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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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■ Software design support and automatic place-and-route provided by 
Altera’s development systems for Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800

■ Flexible package options
– Available in a variety of packages with 144 to 672 pins, including 

the innovative FineLine BGATM packages (see Tables 3 and 4)
– SameFrameTM pin-out compatibility between FLEX 10KA and 

FLEX 10KE devices across a range of device densities and pin 
counts

■ Additional design entry and simulation support provided by EDIF 
2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), 
DesignWare components, Verilog HDL, VHDL, and other interfaces 
to popular EDA tools from manufacturers such as Cadence, 
Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, 
VeriBest, and Viewlogic 

Notes:
(1) FLEX 10KE device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat 

pack (RQFP), pin-grid array (PGA), and ball-grid array (BGA) packages.
(2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When 

planning device migration, use the I/O pins that are common to all devices. 
(3) This option is supported with a 484-pin FineLine BGA package. By using SameFrame pin migration, all 

FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin, 484-pin, and 
672-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration 
is set.

Table 3. FLEX 10KE Package Options & I/O Pin Count  Notes (1), (2)

Device 144-Pin 
TQFP

208-Pin 
PQFP

240-Pin
PQFP
RQFP

256-Pin
FineLine 

BGA

356-Pin 
BGA

484-Pin
FineLine 

BGA

599-Pin 
PGA

600-Pin 
BGA

672-Pin
FineLine 

BGA

EPF10K30E 102 147 176 220 220 (3)

EPF10K50E 102 147 189 191 254 254 (3)

EPF10K50S 102 147 189 191 220 254 254 (3)

EPF10K100E 147 189 191 274 338 338 (3)

EPF10K130E 186 274 369 424 413

EPF10K200E 470 470 470

EPF10K200S 182 274 369 470 470 470
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Similar to the FLEX 10KE architecture, embedded gate arrays are the 
fastest-growing segment of the gate array market. As with standard gate 
arrays, embedded gate arrays implement general logic in a conventional 
“sea-of-gates” architecture. Additionally, embedded gate arrays have 
dedicated die areas for implementing large, specialized functions. By 
embedding functions in silicon, embedded gate arrays reduce die area 
and increase speed when compared to standard gate arrays. While 
embedded megafunctions typically cannot be customized, FLEX 10KE 
devices are programmable, providing the designer with full control over 
embedded megafunctions and general logic, while facilitating iterative 
design changes during debugging.

Each FLEX 10KE device contains an embedded array and a logic array. 
The embedded array is used to implement a variety of memory functions 
or complex logic functions, such as digital signal processing (DSP), wide 
data-path manipulation, microcontroller applications, and data-
transformation functions. The logic array performs the same function as 
the sea-of-gates in the gate array and is used to implement general logic 
such as counters, adders, state machines, and multiplexers. The 
combination of embedded and logic arrays provides the high 
performance and high density of embedded gate arrays, enabling 
designers to implement an entire system on a single device.

FLEX 10KE devices are configured at system power-up with data stored 
in an Altera serial configuration device or provided by a system 
controller. Altera offers the EPC1, EPC2, and EPC16 configuration 
devices, which configure FLEX 10KE devices via a serial data stream. 
Configuration data can also be downloaded from system RAM or via the 
Altera BitBlasterTM, ByteBlasterMVTM, or MasterBlaster download cables. 
After a FLEX 10KE device has been configured, it can be reconfigured 
in-circuit by resetting the device and loading new data. Because 
reconfiguration requires less than 85 ms, real-time changes can be made 
during system operation.

FLEX 10KE devices contain an interface that permits microprocessors to 
configure FLEX 10KE devices serially or in-parallel, and synchronously or 
asynchronously. The interface also enables microprocessors to treat a 
FLEX 10KE device as memory and configure it by writing to a virtual 
memory location, making it easy to reconfigure the device.
6 Altera Corporation
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Figure 1 shows a block diagram of the FLEX 10KE architecture. Each 
group of LEs is combined into an LAB; groups of LABs are arranged into 
rows and columns. Each row also contains a single EAB. The LABs and 
EABs are interconnected by the FastTrack Interconnect routing structure. 
IOEs are located at the end of each row and column of the FastTrack 
Interconnect routing structure.

Figure 1. FLEX 10KE Device Block Diagram

FLEX 10KE devices provide six dedicated inputs that drive the flipflops’ 
control inputs and ensure the efficient distribution of high-speed, low-
skew (less than 1.5 ns) control signals. These signals use dedicated routing 
channels that provide shorter delays and lower skews than the FastTrack 
Interconnect routing structure. Four of the dedicated inputs drive four 
global signals. These four global signals can also be driven by internal 
logic, providing an ideal solution for a clock divider or an internally 
generated asynchronous clear signal that clears many registers in the 
device. 
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The EAB can also be used for bidirectional, dual-port memory 
applications where two ports read or write simultaneously. To implement 
this type of dual-port memory, two EABs are used to support two 
simultaneous read or writes.

Alternatively, one clock and clock enable can be used to control the input 
registers of the EAB, while a different clock and clock enable control the 
output registers (see Figure 2).

Figure 2. FLEX 10KE Device in Dual-Port RAM Mode       Notes (1)

Notes:
(1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
(2) EPF10K30E and EPF10K50E devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, and 

EPF10K200E devices have 104 EAB local interconnect channels. 
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When used as RAM, each EAB can be configured in any of the following 
sizes: 256 × 16, 512 × 8, 1,024 × 4, or 2,048 × 2 (see Figure 5). 

Figure 5. FLEX 10KE EAB Memory Configurations

Larger blocks of RAM are created by combining multiple EABs. For 
example, two 256 × 16 RAM blocks can be combined to form a 256 × 32  
block; two 512 × 8 RAM blocks can be combined to form a 512 × 16 block 
(see Figure 6).

Figure 6. Examples of Combining FLEX 10KE EABs

If necessary, all EABs in a device can be cascaded to form a single RAM 
block. EABs can be cascaded to form RAM blocks of up to 2,048 words 
without impacting timing. The Altera software automatically combines 
EABs to meet a designer’s RAM specifications.
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Each LAB provides four control signals with programmable inversion 
that can be used in all eight LEs. Two of these signals can be used as clocks, 
the other two can be used for clear/preset control. The LAB clocks can be 
driven by the dedicated clock input pins, global signals, I/O signals, or 
internal signals via the LAB local interconnect. The LAB preset and clear 
control signals can be driven by the global signals, I/O signals, or internal 
signals via the LAB local interconnect. The global control signals are 
typically used for global clock, clear, or preset signals because they 
provide asynchronous control with very low skew across the device. If 
logic is required on a control signal, it can be generated in one or more LE 
in any LAB and driven into the local interconnect of the target LAB. In 
addition, the global control signals can be generated from LE outputs.

Logic Element

The LE, the smallest unit of logic in the FLEX 10KE architecture, has a 
compact size that provides efficient logic utilization. Each LE contains a 
four-input LUT, which is a function generator that can quickly compute 
any function of four variables. In addition, each LE contains a 
programmable flipflop with a synchronous clock enable, a carry chain, 
and a cascade chain. Each LE drives both the local and the FastTrack 
Interconnect routing structure (see Figure 8).

Figure 8. FLEX 10KE Logic Element
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Cascade Chain

With the cascade chain, the FLEX 10KE architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. An a delay as low as 0.6 ns per LE, each additional LE 
provides four more inputs to the effective width of a function. Cascade 
chain logic can be created automatically by the Altera Compiler during 
design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EPF10K50E device, the 
cascade chain stops at the eighteenth LAB and a new one begins at the 
nineteenth LAB). This break is due to the EAB’s placement in the middle 
of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to 
form functions with a wide fan-in. These examples show functions of 
4n variables implemented with n LEs. The LE delay is 0.9 ns; the cascade 
chain delay is 0.6 ns. With the cascade chain, 2.7 ns are needed to decode 
a 16-bit address.

Figure 10. FLEX 10KE Cascade Chain Operation

LE1

LUT

LE2

LUT

d[3..0]

d[7..4]

d[(4n – 1)..(4n – 4)]

d[3..0]

d[7..4]

LEn

LE1

LE2

LEn

LUT

LUT

LUT

LUT

AND Cascade Chain OR Cascade Chain

d[(4n – 1)..(4n – 4)]
20 Altera Corporation



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a four-input LUT. The Altera Compiler automatically selects 
the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT 
output can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect routing 
structure at the same time. 

The LUT and the register in the LE can be used independently (register 
packing). To support register packing, the LE has two outputs; one drives 
the local interconnect, and the other drives the FastTrack Interconnect 
routing structure. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a three-input function can be computed in the LUT, and 
a fourth independent signal can be registered. Alternatively, a four-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect routing structure while the LUT drives 
the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a three-input function; the other generates a carry output. As 
shown in Figure 11 on page 22, the first LUT uses the carry-in signal and 
two data inputs from the LAB local interconnect to generate a 
combinatorial or registered output. For example, in an adder, this output 
is the sum of three signals: a, b, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
Use 2 three-input LUTs: one generates the counter data, and the other 
generates the fast carry bit. A 2-to-1 multiplexer provides synchronous 
loading. Data can also be loaded asynchronously with the clear and preset 
register control signals without using the LUT resources.
Altera Corporation 23 
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FastTrack Interconnect Routing Structure

In the FLEX 10KE architecture, connections between LEs, EABs, and 
device I/O pins are provided by the FastTrack Interconnect routing 
structure, which is a series of continuous horizontal and vertical routing 
channels that traverses the device. This global routing structure provides 
predictable performance, even in complex designs. In contrast, the 
segmented routing in FPGAs requires switch matrices to connect a 
variable number of routing paths, increasing the delays between logic 
resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column 
interconnect channels that span the entire device. Each row of LABs is 
served by a dedicated row interconnect. The row interconnect can drive 
I/O pins and feed other LABs in the row. The column interconnect routes 
signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row 
signal is buffered at every LAB or EAB to reduce the effect of fan-out on 
delay. A row channel can be driven by an LE or by one of three column 
channels. These four signals feed dual 4-to-1 multiplexers that connect to 
two specific row channels. These multiplexers, which are connected to 
each LE, allow column channels to drive row channels even when all eight 
LEs in a LAB drive the row interconnect. 

Each column of LABs or EABs is served by a dedicated column 
interconnect. The column interconnect that serves the EABs has twice as 
many channels as other column interconnects. The column interconnect 
can then drive I/O pins or another row’s interconnect to route the signals 
to other LABs or EABs in the device. A signal from the column 
interconnect, which can be either the output of a LE or an input from an 
I/O pin, must be routed to the row interconnect before it can enter a LAB 
or EAB. Each row channel that is driven by an IOE or EAB can drive one 
specific column channel.

Access to row and column channels can be switched between LEs in 
adjacent pairs of LABs. For example, a LE in one LAB can drive the row 
and column channels normally driven by a particular LE in the adjacent 
LAB in the same row, and vice versa. This flexibility enables routing 
resources to be used more efficiently (see Figure 13).
Altera Corporation 27 
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SameFrame 
Pin-Outs

FLEX 10KE devices support the SameFrame pin-out feature for 
FineLine BGA packages. The SameFrame pin-out feature is the 
arrangement of balls on FineLine BGA packages such that the lower-ball-
count packages form a subset of the higher-ball-count packages. 
SameFrame pin-outs provide the flexibility to migrate not only from 
device to device within the same package, but also from one package to 
another. A given printed circuit board (PCB) layout can support multiple 
device density/package combinations. For example, a single board layout 
can support a range of devices from an EPF10K30E device in a 256-pin 
FineLine BGA package to an EPF10K200S device in a 672-pin 
FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame 
pin-out devices. Devices can be defined for present and future use. The 
Altera software generates pin-outs describing how to lay out a board to 
take advantage of this migration (see Figure 18).

Figure 18. SameFrame Pin-Out Example
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Figure 26. FLEX 10KE Device IOE Timing Model

Figure 27. FLEX 10KE Device EAB Timing Model
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tCLR LE register clear delay

tCH Minimum clock high time from clock pin

tCL Minimum clock low time from clock pin

Table 24. LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Parameter Condition

Table 25. IOE Timing Microparameters Note (1)

Symbol Parameter Conditions

tIOD IOE data delay

tIOC IOE register control signal delay

tIOCO IOE register clock-to-output delay

tIOCOMB IOE combinatorial delay

tIOSU IOE register setup time for data and enable signals before clock; IOE register 
recovery time after asynchronous clear

tIOH IOE register hold time for data and enable signals after clock

tIOCLR IOE register clear time

tOD1 Output buffer and pad delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tOD2 Output buffer and pad delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tOD3 Output buffer and pad delay, slow slew rate = on C1 = 35 pF (4)

tXZ IOE output buffer disable delay

tZX1 IOE output buffer enable delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tZX2 IOE output buffer enable delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tZX3 IOE output buffer enable delay, slow slew rate = on C1 = 35 pF (4)

tINREG IOE input pad and buffer to IOE register delay

tIOFD IOE register feedback delay

tINCOMB IOE input pad and buffer to FastTrack Interconnect delay
Altera Corporation 57 
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Table 33. EPF10K30E Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.7 2.0 2.3 ns

tEABDATA1 0.6 0.7 0.8 ns

tEABWE1 1.1 1.3 1.4 ns

tEABWE2 0.4 0.4 0.5 ns

tEABRE1 0.8 0.9 1.0 ns

tEABRE2 0.4 0.4 0.5 ns

tEABCLK 0.0 0.0  0.0 ns

tEABCO 0.3 0.3 0.4 ns

tEABBYPASS 0.5 0.6 0.7 ns

tEABSU 0.9 1.0 1.2 ns

tEABH 0.4 0.4 0.5 ns

tEABCLR 0.3 0.3 0.3 ns

tAA 3.2 3.8 4.4 ns

tWP 2.5 2.9 3.3 ns

tRP 0.9 1.1 1.2 ns

tWDSU 0.9 1.0 1.1 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.7 2.0 2.3 ns

tWAH 1.8 2.1 2.4 ns

tRASU 3.1 3.7 4.2 ns

tRAH 0.2 0.2 0.2 ns

tWO 2.5 2.9 3.3 ns

tDD 2.5 2.9 3.3 ns

tEABOUT 0.5 0.6 0.7 ns

tEABCH 1.5 2.0 2.3 ns

tEABCL 2.5 2.9 3.3 ns
Altera Corporation 65 
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tH 0.9 1.0 1.4 ns

tPRE 0.5 0.6 0.8 ns

tCLR 0.5 0.6 0.8 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 39. EPF10K50E Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tIOD 2.2 2.4 3.3 ns

tIOC 0.3 0.3 0.5 ns

tIOCO 1.0 1.0 1.4 ns

tIOCOMB 0.0 0.0 0.2 ns

tIOSU 1.0 1.2 1.7 ns

tIOH 0.3 0.3 0.5 ns

tIOCLR 0.9 1.0 1.4 ns

tOD1 0.8 0.9 1.2 ns

tOD2 0.3 0.4 0.7 ns

tOD3 3.0 3.5 3.5 ns

tXZ 1.4 1.7 2.3 ns

tZX1 1.4 1.7 2.3 ns

tZX2 0.9 1.2 1.8 ns

tZX3 3.6 4.3 4.6 ns

tINREG 4.9 5.8 7.8 ns

tIOFD 2.8 3.3 4.5 ns

tINCOMB 2.8 3.3 4.5 ns

Table 38. EPF10K50E Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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tOD3 4.0 5.6 7.5 ns

tXZ 2.8 4.1 5.5 ns

tZX1 2.8 4.1 5.5 ns

tZX2 2.8 4.1 5.5 ns

tZX3 4.0 5.6 7.5 ns

tINREG 2.5 3.0 4.1 ns

tIOFD 0.4 0.5 0.6 ns

tINCOMB 0.4 0.5 0.6 ns

Table 54. EPF10K130E Device EAB Internal Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.5 2.0 2.6 ns

tEABDATA2 0.0 0.0 0.0 ns

tEABWE1 1.5 2.0 2.6 ns

tEABWE2 0.3 0.4 0.5 ns

tEABRE1 0.3 0.4 0.5 ns

tEABRE2 0.0 0.0 0.0 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.4 0.5 ns

tEABBYPASS 0.1 0.1 0.2 ns

tEABSU 0.8 1.0 1.4 ns

tEABH 0.1 0.2 0.2 ns

tEABCLR 0.3 0.4 0.5 ns

tAA 4.0 5.0 6.6 ns

tWP 2.7 3.5 4.7 ns

tRP 1.0 1.3 1.7 ns

tWDSU 1.0 1.3 1.7 ns

tWDH 0.2 0.2 0.3 ns

tWASU 1.6 2.1 2.8 ns

tWAH 1.6 2.1 2.8 ns

tRASU 3.0 3.9 5.2 ns

tRAH 0.1 0.1 0.2 ns

tWO 1.5 2.0 2.6 ns

Table 53. EPF10K130E Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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tH 0.9 1.1 1.5 ns

tPRE 0.5 0.6 0.8 ns

tCLR 0.5 0.6 0.8 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 60. EPF10K200E Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tIOD 1.6 1.9 2.6 ns

tIOC 0.3 0.3 0.5 ns

tIOCO 1.6 1.9 2.6 ns

tIOCOMB 0.5 0.6 0.8 ns

tIOSU 0.8 0.9 1.2 ns

tIOH 0.7 0.8 1.1 ns

tIOCLR 0.2 0.2 0.3 ns

tOD1 0.6 0.7 0.9 ns

tOD2 0.1 0.2 0.7 ns

tOD3 2.5 3.0 3.9 ns

tXZ 4.4 5.3 7.1 ns

tZX1 4.4 5.3 7.1 ns

tZX2 3.9 4.8 6.9 ns

tZX3 6.3 7.6 10.1 ns

tINREG 4.8 5.7 7.7 ns

tIOFD 1.5 1.8 2.4 ns

tINCOMB 1.5 1.8 2.4 ns

Table 59. EPF10K200E Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Table 68. EPF10K50S Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.7 2.4 3.2 ns

tEABDATA2 0.4 0.6 0.8 ns

tEABWE1 1.0 1.4 1.9 ns

tEABWE2 0.0 0.0 0.0 ns

tEABRE1 0.0 0.0 0.0

tEABRE2 0.4 0.6 0.8

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.8 1.1 1.5 ns

tEABBYPASS 0.0 0.0 0.0 ns

tEABSU 0.7 1.0 1.3 ns

tEABH 0.4 0.6 0.8 ns

tEABCLR 0.8 1.1 1.5

tAA 2.0 2.8 3.8 ns

tWP 2.0 2.8 3.8 ns

tRP 1.0 1.4 1.9

tWDSU 0.5 0.7 0.9 ns

tWDH 0.1 0.1 0.2 ns

tWASU 1.0 1.4 1.9 ns

tWAH 1.5 2.1 2.9 ns

tRASU 1.5 2.1 2.8

tRAH 0.1 0.1 0.2

tWO 2.1 2.9 4.0 ns

tDD 2.1 2.9 4.0 ns

tEABOUT 0.0 0.0 0.0 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 1.5 2.0 2.5 ns
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30.
(2) This parameter is measured without use of the ClockLock or ClockBoost circuits.
(3) This parameter is measured with use of the ClockLock or ClockBoost circuits

Table 71. EPF10K50S External Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 8.0 9.5 12.5 ns

tINSU (2) 2.4 2.9 3.9 ns

tINH (2) 0.0 0.0 0.0 ns

tOUTCO (2) 2.0 4.3 2.0  5.2 2.0 7.3 ns

tINSU (3) 2.4 2.9 ns

tINH (3) 0.0 0.0 ns

tOUTCO (3) 0.5 3.3 0.5 4.1 ns

tPCISU  2.4 2.9 – ns

tPCIH  0.0  0.0 – ns

tPCICO  2.0  6.0  2.0 7.7 – – ns

Table 72. EPF10K50S External Bidirectional Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (2) 2.7 3.2 4.3 ns

tINHBIDIR (2) 0.0 0.0 0.0 ns

tINHBIDIR (3) 0.0 0.0 – ns

tINSUBIDIR (3) 3.7 4.2 – ns

tOUTCOBIDIR (2) 2.0 4.5 2.0 5.2 2.0 7.3 ns

tXZBIDIR (2) 6.8 7.8 10.1 ns

tZXBIDIR (2) 6.8 7.8 10.1 ns

tOUTCOBIDIR (3) 0.5 3.5 0.5 4.2 – –

tXZBIDIR (3) 6.8 8.4 – ns

tZXBIDIR (3) 6.8 8.4 – ns
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Power 
Consumption

The supply power (P) for FLEX 10KE devices can be calculated with the 
following equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

The ICCACTIVE value depends on the switching frequency and the 
application logic. This value is calculated based on the amount of current 
that each LE typically consumes. The PIO value, which depends on the 
device output load characteristics and switching frequency, can be 
calculated using the guidelines given in Application Note 74 (Evaluating 
Power for Altera Devices).

Compared to the rest of the device, the embedded array consumes a 
negligible amount of power. Therefore, the embedded array can be 
ignored when calculating supply current.

The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K × fMAX × N × togLC × 

Where:

fMAX = Maximum operating frequency in MHz
N = Total number of LEs used in the device
togLC = Average percent of LEs toggling at each clock 

(typically 12.5%)
K = Constant

Table 80 provides the constant (K) values for FLEX 10KE devices.

This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions.

Table 80. FLEX 10KE K Constant Values

Device K Value

EPF10K30E 4.5

EPF10K50E 4.8

EPF10K50S 4.5

EPF10K100E 4.5

EPF10K130E 4.6

EPF10K200E 4.8

EPF10K200S 4.6

µA
MHz LE×
---------------------------
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Additionally, the Altera software offers several features that help plan for 
future device migration by preventing the use of conflicting I/O pins.

Configuration Schemes

The configuration data for a FLEX 10KE device can be loaded with one of 
five configuration schemes (see Table 82), chosen on the basis of the target 
application. An EPC1, EPC2, or EPC16 configuration device, intelligent 
controller, or the JTAG port can be used to control the configuration of a 
FLEX 10KE device, allowing automatic configuration on system 
power-up.

Multiple FLEX 10KE devices can be configured in any of the five 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device. Additional 
FLEX 10K, FLEX 10KA, FLEX 10KE, and FLEX 6000 devices can be 
configured in the same serial chain.

Table 81. I/O Counts for FLEX 10KA & FLEX 10KE Devices

FLEX 10KA FLEX 10KE

Device I/O Count Device I/O Count

EPF10K30AF256 191 EPF10K30EF256 176

EPF10K30AF484 246 EPF10K30EF484 220

EPF10K50VB356 274 EPF10K50SB356 220

EPF10K50VF484 291 EPF10K50EF484 254

EPF10K50VF484 291 EPF10K50SF484 254

EPF10K100AF484 369 EPF10K100EF484 338

Table 82. Data Sources for FLEX 10KE Configuration

Configuration Scheme Data Source

Configuration device EPC1, EPC2, or EPC16 configuration device

Passive serial (PS) BitBlaster, ByteBlasterMV, or MasterBlaster download cables, 
or serial data source

Passive parallel asynchronous (PPA) Parallel data source

Passive parallel synchronous (PPS) Parallel data source

JTAG BitBlaster or ByteBlasterMV download cables, or 
microprocessor with a Jam STAPL file or JBC file
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