E·XFL

NXP USA Inc. - MC56F84462VLH Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore Processor56800EXCore Size32-Bit Single-CoreSpeed60MHzConnectivityCANbus, I°C, LINbus, SCI, SPIPeripheralsBrown-out Detect/Reset, DMA, LVD, POR, PWM, WDTNumber of I/O54Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size2K x 8RAM Size24K x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 16x12b; D/A 1x12b		
Core Size32-Bit Single-CoreSpeed60MHzConnectivityCANbus, I²C, LINbus, SCI, SPIPeripheralsBrown-out Detect/Reset, DMA, LVD, POR, PWM, WDTNumber of I/O54Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size2K x 8RAM Size24K x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6V	Product Status	Active
Speed60MHzConnectivityCANbus, I²C, LINbus, SCI, SPIPeripheralsBrown-out Detect/Reset, DMA, LVD, POR, PWM, WDTNumber of I/O54Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size2K x 8RAM Size24K x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6V	Core Processor	56800EX
ConnectivityCANbus, I²C, LINbus, SCI, SPIPeripheralsBrown-out Detect/Reset, DMA, LVD, POR, PWM, WDTNumber of I/O54Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size2K x 8RAM Size24K x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6V	Core Size	32-Bit Single-Core
PeripheralsBrown-out Detect/Reset, DMA, LVD, POR, PWM, WDTNumber of I/O54Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size2K x 8RAM Size24K x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6V	Speed	60MHz
Number of I/O54Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size2K x 8RAM Size24K x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6V	Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size2K x 8RAM Size24K x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6V	Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size2K × 8RAM Size24K × 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6V	Number of I/O	54
EEPROM Size2K x 8RAM Size24K x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6V	Program Memory Size	128KB (128K x 8)
RAM Size 24K x 8 Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V	EEPROM Size	2K x 8
	RAM Size	24K x 8
Data Converters A/D 16x12b; D/A 1x12b	Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
	Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type Internal	Oscillator Type	Internal
Operating Temperature -40°C ~ 105°C (TA)	Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type Surface Mount	Mounting Type	Surface Mount
Package / Case 64-LQFP	Package / Case	64-LQFP
Supplier Device Package64-LQFP (10x10)	Supplier Device Package	64-LQFP (10x10)
	Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc56f84462vlh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- 32-bit arithmetic and logic multi-bit shifter
- Four 36-bit accumulators, including extension bits
- Parallel instruction set with unique DSP addressing modes
- Hardware DO and REP loops
- Bit reverse address mode, effectively supporting DSP and Fast Fourier Transform algorithms
- Full shadowing of the register stack for zero-overhead context saves and restores: nine shadow registers corresponding to the R0, R1, R2, R3, R4, R5, N, N3, and M01 address registers
- Instruction set supporting both DSP and controller functions
- Controller-style addressing modes and instructions for compact code
- Enhanced bit manipulation instruction set
- Efficient C compiler and local variable support
- Software subroutine and interrupt stack with depth limited only by memory
- Priority level setting for interrupt levels
- JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, real-time debugging that is independent of processor speed

1.3 Operation Parameters

- Up to 60 MHz operation at -40 °C to 105 °C ambient temperature
- Single 3.3 V power supply
- Supply range: V_{DD} V_{SS} = 2.7 V to 3.6 V, V_{DDA} V_{SSA} = 2.7 V to 3.6 V

1.4 On-Chip Memory and Memory Protection

- Modified dual Harvard architecture permits as many as three simultaneous accesses to program and data memory
- Internal flash memory with security and protection to prevent unauthorized access
- Memory resource protection (MRP) unit to protect supervisor programs and resources from user programs
- Programming code can reside in flash memory during flash programming
- The dual-ported RAM controller supports concurrent instruction fetches and data accesses, or dual data accesses, by the DSC core.
 - Concurrent accesses provide increased performance.
 - The data and instruction arrive at the core in the same cycle, reducing latency.
- On-chip memory
 - Up to 128 KW program/data flash memory
 - Up to 16 KW dual port data/program RAM

MC56F844xx Advance Information Data Sheet, Rev. 2, 06/2012.

1.6.13 Phase Locked Loop

- Wide programmable output frequency: 240 MHz to 400 MHz
- Input reference clock frequency: 8 MHz to 16 MHz
- Detection of loss of lock and loss of reference clock
- Ability to power down

1.6.14 Clock sources

1.6.14.1 On-Chip Oscillators

- Tunable 8 MHz relaxation oscillator with 400 kHz at standby mode (divide-by-two output)
- 32 kHz low frequency clock as secondary clock source for COP, EWM, PIT

1.6.14.2 Crystal Oscillator

- Support for both high ESR crystal oscillator (greater than 100-ohm ESR) and ceramic resonator
- 4 MHz to 16 MHz operating frequency

1.6.15 Cyclic Redundancy Check (CRC) Generator

- Hardware 16/32-bit CRC generator
- High-speed hardware CRC calculation
- Programmable initial seed value
- Programmable 16/32-bit polynomial
- Error detection for all single, double, odd, and most multi-bit errors
- Option to transpose input data or output data (CRC result) bitwise or bytewise,¹ which is required for certain CRC standards
- Option for inversion of final CRC result

1.6.16 General Purpose I/O (GPIO)

- 5 V tolerance
- Individual control of peripheral mode or GPIO mode for each pin
- Programmable push-pull or open drain output
- Configurable pullup or pulldown on all input pins

^{1.} A bytewise transposition is not possible when accessing the CRC data register via 8-bit accesses. In this case, user software must perform the bytewise transposition.

- All pins except JTAG and RESETB pins default to be GPIO inputs
- 2 mA / 9 mA source/sink capability
- Controllable output slew rate

1.7 Block Diagrams

The 56800EX core is based on a modified dual Harvard-style architecture consisting of three execution units operating in parallel, allowing as many as six operations per instruction cycle. The MCU-style programming model and optimized instruction set allow straightforward generation of efficient, compact DSP and control code. The instruction set is also highly efficient for C compilers to enable rapid development of optimized control applications.

The device's basic architecture appears in Figure 1 and Figure 2. Figure 1 illustrates how the 56800EX system buses communicate with internal memories and the IPBus interface and the internal connections among each unit of the 56800EX core. Figure 2 shows the peripherals and control blocks connected to the IPBus bridge. See the specific device's Reference Manual for details.

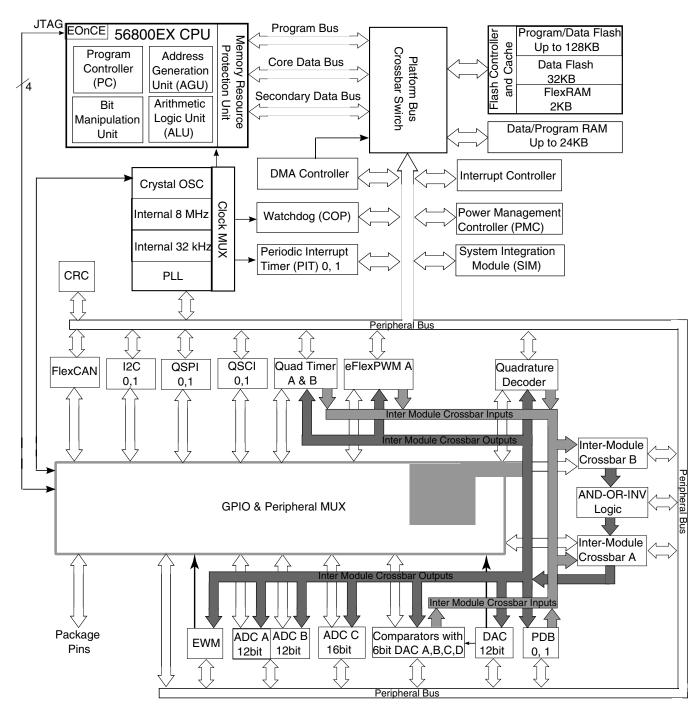


Figure 2. System Diagram

2 Signal groups

The input and output signals of the MC56F84xxx are organized into functional groups, as detailed in Table 2.

Functional Group	Number of Pins in 48LQFP	Number of Pins in 64LQFP	Number of Pins in 80LQFP	Number of Pins in 100LQFP	
Power Inputs (V _{DD} , V _{DDA} , V _{CAP})	5	6	6	6	
Ground (V _{SS} , V _{SSA})	4	4	4	4	
Reset	1	1	1	1	
eFlexPWM ports, not including fault pins	6	9	N/A	N/A	
Queued Serial Peripheral Interface (QSPI) ports	5	6	8	15	
Queued Serial Communications Interface (QSCI) ports	6	9	13	15	
Inter-Integrated Circuit (I ² C) interface ports	4	6	6	6	
12-bit Analog-to-Digital Converter (Cyclic ADC) inputs	10	16	16	16	
16-bit Analog-to-Digital Converter (SAR ADC) inputs	2	8	10	16	
Analog Comparator inputs/outputs	10/4	13/6	13/6	16/6	
12-bit Digital-to-Analog output	1	1	1	1	
Quad Timer Module (TMR) ports	6	9	11	13	
Controller Area Network (FlexCAN)	2	2	2	2	
Inter-Module Crossbar inputs/outputs	12/2	16/6	19/17	25/19	
Clock inputs/outputs	2/2	2/2	2/3	2/3	
JTAG / Enhanced On-Chip Emulation (EOnCE)	4	4	4	4	

Table 2. Functional Group Pin Allocations

3 Ordering parts

3.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: MC56F84

4 Part identification

4.4 Example

This is an example part number: MC56F84789VLL

5 Terminology and guidelines

5.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

5.1.1 Example

This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

5.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

5.2.1 Example

This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:

Symbol	Description	Min.	Max.	Unit
	Digital I/O weak pullup/ pulldown current	10	130	μA

5.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

5.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

5.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

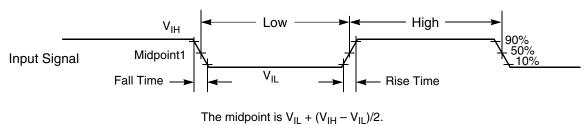
- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

5.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

Absolute maximum ratings in Table 4 are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to the device.


Unless otherwise stated, all specifications within this chapter apply over the temperature range of -40°C to 105°C ambient temperature over the following supply ranges: VSS = VSSA = 0 V, VDD = VDDA = 3.0 V to 3.6 V, CL \leq 50 pF, f_{OP} = 60 MHz.

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum-rated voltages to this highimpedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

7.2 AC Electrical Characteristics

Tests are conducted using the input levels specified in Table 7. Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured between the 10% and 90% points, as shown in Figure 3.

Figure 3. Input Signal Measurement References

Figure 4 shows the definitions of the following signal states:

- Active state, when a bus or signal is driven, and enters a low impedance state
- Tri-stated, when a bus or signal is placed in a high impedance state
- Data Valid state, when a signal level has reached V_{OL} or V_{OH}
- Data Invalid state, when a signal level is in transition between $V_{\mbox{OL}}$ and $V_{\mbox{OH}}$

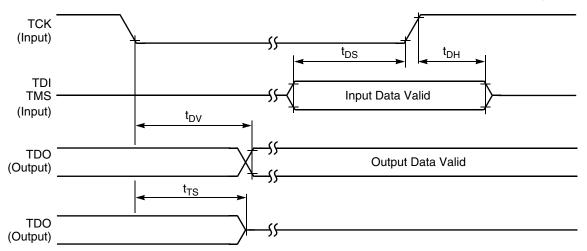


Figure 6. Test Access Port Timing Diagram

8.2 System modules

8.2.1 Voltage Regulator Specifications

The regulator supplies approximately 1.2 V to the MC56F84xxx's core logic. This regulator requires an external 2.2 μ F capacitor on each V_{CAP} pin for proper operation. Ceramic and tantalum capacitors tend to provide better performance tolerances. The output voltage can be measured directly on the V_{CAP} pin. The specifications for this regulator are shown in Table 16.

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage ¹	V _{CAP}	—	1.22	—	V
Short Circuit Current ²	I _{SS}	—	600	TBD	mA
Short Circuit Tolerance (V _{CAP} shorted to ground)	T _{RSC}	_		30	Minutes

Table 16. Regulator 1.2 V Parameters

1. Value is after trim

2. Guaranteed by design

Table 17.	Bandgap	Electrical	Specifications
-----------	---------	------------	-----------------------

Characteristic	Symbol	Min	Тур	Max	Unit
Reference Voltage (after trim)	V _{REF}	—	1.21	_	V

8.3 Clock modules

8.3.3 External Crystal or Resonator Requirement

Table 20.	Crystal or	Resonator	Requirement
-----------	------------	-----------	-------------

Characteristic	Symbol	Min	Тур	Max	Unit
Frequency of operation	f _{xosc}	4	8	16	MHz

8.3.4 Relaxation Oscillator Timing

Table 21. Relaxation Oscillator Electrical Specifications

Characteristic	Symbol	Min	Тур	Мах	Unit
8 MHz Output Frequency ¹					
RUN Mode • 0°C to 105°C • -40°C to 105°C		7.84	8	8.16	MHz
Standby Mode (IRC trimmed @ 8 MHz) • -40°C to 105°C		7.76	8	8.24	
		TBD	TBD	TBD	kHz
8 MHz Frequency Variation					
RUN Mode					
Due to temperature • 0°C to 105°C • -40°C to 105°C			+/-1.5	+/-2 +/-3	%
Standby Mode			Unspecified	+/-3	
32 kHz Output Frequency ²					
RUN Mode • -40°C to 105°C					
		TBD	32	TBD	kHz
32 kHz Output Frequency Variation					
RUN Mode					
Due to temperature • -40°C to 105°C			+/-2.5	+/-4	%
Stabilization Time	tstab				
 8 MHz output³ 32 kHz output⁴ 			0.12	0.4	μs
			14.4	16.2	
Output Duty Cycle		48	50	52	%

1. Frequency after application of 8 MHz trim

2. Frequency after application of 32 kHz trim

3. Standby to run mode transition

4. Power down to run mode transition

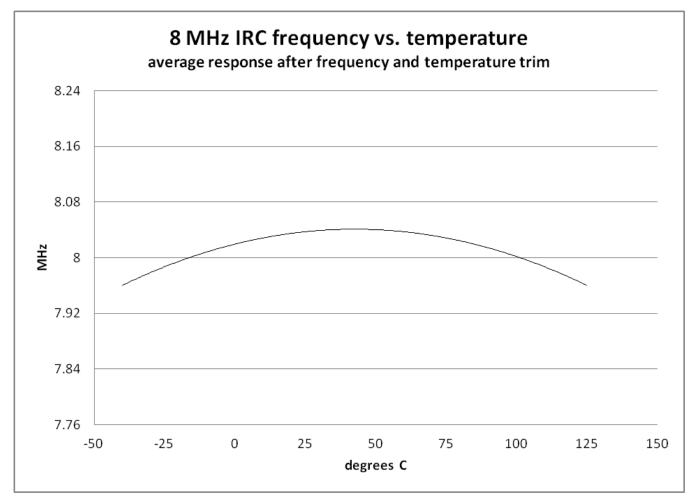


Figure 8. Relaxation Oscillator Temperature Variation (Typical) After Trim (Preliminary)

8.4 Memories and memory interfaces

8.4.1 Flash Memory Characteristics Table 22. Flash Timing Parameters

Characteristic	Symbol	Min	Тур	Max	Unit
Longword Program high-voltage time ¹	thvpgm4	—	63	143	μs
Sector Erase high-voltage time ²	thversscr	—	13	113	ms
Erase Block high-voltage time for 256 KB	thversblk256k	—	52	452	ms

1. There is additional overhead that is part of the programming sequence. See the device Reference Manual for detail.

2. Specifies page erase time.

8.5.2 16-bit SAR ADC electrical specifications

8.5.2.1 16-bit ADC operating conditions Table 26. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V_{DDA}	Supply voltage	Absolute	2.7	_	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} -V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA})	-100	0	+100	mV	2
V_{REFH}	ADC reference voltage high	Absolute	V _{DDA}	V _{DDA}	V _{DDA}	V	3
V _{REFL}	ADC reference voltage low	Absolute	V _{SSA}	V _{SSA}	V _{SSA}	V	4
V _{ADIN}	Input voltage		V _{SSA}	—	V _{DDA}	V	
C _{ADIN}	Input capacitance	16 bit modes	_	8	10	pF	
		• 8/10/12 bit modes	—	4	5		
R _{ADIN}	Input resistance		_	2	5	kΩ	
R _{AS}	Analog source resistance	12 bit modes f _{ADCK} < 4MHz	_	_	5	kΩ	5
f _{ADCK}	ADC conversion clock frequency	≤ 12 bit modes	1.0		18.0	MHz	6
f _{ADCK}	ADC conversion clock frequency	16 bit modes	2.0	_	12.0	MHz	6
C _{rate}	ADC conversion rate	≤ 12 bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	20.000	_	818.330	Ksps	7
C _{rate}	ADC conversion rate	16 bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037		461.467	Ksps	7

Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

- 2. DC potential difference.
- 3. V_{REFH} is internally tied to V_{DDA} .
- 4. V_{REFL} is internally tied to V_{SSA} .
- 5. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The R_{AS}/ C_{AS} time constant should be kept to <1ns.
- 6. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.

System modules

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
E _{FS}	Full-scale error	12 bit modes	—	-4	-5.4	LSB ⁴	V _{ADIN} =
	• <12 bit modes	_	-1.4	-1.8		V _{DDA}	
							5
E_Q	Quantization error	16 bit modes	_	-1 to 0	—	LSB ⁴	
enor	12 bit modes	_	—	±0.5			
ENOB	Effective number	16 bit single-ended mode					6
	of bits	• Avg=32	12.2	13.9	_	bits	
		• Avg=4	11.4	13.1		bits	
		12 bit single-ended mode					
		• Avg=32		10.8		bits	
		• Avg=1		10.2	_	bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	2 × ENOB + ⁻	1.76	dB	
THD Total harmonic	16 bit single-ended mode					7	
	distortion	• Avg=32	_	-85	_	dB	
		12 bit single-ended mode					
		• Avg=32	_	-74	_	dB	
SFDR	Spurious free	16 bit single-ended mode					7
	dynamic range	• Avg=32	78	90	_	dB	
		12 bit single-ended mode					
		• Avg=32		78		dB	
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakag curren
							(refer t the device voltage and curr operatir

25°C

–40°C to 105°C

Temp sensor

Temp sensor

slope

voltage

 V_{TEMP25}

1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$ 2. Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 2.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

1.715

722

_

mV/°C

mV

8

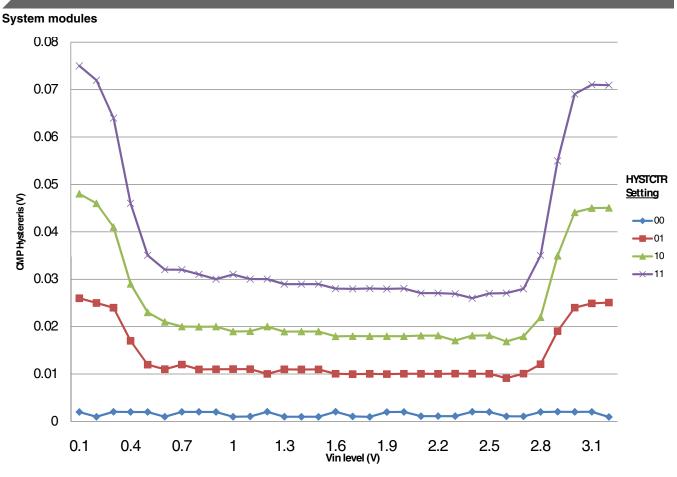


Figure 12. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 0)

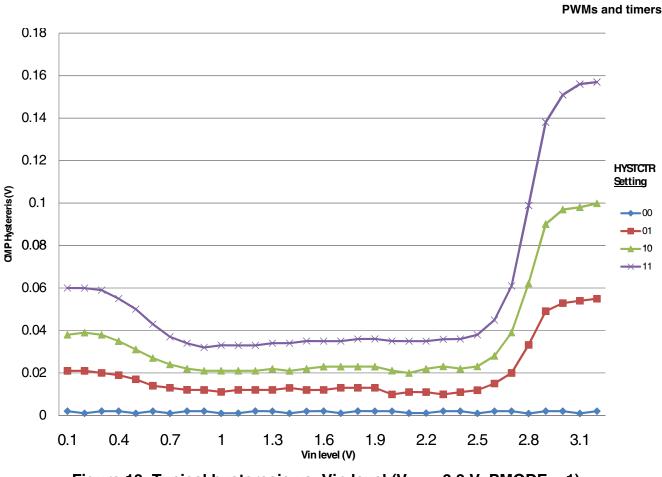


Figure 13. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 1)

8.6 PWMs and timers

8.6.1 PWM Characteristics

Table 30. PWM Timing Parameters

Characteristic	Symbol	Min	Тур	Max	Unit
PWM clock frequency			60	100	MHz

8.6.2 Quad Timer Timing

Parameters listed are guaranteed by design.

Characteristic	Symbol	Min	Max	Unit	See Figure
Clock (SCK) high time	t _{CH}				Figure 15
Master		27.6	_	ns	Figure 16
Slave		27.6	_	ns	Figure 17
					Figure 18
Clock (SCK) low time	t _{CL}				Figure 18
Master		27.6	_	ns	
Slave		27.6	_	ns	
Data set-up time required for inputs	t _{DS}				Figure 15
Master		27.6	_	ns	Figure 16
Slave		1	_	ns	Figure 17
					Figure 18
Data hold time required for inputs	t _{DH}				Figure 15
Master		1	_	ns	Figure 16
Slave		3	_	ns	Figure 17
					Figure 18
Access time (time to data active	t _A				Figure 18
from high-impedance state)		5	_	ns	
Slave					
Disable time (hold time to high- impedance state)	t _D				Figure 18
Slave		5	-	ns	
Data valid for outputs	t _{DV}				Figure 15
Master	٢D٧	_	8.3	ns	Figure 16
Slave (after enable edge)		_	25	ns	Figure 17
Slave (alter enable edge)			25	113	Figure 18
Data invalid	t _{DI}				Figure 15
Master	וטי	0	_	ns	Figure 16
Slave		0			Figure 17
Slave		0		ns	Figure 18
Rise time	t_				Figure 15
Master	t _R	_	1	ne	
Slave		_	1	ns	Figure 16
Slave		_		ns	Figure 17
Fall time	+				Figure 18
Master	t _F		4		Figure 15
		_	1	ns	Figure 16
Slave		—	1	ns	Figure 17
					Figure 18

Table 32. SPI Timing (continued)

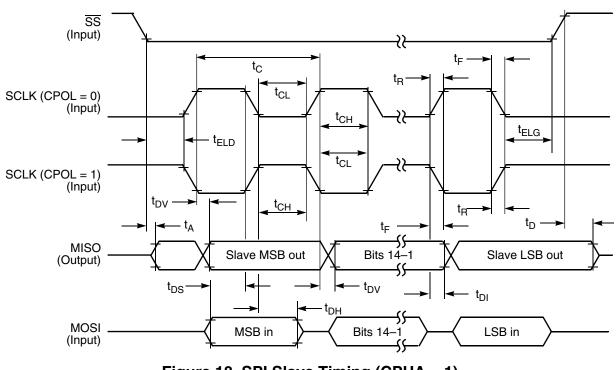
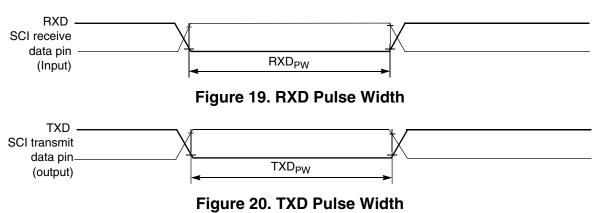
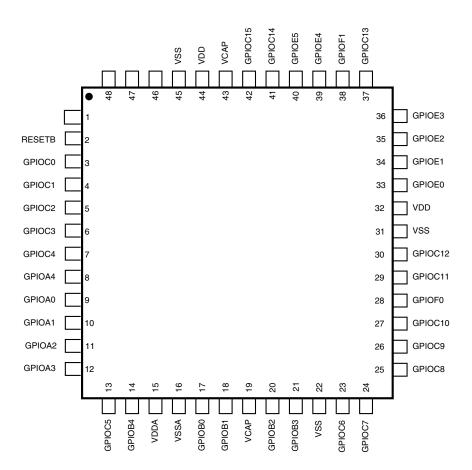


Figure 18. SPI Slave Timing (CPHA = 1)


8.7.2 Queued Serial Communication Interface (SCI) Timing

Parameters listed are guaranteed by design.

Characteristic	Symbol	Min	Мах	Unit	See Figure
Baud rate ¹	BR	_	(f _{MAX} /16)	Mbps	_
RXD pulse width	RXD _{PW}	0.965/BR	1.04/BR	ns	Figure 19
TXD pulse width	TXD _{PW}	0.965/BR	1.04/BR	ns	Figure 20
	LIN	Slave Mode		•	
Deviation of slave node clock from nominal clock rate before synchronization	F _{TOL_UNSYNCH}	-14	14	%	_
Deviation of slave node clock relative to the master node clock after synchronization		-2	2	%	_
Minimum break character length	Т _{ВRЕАК}	13	_	Master node bit periods	_
		11	_	Slave node bit periods	_


Table 33. SCI Timing

1. f_{MAX} is the frequency of operation of the SCI clock in MHz, which can be selected system clock (max. 120 MHz depending on part number) or 2x system clock (max. 200 MHz) for the devices.

8.7.3 Freescale's Scalable Controller Area Network (FlexCAN) Table 34. FlexCAN Timing Parameters

Characteristic		Min	Max	Unit
Baud Rate	BR _{CAN}	—	1	Mbps
CAN Wakeup dominant pulse filtered		—	2	μs
CAN Wakeup dominant pulse pass		5	_	μs

12 Product Documentation

The documents listed in Table 36 are required for a complete description and proper design with the device. Documentation is available from local Freescale distributors, Freescale Semiconductor sales offices, or online at http://www.freescale.com.

MC56F844xx Advance Information Data Sheet, Rev. 2, 06/2012.

Freescale Semiconductor, Inc.

Торіс	Description	Document Number
DSP56800E/DSP56800EX Reference Manual	Detailed description of the 56800EX family architecture, 32-bit digital signal controller core processor, and the instruction set	DSP56800ERM
MC56F844xx Reference Manual	Detailed functional description and programming model	MC56F844XXRM
Serial Bootloader User Guide	Detailed description of the Serial Bootloader in the DSC family of devices	TBD
MC56F844xx Data Sheet	Electrical and timing specifications, pin descriptions, and package information (this document)	MC56F844XX
MC56F84xxx Errata	Details any chip issues that might be present	MC56F84XXX_0N27E

 Table 36.
 Device Documentation

13 Revision History

The following table summarizes changes to this document since the release of the previous version.

Rev.	Date	Substantial Changes
2	06/2012	This is the first publicly released version of this document.