicated routing 
channels that provide shorter delays and lower skews than the FastTrack 
Interconnect routing structure. Four of the dedicated inputs drive four 
global signals. These four global signals can also be driven by internal 
logic, providing an ideal solution for a clock divider or an internally 
generated asynchronous clear signal that clears many registers in the 
device. 
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The EAB can also use Altera megafunctions to implement dual-port RAM 
applications where both ports can read or write, as shown in Figure 3.

Figure 3. FLEX 10KE EAB in Dual-Port RAM Mode

The FLEX 10KE EAB can be used in a single-port mode, which is useful for 
backward-compatibility with FLEX 10K designs (see Figure 4).

Port A Port B

address_a[] address_b[]

data_a[] data_b[]

we_a we_b

clkena_a clkena_b

Clock A Clock B
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Cascade Chain

With the cascade chain, the FLEX 10KE architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. An a delay as low as 0.6 ns per LE, each additional LE 
provides four more inputs to the effective width of a function. Cascade 
chain logic can be created automatically by the Altera Compiler during 
design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EPF10K50E device, the 
cascade chain stops at the eighteenth LAB and a new one begins at the 
nineteenth LAB). This break is due to the EAB’s placement in the middle 
of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to 
form functions with a wide fan-in. These examples show functions of 
4n variables implemented with n LEs. The LE delay is 0.9 ns; the cascade 
chain delay is 0.6 ns. With the cascade chain, 2.7 ns are needed to decode 
a 16-bit address.

Figure 10. FLEX 10KE Cascade Chain Operation
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Figure 11 shows the LE operating modes.

Figure 11. FLEX 10KE LE Operating Modes
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a four-input LUT. The Altera Compiler automatically selects 
the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT 
output can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect routing 
structure at the same time. 

The LUT and the register in the LE can be used independently (register 
packing). To support register packing, the LE has two outputs; one drives 
the local interconnect, and the other drives the FastTrack Interconnect 
routing structure. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a three-input function can be computed in the LUT, and 
a fourth independent signal can be registered. Alternatively, a four-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect routing structure while the LUT drives 
the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a three-input function; the other generates a carry output. As 
shown in Figure 11 on page 22, the first LUT uses the carry-in signal and 
two data inputs from the LAB local interconnect to generate a 
combinatorial or registered output. For example, in an adder, this output 
is the sum of three signals: a, b, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
Use 2 three-input LUTs: one generates the counter data, and the other 
generates the fast carry bit. A 2-to-1 multiplexer provides synchronous 
loading. Data can also be loaded asynchronously with the clear and preset 
register control signals without using the LUT resources.
Altera Corporation 23 
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In addition to the six clear and preset modes, FLEX 10KE devices provide 
a chip-wide reset pin that can reset all registers in the device. Use of this 
feature is set during design entry. In any of the clear and preset modes, the 
chip-wide reset overrides all other signals. Registers with asynchronous 
presets may be preset when the chip-wide reset is asserted. Inversion can 
be used to implement the asynchronous preset. Figure 12 shows examples 
of how to setup the preset and clear inputs for the desired functionality.

Figure 12. FLEX 10KE LE Clear & Preset Modes
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When dedicated inputs drive non-inverted and inverted peripheral clears, 
clock enables, and output enables, two signals on the peripheral control 
bus will be used.

Tables 8 and 9 list the sources for each peripheral control signal, and show 
how the output enable, clock enable, clock, and clear signals share 
12 peripheral control signals. The tables also show the rows that can drive 
global signals.

Table 8. Peripheral Bus Sources for EPF10K30E, EPF10K50E & EPF10K50S Devices

Peripheral 
Control Signal

EPF10K30E EPF10K50E
EPF10K50S

OE0 Row A Row A

OE1 Row B Row B

OE2 Row C Row D

OE3 Row D Row F

OE4 Row E Row H

OE5 Row F Row J

CLKENA0/CLK0/GLOBAL0 Row A Row A

CLKENA1/OE6/GLOBAL1 Row B Row C

CLKENA2/CLR0 Row C Row E

CLKENA3/OE7/GLOBAL2 Row D Row G

CLKENA4/CLR1 Row E Row I

CLKENA5/CLK1/GLOBAL3 Row F Row J
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ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the 
incoming clock must meet certain requirements. If these specifications are 
not met, the circuitry may not lock onto the incoming clock, which 
generates an erroneous clock within the device. The clock generated by 
the ClockLock and ClockBoost circuitry must also meet certain 
specifications. If the incoming clock meets these requirements during 
configuration, the ClockLock and ClockBoost circuitry will lock onto the 
clock during configuration. The circuit will be ready for use immediately 
after configuration. Figure 19 shows the incoming and generated clock 
specifications.

Figure 19. Specifications for Incoming & Generated Clocks

The tI parameter refers to the nominal input clock period; the tO parameter refers to the 
nominal output clock period.
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Notes to tables:
(1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the 

input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. 
The fCLKDEV parameter specifies how much the incoming clock can differ from the specified frequency during 
device operation. Simulation does not reflect this parameter.

(2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
(3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If 

the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during 
configuration because the tLOCK value is less than the time required for configuration.

(4) The tJITTER specification is measured under long-term observation. The maximum value for tJITTER is 200 ps if 
tINCLKSTB is lower than 50 ps.

I/O 
Configuration

This section discusses the peripheral component interconnect (PCI)
pull-up clamping diode option, slew-rate control, open-drain output 
option, and MultiVolt I/O interface for FLEX 10KE devices. The PCI 
pull-up clamping diode, slew-rate control, and open-drain output options 
are controlled pin-by-pin via Altera software logic options. The MultiVolt 
I/O interface is controlled by connecting VCCIO to a different voltage than 
VCCINT. Its effect can be simulated in the Altera software via the Global 
Project Device Options dialog box (Assign menu).

Table 13. ClockLock & ClockBoost Parameters for -2 Speed-Grade Devices

Symbol Parameter Condition Min Typ Max Unit
tR Input rise time 5 ns

tF Input fall time 5 ns

t INDUTY Input duty cycle 40 60 %

fCLK1 Input clock frequency (ClockBoost 

clock multiplication factor equals 1)

25 75 MHz

fCLK2 Input clock frequency (ClockBoost 

clock multiplication factor equals 2)

16 37.5 MHz

fCLKDEV Input deviation from user 

specification in the MAX+PLUS II 

software (1)

25,000 (2) PPM

t INCLKSTB Input clock stability (measured 

between adjacent clocks)

100 ps

tLOCK Time required for ClockLock or 

ClockBoost to acquire lock (3)
10 µs

tJITTER Jitter on ClockLock or ClockBoost-

generated clock (4)
t INCLKSTB < 100 250 ps

t INCLKSTB < 50 200 (4) ps

tOUTDUTY Duty cycle for ClockLock or 
ClockBoost-generated clock

40 50 60 %
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PCI Pull-Up Clamping Diode Option

FLEX 10KE devices have a pull-up clamping diode on every I/O, 
dedicated input, and dedicated clock pin. PCI clamping diodes clamp the 
signal to the VCCIO value and are required for 3.3-V PCI compliance. 
Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When VCCIO is 
3.3 V, a pin that has the clamping diode option turned on can be driven by 
a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When VCCIO is 2.5 V, a pin 
that has the clamping diode option turned on can be driven by a 2.5-V 
signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can 
be activated for a subset of pins, which would allow a device to bridge 
between a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can 
be configured for low-noise or high-speed performance. A slower slew 
rate reduces system noise and adds a maximum delay of 4.3 ns. The fast 
slew rate should be used for speed-critical outputs in systems that are 
adequately protected against noise. Designers can specify the slew rate 
pin-by-pin or assign a default slew rate to all pins on a device-wide basis. 
The slow slew rate setting affects the falling edge of the output.

Open-Drain Output Option

FLEX 10KE devices provide an optional open-drain output (electrically 
equivalent to open-collector output) for each I/O pin. This open-drain 
output enables the device to provide system-level control signals (e.g., 
interrupt and write enable signals) that can be asserted by any of several 
devices. It can also provide an additional wired-OR plane. 

MultiVolt I/O Interface 

The FLEX 10KE device architecture supports the MultiVolt I/O interface 
feature, which allows FLEX 10KE devices in all packages to interface with 
systems of differing supply voltages. These devices have one set of VCC 
pins for internal operation and input buffers (VCCINT), and another set for 
I/O output drivers (VCCIO). 
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The VCCINT pins must always be connected to a 2.5-V power supply. 
With a 2.5-V VCCINT level, input voltages are compatible with 2.5-V, 3.3-
V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 
3.3-V power supply, depending on the output requirements. When the 
VCCIO pins are connected to a 2.5-V power supply, the output levels are 
compatible with 2.5-V systems. When the VCCIO pins are connected to a 
3.3-V power supply, the output high is at 3.3 V and is therefore compatible 
with 3.3-V or 5.0-V systems. Devices operating with VCCIO levels higher 
than 3.0 V achieve a faster timing delay of tOD2 instead of tOD1.

Table 14 summarizes FLEX 10KE MultiVolt I/O support.

Notes:
(1) The PCI clamping diode must be disabled to drive an input with voltages higher 

than VCCIO.
(2) When VCCIO = 3.3 V, a FLEX 10KE device can drive a 2.5-V device that has 3.3-V 

tolerant inputs.

Open-drain output pins on FLEX 10KE devices (with a pull-up resistor to 
the 5.0-V supply) can drive 5.0-V CMOS input pins that require a VIH of 
3.5 V. When the open-drain pin is active, it will drive low. When the pin is 
inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain 
pin will only drive low or tri-state; it will never drive high. The rise time 
is dependent on the value of the pull-up resistor and load impedance. The 
IOL current specification should be considered when selecting a pull-up 
resistor.

Power Sequencing & Hot-Socketing
Because FLEX 10KE devices can be used in a mixed-voltage environment, 
they have been designed specifically to tolerate any possible power-up 
sequence. The VCCIO and VCCINT power planes can be powered in any 
order.

Signals can be driven into FLEX 10KE devices before and during power 
up without damaging the device. Additionally, FLEX 10KE devices do not 
drive out during power up. Once operating conditions are reached, 
FLEX 10KE devices operate as specified by the user.

Table 14. FLEX 10KE MultiVolt I/O Support

VCCIO (V) Input Signal (V) Output Signal (V)

2.5 3.3 5.0 2.5 3.3 5.0

2.5 v v(1) v(1) v

3.3 v v v(1) v(2) v v
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Generic Testing Each FLEX 10KE device is functionally tested. Complete testing of each 
configurable static random access memory (SRAM) bit and all logic 
functionality ensures 100% yield. AC test measurements for FLEX 10KE 
devices are made under conditions equivalent to those shown in 
Figure 21. Multiple test patterns can be used to configure devices during 
all stages of the production flow.

Figure 21. FLEX 10KE AC Test Conditions
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Tables 19 through 23 provide information on absolute maximum ratings, 
recommended operating conditions, DC operating conditions, and 
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the device ground pin and the test system 
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Numbers in brackets are for 2.5-V devices 
or outputs. Numbers without brackets are 
for 3.3-V. devices or outputs.

Table 19. FLEX 10KE 2.5-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage With respect to ground (2) –0.5 3.6 V

VCCIO –0.5 4.6 V

VI DC input voltage –2.0 5.75 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, TQFP, BGA, and FineLine BGA 
packages, under bias

135 ° C

Ceramic PGA packages, under bias 150 ° C
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Figure 25. FLEX 10KE Device LE Timing Model
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external 
timing parameters.  

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 8.5 10.0 13.5 ns

tINSU 2.7 3.2 4.3 ns

tINH 0.0 0.0 0.0 ns

tOUTCO 2.0 4.5 2.0 5.2 2.0 7.3 ns

tPCISU  3.0  4.2 - ns

tPCIH  0.0  0.0 - ns

tPCICO  2.0  6.0  2.0  7.7 -  - ns

Table 44. EPF10K50E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 2.7 3.2 4.3 ns

tINHBIDIR 0.0 0.0 0.0 ns

tOUTCOBIDIR 2.0 4.5 2.0 5.2 2.0 7.3 ns

tXZBIDIR 6.8 7.8 10.1 ns

tZXBIDIR  6.8  7.8 10.1 ns

Table 45. EPF10K100E Device LE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.7 1.0 1.5 ns

tCLUT 0.5 0.7 0.9 ns

tRLUT 0.6 0.8 1.1 ns

tPACKED 0.3 0.4 0.5 ns

tEN 0.2 0.3 0.3 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.5 0.7 ns
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tEABWCOMB 6.7 8.1 10.7 ns

tEABWCREG 6.6 8.0 10.6 ns

tEABDD 4.0 5.1 6.7 ns

tEABDATACO 0.8 1.0 1.3 ns

tEABDATASU 1.3 1.6 2.1 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 0.9 1.1 1.5 ns

tEABWEH 0.4 0.5 0.6 ns

tEABWDSU 1.5 1.8 2.4 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.7 ns

tEABWAH 0.4 0.5 0.7 ns

tEABWO 3.4 4.4 5.8 ns

Table 63. EPF10K200E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 4.2 4.6 5.7 ns

tDIN2LE 1.7 1.7 2.0 ns

tDIN2DATA 1.9 2.1 3.0 ns

tDCLK2IOE 2.5 2.9 4.0 ns

tDCLK2LE 1.7 1.7 2.0 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 2.3 2.6 3.6 ns

tSAMECOLUMN 2.5 2.7 4.1 ns

tDIFFROW 4.8 5.3 7.7 ns

tTWOROWS 7.1 7.9 11.3 ns

tLEPERIPH 7.0 7.6 9.0 ns

tLABCARRY 0.1 0.1 0.2 ns

tLABCASC 0.9 1.0 1.4 ns

Table 62. EPF10K200E Device EAB Internal Timing Macroparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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tZX2 4.5 4.8 6.6 ns

tZX3 6.6 7.6 10.1 ns

tINREG 3.7 5.7 7.7 ns

tIOFD 1.8 3.4 4.0 ns

tINCOMB 1.8 3.4 4.0 ns

Table 75. EPF10K200S Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.8 2.4 3.2 ns

tEABDATA1 0.4 0.5 0.6 ns

tEABWE1 1.1 1.7 2.3 ns

tEABWE2 0.0 0.0 0.0 ns

tEABRE1 0 0 0 ns

tEABRE2 0.4 0.5 0.6 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.8 0.9 1.2 ns

tEABBYPASS 0.0 0.1 0.1 ns

tEABSU 0.7 1.1 1.5 ns

tEABH 0.4 0.5 0.6 ns

tEABCLR 0.8 0.9 1.2 ns

tAA 2.1 3.7 4.9 ns

tWP 2.1 4.0 5.3 ns

tRP 1.1 1.1 1.5 ns

tWDSU 0.5 1.1 1.5 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.1 1.6 2.1 ns

tWAH 1.6 2.5 3.3 ns

tRASU 1.6 2.6 3.5 ns

tRAH 0.1 0.1 0.2 ns

tWO 2.0 2.4 3.2 ns

tDD 2.0 2.4 3.2 ns

tEABOUT 0.0 0.1 0.1 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.1 2.8 3.8 ns

Table 74. EPF10K200S Device IOE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(3) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

tLABCASC 0.5 1.0 1.4 ns

Table 78. EPF10K200S External Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 9.0 12.0 16.0 ns

tINSU (2) 3.1 3.7 4.7 ns

tINH (2) 0.0 0.0 0.0 ns

tOUTCO (2) 2.0 3.7 2.0 4.4 2.0 6.3 ns

tINSU(3) 2.1 2.7 – ns

tINH (3) 0.0 0.0 – ns

tOUTCO(3) 0.5 2.7 0.5 3.4 – – ns

tPCISU 3.0 4.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 8.9 – – ns

Table 79. EPF10K200S External Bidirectional Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (2) 2.3 3.4 4.4 ns

tINHBIDIR (2) 0.0 0.0 0.0 ns

tINSUBIDIR (3) 3.3 4.4 – ns

tINHBIDIR (3) 0.0 0.0 – ns

tOUTCOBIDIR (2) 2.0 3.7 2.0 4.4 2.0 6.3 ns

tXZBIDIR (2) 6.9 7.6 9.2 ns

tZXBIDIR (2) 5.9 6.6 – ns

tOUTCOBIDIR (3) 0.5 2.7 0.5 3.4 – – ns

tXZBIDIR (3) 6.9 7.6 9.2 ns

tZXBIDIR (3) 5.9 6.6 – ns

Table 77. EPF10K200S Device Interconnect Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Power 
Consumption

The supply power (P) for FLEX 10KE devices can be calculated with the 
following equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

The ICCACTIVE value depends on the switching frequency and the 
application logic. This value is calculated based on the amount of current 
that each LE typically consumes. The PIO value, which depends on the 
device output load characteristics and switching frequency, can be 
calculated using the guidelines given in Application Note 74 (Evaluating 
Power for Altera Devices).

Compared to the rest of the device, the embedded array consumes a 
negligible amount of power. Therefore, the embedded array can be 
ignored when calculating supply current.

The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K × fMAX × N × togLC × 

Where:

fMAX = Maximum operating frequency in MHz
N = Total number of LEs used in the device
togLC = Average percent of LEs toggling at each clock 

(typically 12.5%)
K = Constant

Table 80 provides the constant (K) values for FLEX 10KE devices.

This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions.

Table 80. FLEX 10KE K Constant Values

Device K Value

EPF10K30E 4.5

EPF10K50E 4.8

EPF10K50S 4.5

EPF10K100E 4.5

EPF10K130E 4.6

EPF10K200E 4.8

EPF10K200S 4.6

µA
MHz LE×
---------------------------
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Device 
Pin-Outs 

See the Altera web site (http://www.altera.com) or the Altera Digital 
Library for pin-out information.

Revision 
History

The information contained in the FLEX 10KE Embedded Programmable Logic 
Data Sheet version 2.5 supersedes information published in previous 
versions.

Version 2.5

The following changes were made to the FLEX 10KE Embedded 
Programmable Logic Data Sheet version 2.5:

■ Note (1) added to Figure 23.
■ Text added to “I/O Element” section on page 34.
■ Updated Table 22.

Version 2.4

The following changes were made to the FLEX 10KE Embedded 
Programmable Logic Data Sheet version 2.4: updated text on page 34 and 
page 63.
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