

Welcome to E-XFL.COM

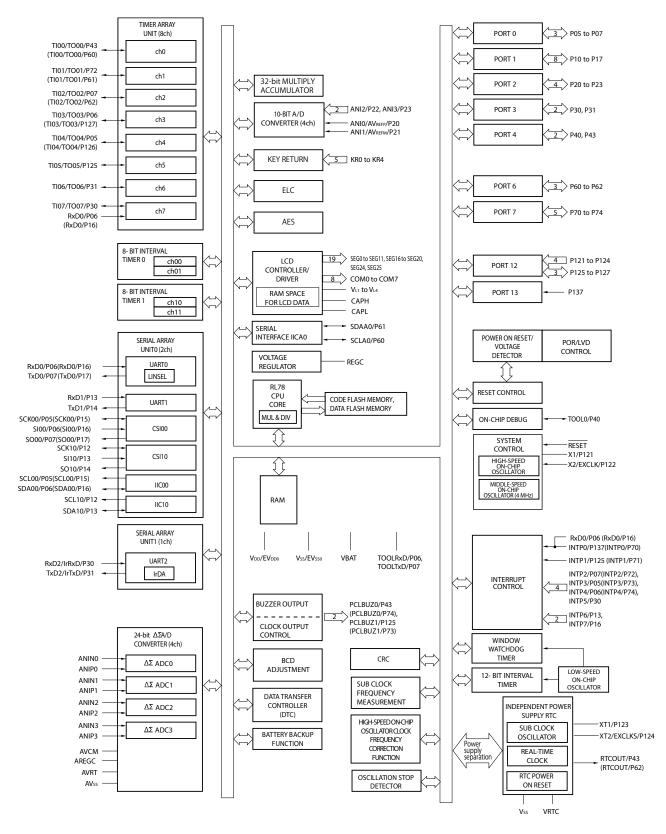
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XE


Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, IrDA, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 5.5V
Data Converters	A/D 4x10b, 4x24b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10nledfb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5 Block Diagram

1.5.1 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR0). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR0).

RENESAS

2.3 Connection of Unused Pins

Table 2-3 shows the connections of unused pins.

Remark The pins mounted depend on the product. See 1.3 Pin Configuration (Top View) and 2.1 Port Function List.

Table 2-3.	Connection of Unused Pins (1/2)
------------	---------------------------------

Pin Name	I/O	Recommended Connection of Unused Pins
P02 to P07	I/O	Input: Independently connect to EV _{DD0} or EV _{SS0} via a resistor. Output: Leave open.
P10 to P17		<pre><when i="" o="" port="" setting="" to=""> Input: Independently connect to EV_{DD0} or EV_{SS0} via a resistor. Output: Leave open. <when output="" segment="" setting="" to=""> Leave open.</when></when></pre>
P20 to P25		 Input: Independently connect to V_{DD} or V_{SS} via a resistor. In addition, individually connect to V_{SS} via a resistor when using a battery backup function. Output: Leave open.
P30 to P37		<when i="" o="" port="" setting="" to="">Input:Independently connect to EV_{DD0} or EV_{SS0} via a resistor.Output:Leave open.<when output="" segment="" setting="" to="">Leave open.</when></when>
P40/TOOL0		Input: Independently connect to EV _{DD0} via a resistor or leave open. Output: Leave open.
P41 to P43		Input: Independently connect to EV _{DD0} or EV _{SS0} via a resistor. Output: Leave open.
P50 to P57		<when i="" o="" port="" setting="" to=""> Input: Independently connect to EV_{DD0} or EV_{SS0} via a resistor. Output: Leave open. <when output="" segment="" setting="" to=""> Leave open.</when></when>
P60 to P62		Input: Independently connect to EV _{DD0} or EV _{SS0} via a resistor. Output: Set the port's output latch to 0 and leave the pin open, or set the port's output latch to 1 and independently connect the pin to EV _{DD0} or EV _{SS0} via a resistor.

Remark For the products that do not have an EVDD0 or EVSS0 pin, replace EVDD0 with VDD, and replace EVSS0 with VSS.

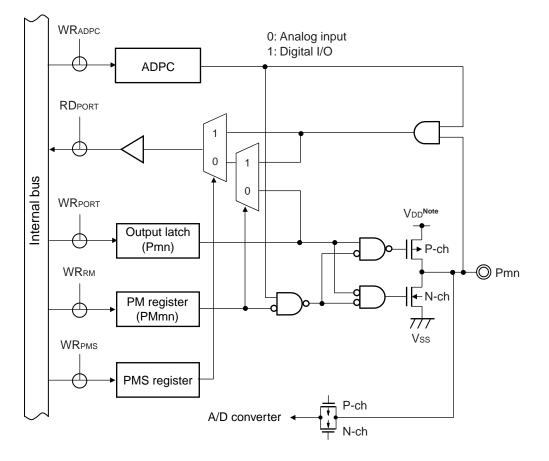


Figure 2-4. Pin Block Diagram for Pin Type 4-3-3

Note Either V_{DD} or V_{BAT} selected by the battery backup function.

6.3.9 Peripheral enable registers 0, 1, 2 (PER0, PER1, PER2)

These registers are used to enable or disable supplying the clock to the peripheral hardware. Clock supply to the hardware that is not used is also stopped so as to decrease the power consumption and noise. To use the peripheral functions below, which are controlled by these registers, set (1) the bit corresponding to each function before specifying the initial settings of the peripheral functions.

- Timer array unit
- Serial array unit 0
- Serial array unit 1
- Serial interface IICA0
- 10-bit A/D converter
- IrDA
- 24-bit $\Delta\Sigma$ A/D converter
- DTC
- Frequency measurement circuit
- Independent power supply real-time clock
- 32-bit multiplier and accumulator
- Oscillation stop detection circuit
- 12-bit interval timer

The PER0, PER1, and PER2 registers can be set by a 1-bit or an 8-bit memory manipulation instruction. Reset signal generation clears these registers to 00H.

8.3.8 Timer channel stop register m (TTm)

The TTm register is a trigger register that is used to stop the counting operation of each channel.

When a bit of this register is set to 1, the corresponding bit of timer channel enable status register m (TEm) is cleared to 0. The TTmn, TTHm1, TTHm3 bits are immediately cleared when operation is stopped (TEmn, TTHm1,

TTHm3 = 0), because they are trigger bits.

The TTm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the TTm register can be set with a 1-bit or 8-bit memory manipulation instruction with TTmL. Reset signal generation clears this register to 0000H.

Figure 8-19. Format of Timer Channel Stop register m (TTm)

Address: F01B4H, F01B5H			After	reset: (0000H	R/W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TTm	0	0	0	0	TTHm	0	TTHm	0	TTm							
					3		1		7	6	5	4	3	2	1	0

TTH m3	Trigger to stop operation of the higher 8-bit timer when channel 3 is in the 8-bit timer mode
0	No trigger operation
1	TEHm3 bit is cleared to 0 and the count operation is stopped.

TT m		Trigger to stop operation of the higher 8-bit timer when channel 1 is in the 8-bit timer mode
0)	No trigger operation
1		TEHm1 bit is cleared to 0 and the count operation is stopped.

TTm	Operation stop trigger of channel n
n	
0	No trigger operation
1	TEmn bit clear to 0, to be count operation stop enable status.
	This bit is the trigger to stop operation of the lower 8-bit timer for TTm1 and TTm3 when channel 1 or 3 is in
	the 8-bit timer mode.

Caution Be sure to clear bits 15 to 12, 10, 8 of the TTm register to "0".

Remarks 1. When the TTm register is read, 0 is always read.

2. m: Unit number (m = 0),n: Channel number (n = 0 to 7)

CHAPTER 12 8-BIT INTERVAL TIMER

The 8-bit interval timer has two 8-bit timers (channel 0 and channel 1) which operate independently. These timers can be connected to operate as a 16-bit timer.

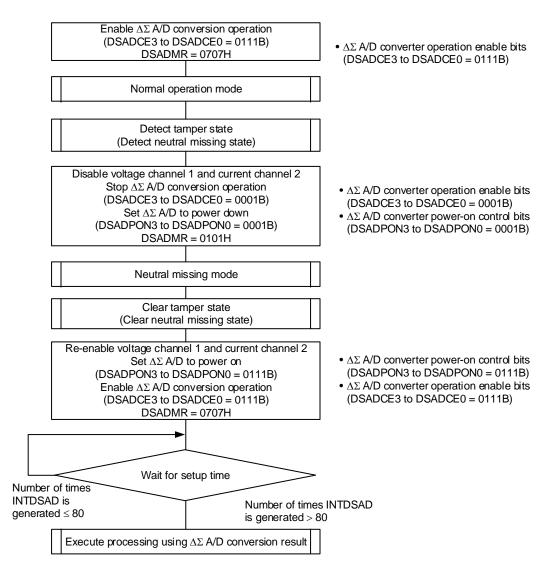
The 8-bit interval timer contains two units, 8-bit interval timer_0 and 8-bit interval timer_1, which have the same function. This chapter describes these units as the 8-bit interval timer unless there are differences among them.

12.1 Overview

The 8-bit interval timer is an 8-bit timer that operates using the fsx or fi∟ clock that is asynchronous with the CPU. Table 12 - 1 lists the 8-Bit Interval Timer Specifications and Figure 12 - 1 shows the 8-Bit Interval Timer Block Diagram.

Item	Description
Count source (operating clock)	fsx, fsx/2, fsx/4, fsx/8, fsx/16, fsx/32, fsx/64, fsx/128 fiL, fiL/2, fiL/4, fiL/16, fiL/32, fiL/64, fiL/128
Operating mode	 8-bit counter mode Channel 0 and channel 1 operate independently as an 8-bit counter 16-bit counter mode Channel 0 and channel 1 are connected to operate as a 16-bit counter
Interrupt	Output when the counter matches the compare value

Table 12 - 1 8-Bit Interval Timer Specifications



17.3.2 Procedure for switching from normal operation mode to neutral missing mode

Figure 17-22 shows the procedure for switching from normal operation (with anti-tamper) (a total of three: current channel 0, voltage channel 1, and current channel 2 operate) to neutral missing mode (only current channel 0 operates), in single-phase two-wire mode.

In neutral missing mode, there are cases when only current channel 0 operates and only current channel 2 operates. Use the same procedure when switching the mode.

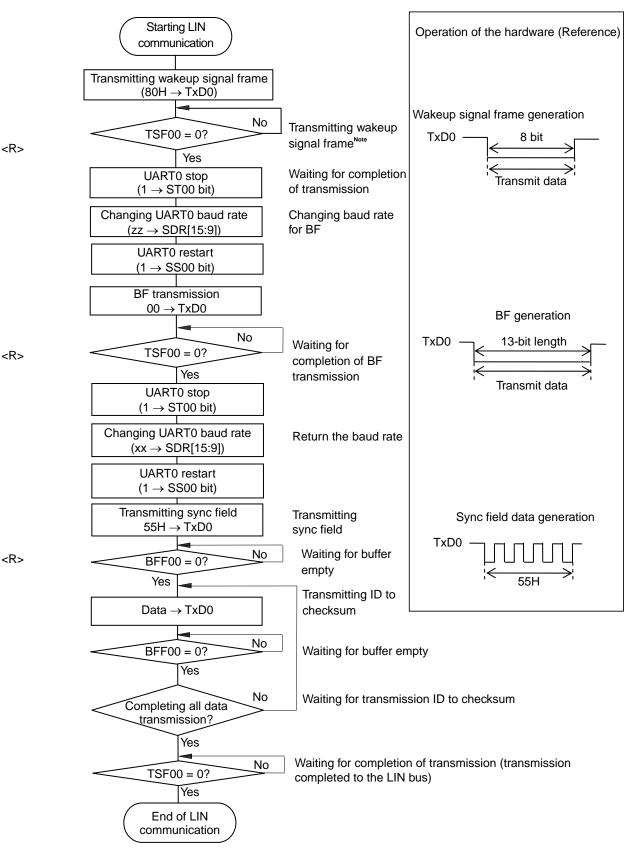


Figure 18-100. Flowchart for LIN Transmission

Note When LIN-bus start from sleep status only

Remark Default setting of the UART is complete, and the flow from the transmission enable status.

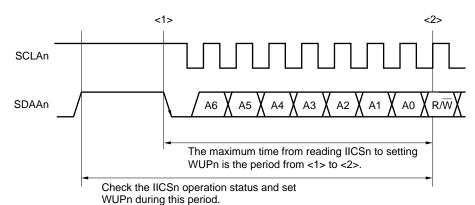
19.3.6 IICA control register n1 (IICCTLn1)

This register is used to set the operation mode of I²C and detect the statuses of the SCLAn and SDAAn pins.

The IICCTLn1 register can be set by a 1-bit or 8-bit memory manipulation instruction. However, the CLDn and DADn bits are read-only.

Set the IICCTLn1 register, except the WUPn bit, while operation of I²C is disabled (bit 7 (IICEn) of IICA control register n0 (IICCTLn0) is 0).

Reset signal generation clears this register to 00H.


Figure 19-10. Format of IICA Control Register n1 (IICCTLn1) (1/2)

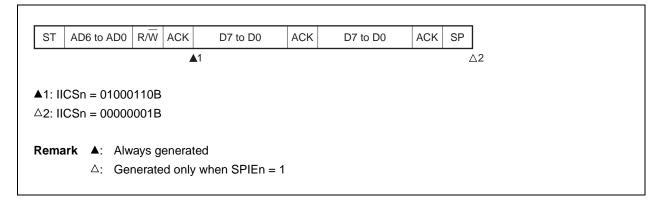
Address: F0231H		After reset: 00	OH R/W ^{Note 1}						
Symbol	<7>	6	<5>	<4>	<3>	<2>	1	<0>	_
IICCTLn1	WUPn	0	CLDn	DADn	SMCn	DFCn	0	PRSn	

WUPn	Control of address match wakeup									
0	Stops operation of address match wakeup function in STOP mode.									
1	Enables operation of address match wakeup function in STOP mode.									
To shift to STOP mode when WUPn = 1, execute the STOP instruction at least three clocks of fMCK after setting (1) the WUPn bit (see Figure 19-23 Flow When Setting WUPn = 1). Clear (0) the WUPn bit after the address has matched or an extension code has been received. The subsequent communication can be entered by the clearing (0) WUPn bit. (The wait must be released and transmit data must be written after the WUPn bit has been cleared (0).) The interrupt timing when the address has matched or when an extension code has been received, while WUPn = 1, is identical to the interrupt timing when WUPn = 0. (A delay of the difference of sampling by the clock will occur.) Furthermore, when WUPn = 1, a stop condition interrupt is not generated even if the SPIEn bit is set to 1.										
Condition for clearing (WUPn = 0) Condition for setting (WUPn = 1)										
	y instruction (after address match or code reception)	• Set by instruction (when the MSTSn, EXCn, and COIn bits are "0", and the STDn bit also "0" (communication not entered)) ^{Note 2}								

Notes 1. Bits 4 and 5 are read-only.

2. The status of the IICA status register n (IICSn) must be checked and the WUPn bit must be set during the period shown below.

Remark n = 0


(ii) When WTIMn = 1

	400/ 400		1.01/		1.01/		1.01/	
ST	AD6 to AD0	R/W	ACK	D7 to D0	ACK	D7 to D0	ACK	SP
			1 ▲2		▲3	5	A 4	4 🛆
▲ 1:	ICSn = 0110>	(010B						
▲2:	ICSn = 0010>	(110B						
▲3:	ICSn = 0010>	(100B						
▲4:	ICSn = 0010>	×00B						
∆5:	ICSn = 00000	001B						
Rem	ark ▲ : Alw	/ays ge	enerated	1				
	∆: Ge	nerated	d only w	hen SPIEn =	1			
	×: Do	n't care	e					

(6) Operation when arbitration loss occurs (no communication after arbitration loss)

When the device is used as a master in a multi-master system, read the MSTSn bit each time interrupt request signal INTIICAn has occurred to check the arbitration result.

(a) When arbitration loss occurs during transmission of slave address data (when WTIMn = 1)

Remark n = 0

20.3.3 Reception

In reception, the IR frame data is converted to the UART frame data through the IrDA and is input to the SAU.

Low-level data is output when the IRRXINV bit is 0 and a high-level pulse is detected, and high-level data is output when no pulse is detected for 1-bit period. Note that a pulse shorter than 1.41 μ s, which is the minimum pulse width, is identified as a low signal.

20.3.4 Selecting high-level pulse width

When the pulse width should be shorter than the bit rate \times 3/16 for transmission, applicable IRCKS2 to IRCKS0 bit settings (minimum pulse width) and the corresponding high-level pulse widths shown in Table 20-4 can be used.

fcьк [MHz]	Item	<upper row=""> Bit Rate [kbps] <lower row=""> Bit Rate × 3/16 [μs]</lower></upper>									
		2.4	9.6	19.2	38.4	57.6	115.2				
		78.13	19.53	9.77	4.87	3.26	1.63				
1	IRCKS2 to IRCKS0	001	001	001	_Note 1	Note 1	Note 1				
	High-level pulse width [μ s]	2.00	2.00	2.00	_Note 1	_Note 1	_Note 1				
2	IRCKS2 to IRCKS0	010	010	010	010	010	_Note 1				
	High-level pulse width [μ s]	2.00	2.00	2.00	2.00	2.00	_Note 1				
3	IRCKS2 to IRCKS0	011	011	011	011	011	Note 1				
	High-level pulse width [μ s]	2.67	2.67	2.67	2.67	2.67	_Note 1				
4	IRCKS2 to IRCKS0	011	011	011	011	011	000 ^{Note 2}				
	High-level pulse width [μ s]	2.00	2.00	2.00	2.00	2.00	1.50				
6	IRCKS2 to IRCKS0	100	100	100	100	100	000 ^{Note 2}				
	High-level pulse width [μ s]	2.67	2.67	2.67	2.67	2.67	1.50				
8	IRCKS2 to IRCKS0	100	100	100	100	100	000 ^{Note 2}				
	High-level pulse width [μ s]	2.00	2.00	2.00	2.00	2.00	1.50				
12	IRCKS2 to IRCKS0	101	101	101	101	101	000 ^{Note 2}				
	High-level pulse width [μ s]	2.67	2.67	2.67	2.67	2.67	1.50				
16	IRCKS2 to IRCKS0	101	101	101	101	101	000 ^{Note 2}				
	High-level pulse width [μ s]	2.00	2.00	2.00	2.00	2.00	1.50				
24	IRCKS2 to IRCKS0	110	110	110	110	110	000 ^{Note 2}				
	High-level pulse width [μ s]	2.67	2.67	2.67	2.67	2.67	1.50				
32	IRCKS2 to IRCKS0	110	110	110	110	110	000 ^{Note 2}				
	High-level pulse width [μ s]	2.00	2.00	2.00	2.00	2.00	1.50				

Table 20-4. IRCKS2 to IRCKS0 Bit Settings

Notes 1. "-" indicates that the communication specification cannot be satisfied.

2. The pulse width cannot be shorter than the bit rate \times 3/16.

Address	: FFF40H At	fter reset: 00H	R/W						
Symbol	7	6	5	4	3	2	1	0	
LCDM0	MDSET1	MDSET0	LWAVE	LDTY2	LDTY1	LDTY0	LBAS1	LBAS0	
	LBAS1	LBAS0	LCD display bias mode selection						
	0	0	1/2 bias meth	1/2 bias method					
	0	1	1/3 bias method						
	1	0	1/4 bias method						
	1	1	Setting prohibited						

Figure 21-2. Format of LCD Mode Register 0 (LCDM0) (2/2)

Cautions 1. Do not rewrite the LCDM0 value while the SCOC bit of the LCDM1 register = 1.

- 2. When "Static" is selected (LDTY2 to LDTY0 bits = 000B), be sure to set the LBAS1 and LBAS0 bits to the default value (00B). Otherwise, the operation will not be guaranteed.
- 3. Only the combinations of display waveform, number of time slices, and bias method shown in Table 21-4 are supported.

Combinations of settings not shown in Table 21-4 are prohibited.

Display Mode			Set Value						Driving Voltage Generation Method			
Display Waveform	Number of Time Slices	Bias Mode	LWAVE	LDTY2	LDTY1	LDTY0	LBAS1	LBAS0	External Resistance Division	Internal Voltage Boosting	Capacitor Split	
Waveform A	8	1/4	0	1	0	1	1	0	○ (24 to 128 Hz)	○ (24 to 64 Hz)	×	
Waveform A	6	1/4	0	1	0	0	1	0	×	○ (32 to 86 Hz)	×	
Waveform A	8	1/3	0	1	0	1	0	1	○ (32 to 128 Hz)	○ (32 to 64 Hz)	○ (32 to 128 Hz)	
Waveform A	6	1/3	0	1	0	0	0	1	○ (32 to 128 Hz)	○ (32 to 86 Hz)	○ (32 to 128 Hz)	
Waveform A	4	1/3	0	0	1	1	0	1	○ (24 to 128 Hz)	○ (24 to 128 Hz)	○ (24 to 128 Hz)	
Waveform A	3	1/3	0	0	1	0	0	1	○ (32 to 128 Hz)	○ (32 to 128 Hz)	○ (32 to 128 Hz)	
Waveform A	3	1/2	0	0	1	0	0	0	○ (32 to 128 Hz)	×	×	
Waveform A	2	1/2	0	0	0	1	0	0	(24 to 128 Hz)	×	×	
Waveform A	Sta	ıtic	0	0	0	0	0	0	○ (24 to 128 Hz)	×	×	
Waveform B	8	1/4	1	1	0	1	1	0	○ (24 to 128 Hz)	○ (24 to 64 Hz)	×	
Waveform B	8	1/3	1	1	0	1	0	1	○ (32 to 128 Hz)	○ (32 to 64 Hz)	⊖ (32 to 128 Hz)	
Waveform B	6	1/3	1	1	0	0	0	1	⊖ (32 to 128 Hz)	⊖ (32 to 86 Hz)	○ (32 to 128 Hz)	
Waveform B	4	1/3	1	0	1	1	0	1	○ (24 to 128 Hz)	○ (24 to 128 Hz)	○ (24 to 128 Hz)	
Waveform B	3	1/3	1	0	1	0	0	1	○ (32 to 128 Hz)	○ (32 to 128 Hz)	⊖ (32 to 128 Hz)	

Remark O: Supported

×: Not supported

24.3.4 External interrupt rising edge enable register (EGP0, EGP1), External interrupt falling edge enable register (EGN0, EGN1)

These registers specify the valid edge for INTP0 to INTP7 and RTCIC0 to RTCIC2.

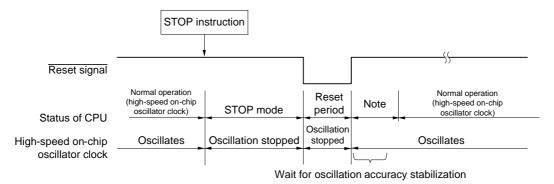
The EGP0, EGP1, EGN0 and EGN1 registers can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation clears these registers to 00H.

Figure 24-5. Format of External Interrupt Rising Edge Enable Register (EGP0, EGP1) and External Interrupt Falling Edge Enable Register (EGN0, EGN1)

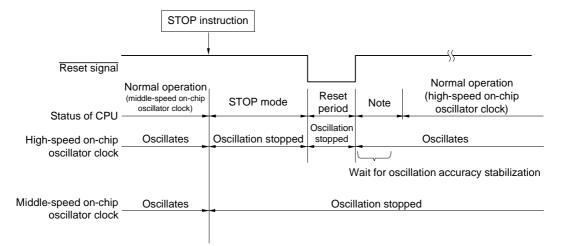
Address: FFF38H After reset: 00H R/W										
Symbol	7	6	5	4	3	2	1	0		
EGP0	EGP7	EGP6	EGP5	EGP4	EGP3	EGP2	EGP1	EGP0		
Address: FFF39H After reset: 00H R/W										
Symbol	7	6	5	4	3	2	1	0		
EGN0	EGN7	EGN6	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0		
Address: FF	F3AH After	reset: 00H	R/W							
Symbol	7	6	5	4	3	2	1	0		
EGP1	0	EGP14	EGP13	EGP12	0	0	0	0		
Address: FFF3BH After reset: 00H R/W										
Symbol	7	6	5	4	3	2	1	0		
EGN1	0	EGN14	EGN13	EGN12	0	0	0	0		

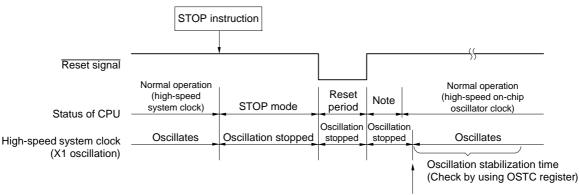
<R>

EGPn	EGNn	INTP0 to INTP7 and RTCIC0 to RTCIC2 pin valid edge selection $(n = 0 \text{ to } 7, 12 \text{ to } 14)$				
0	0	dge detection disabled				
0	1	Falling edge				
1	0	Rising edge				
1	1	Both rising and falling edges				



(b) Release by reset signal generation


When the reset signal is generated, STOP mode is released, and then, as in the case with a normal reset operation, the program is executed after branching to the reset vector address.


(1) When high-speed on-chip oscillator clock is used as CPU clock

(2) When middle-speed on-chip oscillator clock is used as CPU clock

(3) When high-speed system clock is used as CPU clock

Starting X1 oscillation is specified by software.

 Note
 For the reset processing time, see CHAPTER 27 RESET FUNCTION.

 For the reset processing time of the power-on-reset circuit (POR) and voltage detector (LVD), see CHAPTER 28

 POWER-ON-RESET CIRCUIT.

RENESAS

	Item	When operating CPU with the power of VDD pin supplied	When operating CPU with the power of VBAT pin supplied			
LCD controller/driver		Operable				
Data transfer controller (DT	C)					
Event link controller (ELC)						
Power-on-reset function		Continuous operation				
RTC power-on-reset function	n	Continuous operation				
Voltage detection function	Internal power supply voltage (Internal VDD)					
	VDD, VBAT, VRTC, EXLVD Pin voltage	Operable				
External interrupt	INTP0	Operable				
	INTP1 to INTP7	Operable	Operable when the power of EVDD pin is supplied ^{Note 2} . Not operable when the power of EVDD pin is shut down.			
	RTCIC0 to RTCIC2	Operable				
Key interrupt input		Operable				
CRC operation function						
32-bit multiplier and multiply	/accumulator					
RAM parity error detection f	function	1				
RAM guard function		1				
SFR guard function		1				
Illegal-memory access dete	ction function	1				
AES function		1				

Table 30-1. Peripheral Circuit Operation State during Battery Backup (2/2)

Notes 1. The self-programming function cannot be used.

- 2. When supplying the power from outside to the EVDD pin, it is recommended to backup the VDD and VBAT pins or the VRTC pin with the diode ORing.
- 3. When the power of EVDD is not supplied, set GDIDISO to 1.
- 4. The $\Delta\Sigma$ A/D converter operable in the backup mode is limited up to 3 channels.
- 5. RTCIC0, RTCIC1, and RTCIC2 pins are included.
- 6. When power supply switching by the battery backup function occurs, access to the data flash memory is prohibited.
- The power is supplied from the V_{DD} pin at startup of the power supply. MCU remains reset even when the power is supplied to the VBAT pin earlier than the V_{DD} pin.
- The battery backup function is stopped by default. The battery backup mode must be set by the software after startup of the power supply.
- If the V_{DD} pin voltage is lower than the detection voltage, the internal power and the power supply for ΔΣ A/D converter can be switched from the V_{DD} supply to the VBAT supply. When the V_{DD} pin voltage is recovered higher than the detection voltage, the internal power and the power supply for ΔΣ A/D converter can be switched from the VBAT supply to the V_{DD} supply.
- Under the condition of VBAT \geq V_{DD}, the software enables to switch the internal power and the power supply for $\Delta\Sigma$ A/D converter from the VBAT supply to the V_{DD} supply.

<R>

<R>

Operation Mode	Multiplication Result Register Name					
	Bits 63 to 48	Bits 47 to 32	Bits 31 to 16	Bits 15 to 0		
Multiplication mode (unsigned)	MULR3	MULR2	MULR1	MULR0		
Multiplication mode (signed)						
Multiply-accumulation mode (unsigned)						
Multiply-accumulation mode (signed)						

Table 39-4. Relationship between Operation Mode and Register Name

The operation result (multiplication) is stored for the multiplication, and the operation result (accumulation) is stored for the multiply-accumulation. Additionally, the accumulation initial value can be set for the multiply-accumulation.

Table 39-5. Details of Storing of Operation Modes and Multiplication Result Registers

Operation Mode	Setting	Operation Result		
Multiplication mode (unsigned)	_	MULR3 to MULR0:		
		Multiplication (unsigned)		
Multiplication mode (signed)	_	MULR3 to MULR0:		
		Multiplication (signed)		
Multiply-accumulation mode (unsigned)	MULR3 to MULR0:	MULR3 to MULR0:		
	Accumulation initial value (unsigned)	Accumulation value (unsigned)		
Multiply-accumulation mode (signed)	MULR3 to MULR0:	MULR3 to MULR0:		
	Accumulation initial value (signed)	Accumulation value (signed)		

If exceeding the maximum value of the value range that can be handled in 64 bit (= overflow), or if dropping below the minimum value (= underflow), the value is reversed, and the values plus overflow/underflow values are stored in the MULR3 to MULR0 registers.

```
Unsigned
```

```
    In case of overflow
```

Processing) 2⁶⁴ + MULR[63:0]

```
Example)
```

```
Signed
```

- In case of overflow
 - Processing) 2⁶³ + MULR[62:0]

```
Example)
```

• In case of underflow Processing) -2⁶³ + MULR[62:0]

```
Example)
```


Instruction	Mnemonic	Operands	Bytes	Clocks		Clocks		Flag	J
Group				Note 1	Note 2		Z	AC	CY
8-bit	ADDC	A, #byte	2	1	-	A, CY \leftarrow A+byte+CY	×	×	×
operation		saddr, #byte	3	2	-	(saddr), CY \leftarrow (saddr) +byte+CY	×	×	×
		A, rv Note 3	2	1	-	A, CY \leftarrow A + r + CY	×	×	×
		r, A	2	1	-	$r, CY \leftarrow r + A + CY$	×	×	×
		A, !addr16	3	1	4	A, CY \leftarrow A + (addr16)+CY	×	×	×
		A, ES:!addr16	4	2	5	A, CY \leftarrow A + (ES, addr16)+CY	×	×	×
		A, saddr	2	1	-	A, CY \leftarrow A + (saddr)+CY	×	×	×
		A, [HL]	1	1	4	A, CY \leftarrow A+ (HL) + CY	×	×	×
		A, ES:[HL]	2	2	5	$A,CY \leftarrow A \texttt{+} (ES, HL) \texttt{+} CY$	×	×	×
		A, [HL+byte]	2	1	4	A, CY \leftarrow A+ (HL+byte) + CY	×	×	×
		A, ES:[HL+byte]	3	2	5	$A,CY \leftarrow A+ ((ES, HL)+byte) + CY$	×	×	×
		A, [HL+B]	2	1	4	A, CY \leftarrow A+ (HL+B) +CY	×	×	×
		A, ES:[HL+B]	3	2	5	$A,CY \leftarrow A+((ES, HL)+B)+CY$	×	×	×
		A, [HL+C]	2	1	4	A, CY \leftarrow A+ (HL+C)+CY	×	×	×
		A, ES:[HL+C]	3	2	5	$A,CY \leftarrow A+ ((ES, HL)+C)+CY$	×	×	×
	SUB	A, #byte	2	1	-	A, CY \leftarrow A – byte	×	×	×
		saddr, #byte	3	2	-	(saddr), CY \leftarrow (saddr) – byte	×	×	×
		A, r Note 3	2	1	-	A, CY ← A − r	×	×	×
		r, A	2	1	-	r, CY ← r – A	×	×	×
		A, !addr16	3	1	4	A, CY \leftarrow A – (addr16)	×	×	×
		A, ES:!addr16	4	2	5	A, CY \leftarrow A – (ES, addr16)	×	×	×
		A, saddr	2	1	-	A, CY \leftarrow A – (saddr)	×	×	×
		A, [HL]	1	1	4	A, CY \leftarrow A – (HL)	×	×	×
		A, ES:[HL]	2	2	5	$A,CY \leftarrow A - (ES,HL)$	×	×	×
		A, [HL+byte]	2	1	4	A, CY \leftarrow A – (HL+byte)	×	×	×
		A, ES:[HL+byte]	3	2	5	$A,CY \leftarrow A - ((ES, HL)+byte)$	×	×	×
		A, [HL+B]	2	1	4	A, CY \leftarrow A – (HL+B)	×	×	×
		A, ES:[HL+B]	3	2	5	$A,CY \leftarrow A - ((ES,HL){+}B)$	×	×	×
		A, [HL+C]	2	1	4	A, CY \leftarrow A – (HL+C)	×	×	×
		A, ES:[HL+C]	3	2	5	$A,CY \leftarrow A - ((ES, HL)+C)$	×	×	×

Notes 1. Number of CPU clocks (fcLk) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.

2. Number of CPU clocks (fcLk) when the code flash area is accessed.

3. Except r = A

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

Instruction	Mnemonic	Operands	Bytes	Clocks Note 1 Note 2		Clocks	Flag
Group							Z AC CY
8-bit	OR	A, #byte	2	1	_	$A \leftarrow A \lor byte$	×
operation		saddr, #byte	3	2	_	$(saddr) \leftarrow (saddr) \lor byte$	×
		A, r Note 3	2	1	-	$A \leftarrow A \lor r$	×
		r, A	2	1	-	r ← r∨A	×
		A, !addr16	3	1	4	$A \leftarrow A_{\vee}(addr16)$	×
		A, ES:!addr16	4	2	5	$A \leftarrow A \lor (ES:addr16)$	×
		A, saddr	2	1	_	$A \leftarrow A \lor (saddr)$	×
		A, [HL]	1	1	4	$A \leftarrow A \lor (H)$	×
		A, ES:[HL]	2	2	5	$A \leftarrow A_{\vee}(ES;HL)$	×
		A, [HL+byte]	2	1	4	$A \leftarrow A \lor (HL+byte)$	×
		A, ES:[HL+byte]	3	2	5	$A \leftarrow A \lor ((ES:HL)+byte)$	×
		A, [HL+B]	2	1	4	A ← A∨(HL+B)	×
		A, ES:[HL+B]	3	2	5	$A \leftarrow A_{\forall}((ES:HL)+B)$	×
		A, [HL+C]	2	1	4	$A \leftarrow A {\scriptstyle\lor}(HL{+}C)$	×
		A, ES:[HL+C]	3	2	5	$A \leftarrow A_{\forall}((ES:HL) \text{+} C)$	×
	XOR	A, #byte	2	1	_	$A \leftarrow A + byte$	×
		saddr, #byte	3	2	-	$(saddr) \leftarrow (saddr) + byte$	×
		A, r Note 3	2	1	_	$A \leftarrow A \not\sim r$	×
		r, A	2	1	-	r ← r × A	×
		A, !addr16	3	1	4	$A \leftarrow A_{\forall}(addr16)$	×
		A, ES:!addr16	4	2	5	$A \leftarrow A_{\leftrightarrow}(ES:addr16)$	×
		A, saddr	2	1	-	$A \leftarrow A_{\forall}(saddr)$	×
		A, [HL]	1	1	4	$A \leftarrow A_{}(HL)$	×
		A, ES:[HL]	2	2	5	$A \leftarrow A_{+}(ES:HL)$	×
		A, [HL+byte]	2	1	4	$A \leftarrow A_{+}(HL+byte)$	×
		A, ES:[HL+byte]	3	2	5	$A \leftarrow A_{\leftrightarrow}((ES:HL)+byte)$	×
		A, [HL+B]	2	1	4	$A \leftarrow A \not\sim (HL+B)$	×
		A, ES:[HL+B]	3	2	5	$A \leftarrow A_{}((ES:HL) + B)$	×
		A, [HL+C]	2	1	4	$A \leftarrow A_{}(HL+C)$	×
		A, ES:[HL+C]	3	2	5	$A \leftarrow A \not\leftarrow ((ES:HL)+C)$	×

Table 40-5. Operation List (9/18)

Notes 1. Number of CPU clocks (fcLk) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.

2. Number of CPU clocks (fcLk) when the code flash area is accessed.

3. Except r = A

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

(5) Communication at different potential (1.9 V, 2.5 V, 3 V) (UART mode) (1/2)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{V}$	$DD^{Note 1} \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V$
--	---

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LP (low-power main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array} \label{eq:delta_bd}$		fмск∕6 ^{№оtе 1}		fмск/6 ^{Note 1}		fмск/6 ^{Note 1}		fмск/6 ^{Note 1}	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.1		0.6	Mbps
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V \end{array}$		fмск/6 ^{Note 1}		ƒмск/6 ^{№оtе 1}		fмск/6 ^{Note 1}		fмск/6 ^{Note 1}	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.1		0.6	Mbps
			$\begin{array}{l} 1.9 \ V \leq EV_{\text{DD}} < 3.3 \ V, \\ 1.8 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$		fMCK/6 Notes 1 to 3		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.1		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. Use it with $EV_{DD} \ge V_b$.

3. The following conditions are required for low voltage interface. $2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V}$: MAX. 2.6 Mbps $1.9 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$: MAX. 1.3 Mbps

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

 $\begin{array}{ll} \text{HS (high-speed main) mode:} & 32 \ \text{MHz} \ (2.8 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}), \ 24 \ \text{MHz} \ (2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}), \\ & 16 \ \text{MHz} \ (2.5 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}), \ 12 \ \text{MHz} \ (2.4 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}), \\ & 6 \ \text{MHz} \ (2.1 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}), \ 12 \ \text{MHz} \ (2.4 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}), \\ & 6 \ \text{MHz} \ (2.1 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}), \ 3 \ \text{MHz} \ (1.9 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}), \ 4 \ \text{MHz} \ (1.9 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}) \\ & 1 \ \text{MHz} \ (1.9 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}) \\ & 1 \ \text{MHz} \ (1.9 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}) \\ & 4 \ \text{MHz} \ (1.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}) \end{array}$

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 8)
 - fMCK: Serial array unit operation clock frequency (Operating clock that is set with the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))