

Welcome to E-XFL.COM

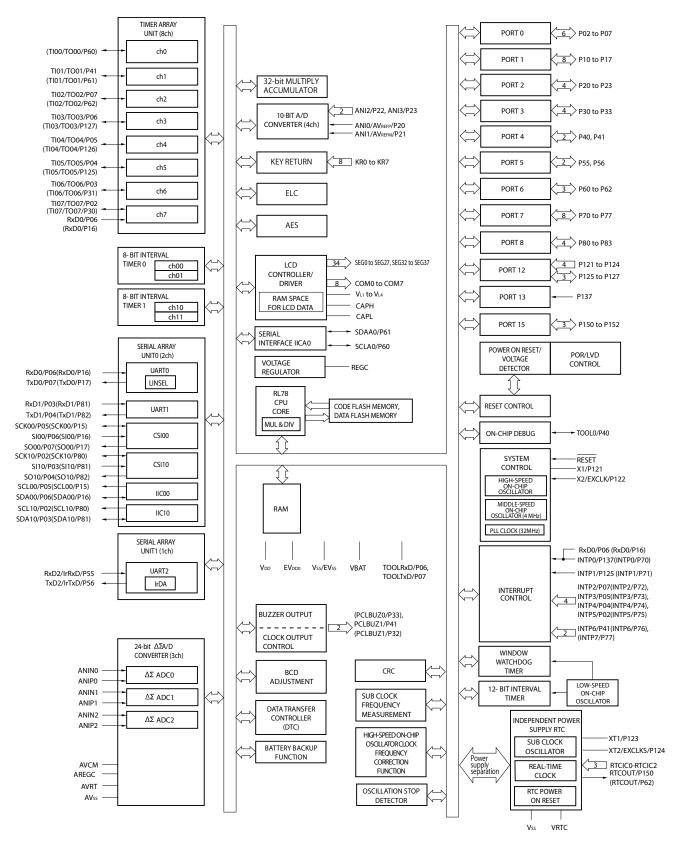
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl


Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, IrDA, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 5.5V
Data Converters	A/D 4x10b, 3x24b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10nmgdfb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	4.3.8	Peripheral I/O redirection register (PIOR0)	113
	4.3.9	LCD port function registers 0 to 5 (PFSEG0 to PFSEG5)	114
	4.3.10	LCD input switch control register (ISCLCD)	117
4.4	Port F	unction Operations	118
	4.4.1	Writing to I/O port	118
	4.4.2	Reading from I/O port	118
	4.4.3	Operations on I/O port	118
	4.4.4	Connecting to external device with different potential (1.8 V, 2.5 V, 3 V)	119
	4.4.5	Handling different potential (1.8 V, 2.5 V, 3 V) by using I/O buffers	119
4.5	Regis	ter Settings When Using Alternate Function	121
	4.5.1	Basic concept when using alternate function	121
	4.5.2	Register settings for alternate function whose output function is not used	122
	4.5.3	Register setting examples for used port and alternate functions	123
	4.5.4	Operation of ports that alternately function as SEGxx pins	132
	4.5.5	Operation of ports that alternately function as V_{L3} , CAPL, CAPH pins	133
4.6	Cautio	ons When Using Port Function	135
	4.6.1	Cautions on 1-bit manipulation instruction for port register n (Pn)	135
	4.6.2	Notes on specifying the pin settings	136
СНАРТЕ	ER 5 OI	PERATION STATE CONTROL	
5.1	Config	guration of Operation State Control	137
5.2	Regis	ters Controlling Operation State Control	139
	5.2.1	Flash operating mode select register (FLMODE)	139
	5.2.2	Flash operating mode protect register (FLMWRP)	141
	5.2.3	Regulator mode control register (PMMC)	
5.3	Initial	Setting of Flash Operation Modes	142
5.4	Trans	itions between Flash Operation Modes	143
5.5	Detail	s of Flash Operation Modes	144
	5.5.1	Details of HS (high-speed main) mode	144
	5.5.2	Details of LS (low-speed main) mode	145
	5.5.3	Details of LP (low-power main) mode	146
	5.5.4	Details on LV (low-voltage main) mode	147
СНАРТЕ	ER 6 CI	LOCK GENERATOR	148
6.1	Funct	ions of Clock Generator	148
6.2	Config	guration of Clock Generator	151
6.3	Regis	ters Controlling Clock Generator	153
	6.3.1	Clock operation mode control register (CMC)	153
	6.3.2	System clock control register (CKC)	155
	6.3.3	Clock operation status control register (CSC)	157
	6.3.4	Sub clock operation mode control register (SCMC)	159

1.5.2 80-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR0). See **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR0)**.

1.6 Outline of Functions

		Item	64-	-pin		80-pin		100)-pin			
			R5F10NLEDFB	R5F10NLGDFB	R5F10NMEDFB	R5F10NMGDFB	R5F10NMJDFB	R5F10NPGDFB	R5F10NPJDF			
(Code flash me	emory (KB)	64 KB	128 KB	64 KB	128 KB	256 KB	128 KB	256 KB			
۱	Data flash me	mory (KB)				2 KB						
	RAM (KB)		6 KB	8 KB ^{Note 1}	6 KB	8 KB ^{Note 1}	16 KB ^{Note 2}	8 KB ^{Note 1}	16 KB ^{Note 2}			
,	Address spac	e	1 MB									
	Main system clock	High-speed system clock	HS (High-spe HS (High-spe HS (High-spe HS (High-spe LS (Low-spe LV (Low-volta	eed main) mod eed main) mod eed main) mod eed main) mod ed main) mod age main) mod	e: 1 to 20 MH e: 1 to 16 MH e: 1 to 12 MH e: 1 to 6 MHz e: 1 to 8 MHz le: 1 to 4 MHz	nain system clo z ($V_{DD} = 2.7$ to z ($V_{DD} = 2.5$ to z ($V_{DD} = 2.4$ to ($V_{DD} = 2.1$ to 5 ($V_{DD} = 1.9$ to 5 ($V_{DD} = 1.7$ to 5 = 1.9 to 5.5 V	5.5 V), 5.5 V), 5.5 V), 5.5 V), 5.5 V), 5.5 V), 5.5 V),	LK)				
		High -speed on-chip oscillator clock (f⊮) MAX.: 24 MHz	HS (High-spe HS (High-spe HS (High-spe	eed main) mod eed main) mod eed main) mod	e: 1 to 24 MH e: 1 to 16 MH e: 1 to 12 MH	z (V _{DD} = 2.7 to z (V _{DD} = 2.5 to z (V _{DD} = 2.4 to	5.5 V), 5.5 V), 5.5 V),					
		Middle -speed on- chip oscillator clock (fiм) MAX.: 4 MHz	HS (High-speed main) mode: 1 to 6 MHz ($V_{DD} = 2.1$ to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz ($V_{DD} = 1.9$ to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz ($V_{DD} = 1.7$ to 5.5 V), LP (Low-power main) mode: 1 MHz ($V_{DD} = 1.9$ to 5.5 V)									
		PLL clock (fpll)			-		HS (High-spe (V _{DD} = 2.8 to	eed main) moo 5.5 V)	le: 32 MHz			
	Subsystem clock	Subsystem clock oscillator clock (fsx)	,	oscillation, ext TYP.): V _{DD} = 1		em clock input	(EXCLKS)					
		Low-speed on-chip oscillator clock (fiL)	15 kHz (TYP	.): Vdd = 1.7 to	5.5V							
		n-chip oscillator clock rection function	Correct the frequency of the high-speed on-chip oscillator clock by the subsystem clock.									
(General-purpo	ose register	8 bits × 8 registers × 4 banks									
Ī	Minimum instr	uction execution time	0.03125 μs (PLL clock: fpll	= 32 MHz sele	ection)						
l			0.04167 <i>μ</i> s (l	High-speed on	-chip oscillator	: fін = 24 MHz	operation)					
1			30.5 <i>µ</i> s (Sub	system clock:	fsuв = 32.768 k	Hz operation)						
			66.6 μs (Low-speed on-chip oscillator: f_{IL} = 15 kHz operation)									
	Instruction set		Adder andMultiplicationMultiplication	on (16 bits \times 1 on and accum	ulation (16 bits	(8/16 bits) n (32 bits ÷ 32 n × 16 bits + 32 n (set, reset, te	bits)	n operation), e	etc.			
1	I/O port	Total	3	5		52			68			
		CMOS I/O	2	.7		44			60			
l		CMOS input		5		5			5			
		CMOS output		-		-			-			
		N-ch O.D I/O (6 V tolerance)	;	3		3			3			

Notes 1. In the case of the 8 KB, this is about 7 KB when the self-programming function is used.

2. In the case of the 16 KB, this is about 15 KB when the self-programming function is used.

4.3.3 Pull-up resistor option registers (PUxx)

These registers specify whether the on-chip pull-up resistors are to be used or not. On-chip pull-up resistors can be used in 1-bit units only for the bits set to normal output mode (POMmn = 0) and input mode (PMmn = 1) for the pins to which the use of an on-chip pull-up resistor has been specified in these registers. On-chip pull-up resistors cannot be connected to bits set to output mode and bits used as alternate-function output pins and analog setting (ADPC = 1), regardless of the settings of these registers.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears these registers to 00H (PU4 is set to 01H, PU15 is set to 07H).

Caution When a port with the PIMn register is input from different potential device to TTL buffer, pull up to the power supply of the different potential device via an external pull-up resistor by setting PUmn = 0.

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W	
PU0	PU07	PU06	PU05	PU04	PU03	PU02	0	0	F0030H	00H	R/W	
	-											
PU1	PU17	PU16	PU15	PU14	PU13	PU12	PU11	PU10	F0031H	00H	R/W	
						r						
PU3	PU37	PU36	PU35	PU34	PU33	PU32	PU31	PU30	F0033H	00H	R/W	
	r					1		1				
PU4	0	0	0	0	PU43	PU42	PU41	PU40	F0034H	01H	R/W	
												
PU5	PU57	PU56	PU55	PU54	PU53	PU52	PU51	PU50	F0035H	00H	R/W	
	r	r	r	r	r	r	r	1				
PU7	PU77	PU76	PU75	PU74	PU73	PU72	PU71	PU70	F0037H	00H	R/W	
	r	r	r	r	r	r	r	1				
PU8	0	0	PU85	PU84	PU83	PU82	PU81	PU80	F0038H	00H	R/W	
								1				
PU12	PU127	PU126	PU125	0	0	0	0	0	F003CH	00H	R/W	
	1							1				
PU15	0	0	0	0	0	PU152	PU151	PU150	F003FH	07H	R/W	
												
	PUmn		Pmn pin on-chip pull-up resistor selection (m = 0, 1, 3 to 5, 7, 8, 12, 15 ; n = 0 to 7)									
	0	On-chin	pull-up res	istor not co	`	, ., 0 10 0,	., 0, 12, 1	• , ii = 0 k	/			
	0				, in colou							

Figure 4-3. Format of Pull-up Resistor Option Register

Caution Be sure to set bits that are not mounted to their initial values.

On-chip pull-up resistor connected

1

Pin	Used	Function	PIOR0×	POM××	PM××	Pxx	PFSEG××	Alternate Fur	ction Output	64-pin	80-pin	100-
Name	Function Name	I/O					(ISCVL3, ISCCAP) ^{Note}	SAU Output Function	Other than SAU			pin
P30	P30	Input	-	-	1	×	0	-	-			
		Output	×	-	0	0/1	0	_	(TO07) = 0	\checkmark	\checkmark	\checkmark
	SEG24	Output	×	-	0	0	1	-	_			
	(TI07)	Input	PIOR00 = 1	-	1	×	0	-	-	-	\checkmark	\checkmark
	TI07	Input	PIOR00 = 0	-	1	×	0	-	-		-	-
	(TO07)	Output	PIOR00 = 1	-	0	0	0	-	-	-	\checkmark	
	TO07	Output	PIOR00 = 0	-	0	0	0	-	-		-	-
	RxD2	Input	×	-	1	×	0	-	-			
	IrRxD	Input	× PIOR04 = 0	-	1	×	0	-	—	\checkmark	-	-
D 04	INTP5	Input		-	1	×	0	_	-			
P31	P31	Input	X	-	0	0/1	0	-	-	\checkmark	\checkmark	\checkmark
		Output	^	-					(TO06) = 0			
		N-ch open drain output	×	1	0	0/1	0	TxD2/IrTxD = 1	_	\checkmark	-	-
	SEG25	Output	×	-	0	0	1	-	_	\checkmark	V	V
	(TI06)	Input	PIOR00 = 1	-	1	×	0	-	-	-		\checkmark
	TI06	Input	PIOR00 = 0 $PIOR00 = 1$	-	1 0	× 0	0	—	-	V	-	-
	(TO06)	Output	PIOR00 = 1 PIOR00 = 0	-	0	0	0	—	-	_	V	V
	TO06	Output	x	- 0/1	0	1	0	-	-	\checkmark	-	-
	TxD2	Output	×	0/1	0	1	0	-	-	\checkmark	-	-
P32	lrTxD P32	Output			1	×	0	_	_			
P32	P32	Input	-	-		^	0	_				
		Output	×	-	0	0/1	0	-	(PCLBUZ1) = 0	-	\checkmark	\checkmark
	SEG26	Output	×	-	0	0	1	-	-			
	(PCLBUZ1)	Output	PIOR03 = 1	-	0	0	0	_	_			
P33	P33	Input	-	_	1	×	0	_	-			
		Output	×	_	0	0/1	0	_	(PCLBUZ0) = 0	_		V
	SEG27	Output	×	_	0	0	1	_	_			
	(PCLBUZ0)	Output	PIOR03 = 1	_	0	0	0	_	_			
P34	P34	Input	_	_	1	×	0	_	_			
		Output	_	_	0	0/1	0	_	-	_	_	\checkmark
	SEG28	Output	_	_	0	0	1	_	_			
P35	P35	Input	_	_	1	×	0	_	_			
		Output	_	_	0	0/1	0	_	_	_	_	\checkmark
	SEG29	Output			0	0	1	_	_	_		v
P36	P36	Input	-	-	1	×	0	_	_			
1 00	1 00	Output	_	-	0	0/1	0	_	_	_	_	\checkmark
	SEG30	Output	-	-	0	0	1	_	_	_	_	v
P37	P37	Input	-	-	1	×	0	_	_			
F37	F31		-	-	0	0/1	0					,
	05004	Output	-	-	0	0	1	-	-	-	-	V
D 40	SEG31	Output	-	-	1	×		-	-		<u> </u>	
P40	P40	Input	-	-	0	0/1	-	-	-	,	,	,
		Output	-	-			-	—	-	\checkmark	V	\checkmark
	TOOL0	I/O	_	-	× 1	×	-	-	-			
P41	P41	Input	-	-	1	×	-	-	-			
		Output	×	-	0	0/1	_	_	TO01 = 0 PCLBUZ1 = 0	-	V	V
	TI01	Input	PIOR00 = 0	-	1	×	-	_	-	. 1	. 1	. 1
	TO01	Output	PIOR00 = 0	_	0	0	_	-	PCLBUZ1 = 0	\checkmark	\checkmark	\checkmark
	PCLBUZ1	Output	PIOR03 = 0	_	0	0	_	-	TO01 = 0		1	ı
1	INTP6	Input	PIOR04 = 0	_	1	×	_	_	_	-	\checkmark	\checkmark

Table 4-6. Setting Examples of Registers and Output Latches When Using Alternate Function (5/10)

Note ISCVL3 and ISCCAP are registers that correspond to P125, and P126 and P127, respectively.

Pin	Used F	unction	CMC Register	SCMC Register	P×x	64-pin	80-pin	100-pin
Name	e Function I/O Name		(EXCLK, OSCSEL)	(EXCLKS, OSCSELS)				
P121	P121	Input	00/10/11		×	1	1	1
	X1	-	01		-	N	V	V
P122	P122	Input	00/10	_	×			
	X2	-	01		-	\checkmark	\checkmark	\checkmark
	EXCLK	Input	11		-			
P123	P123	Input		00/10/11	×		.1	.1
	XT1	-		01	-	V	V	N
P124	P124	Input	-	00/10	×			
	XT2	-		01	-	\checkmark	\checkmark	\checkmark
	EXCLKS	Input		11	-			

Table 4-6. Setting Examples of Registers and Output Latches When Using Alternate Function (9/10)

Table 4-6. Setting Examples of Registers and Output Latches When Using Alternate Function (10/10)

Pin	Used F	unction	PIOR0×	POM××	PM××	Pxx	PFSEG××	Alternate Fur	Iternate Function Output		80-pin	100-
Name	Function	I/O					(ISCVL3,	SAU Output Other than				pin
	Name						ISCCAP) ^{Note}	Function	SAU			
P125	P125	Input	_	_	1	×	1	-	-			
		Output	×	_	0	0/1	1	_	(TO05) = 0	,	,	1
			×		1	×	0		PCLBUZ1 = 0	\checkmark	\checkmark	\checkmark
	VL3	_ Input	PIOR04 = 0	_	1	×	1	_	_			
	(TI05)	Input	PIOR00 = 1	_	1	×	1	_	_	_		V
	(1103) TI05	Input	PIOR00 = 0	_	1	×	1	_	_		_	
	(TO05)	Output	PIOR00 = 1	_	0	0	1	_	PCLBUZ1 = 0	_	√	√
	TO05	Output	PIOR00 = 0	_	0	0	1	_	PCLBUZ1 = 0		,	
	PCLBUZ1	Output	PIOR03 = 0	_	0	0	1	_	TO05 = 0	\checkmark	-	-
P126	P126	Input	-	-	1	×	1	_	_			
		Output	×	_	0	0/1	1	-	(TO04) = 0			
	CAPL	_	×	-	1	×	0	-	_	\checkmark	\checkmark	\checkmark
	(TI04)	Input	PIOR00 = 1	-	1	×	1	-	-			
	(TO04)	Output	PIOR00 = 1	-	0	0	1	_	_	1		
P127	P127	Input	_	_	1	×	1	-	-			
		Output	×	-	0	0/1	1	_	(TO03) = 0			
	CAPH	-	×	-	1	×	0	_	-	\checkmark	\checkmark	\checkmark
	(TI03)	Input	PIOR00 = 1	-	1	×	1	_	_			
	(TO03)	Output	PIOR00 = 1	-	0	0	1	_	_			
P137	P137	Input	-	-	-	×	-	_	-	\checkmark	\checkmark	,
	INTP0	Input	PIOR04 = 0	-	-	×	-	_	-	N	N	\checkmark
P150	P150	Input	-	×	1	×	-	-	-			
		Output	×	-	0	0/1	-	-	-		\checkmark	
	RTCOUT	Output	PIOR03 = 0	-	0	0	-	—	—	-	Ň	N
	RTCIC0	Input	×	-	1	×	-	-	-			
P151	P151	Input	_	×	1	×	-	-	_			
		Output	-	-	0	0/1	-	-	-	-	\checkmark	\checkmark
	RTCIC1	Input	_	-	1	×	-	-	_			
P152	P152	Input	-	-	1	×	-	-	-			
		Output	-	-	0	0/1	-	-	-	-	\checkmark	\checkmark
	RTCIC2	Input	_	-	1	×	_	_	_			

Note ISCVL3 and ISCCAP are registers that correspond to P125, and P126 and P127, respectively.

power consumption oscillation (AMPHS1, AMPHS0 = 1, 0) is selected.

• Configure the circuit of the circuit board, using material with little parasitic capacitance and wiring resistance.

• Place a ground pattern that has the same potential as Vss as much as possible near the XT1 oscillator.

• Be sure that the signal lines between the XT1 and XT2 pins, and the resonators do not cross with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.

• The impedance between the XT1 and XT2 pins may drop and oscillation may be disturbed due to moisture absorption of the circuit board in a high-humidity environment or dew condensation on the board. When using the circuit board in such an environment, take measures to damp-proof the circuit board, such as by coating.

• When coating the circuit board, use material that does not cause capacitance or leakage between the XT1 and XT2 pins.

Caution 7. Be sure to clear bits 7, 6, 3, and 0 to 0.

15.6.5 Hardware trigger no-wait mode (select mode, sequential conversion mode)

- <1> In the stop status, the ADCE bit of A/D converter mode register 0 (ADM0) is set to 1, and the system enters the A/D conversion standby status.
- <2> After the software counts up to the stabilization wait time (1 μ s), the ADCS bit of the ADM0 register is set to 1 to place the system in the hardware trigger standby status (and conversion does not start at this stage). Note that, while in this status, A/D conversion does not start even if ADCS is set to 1.
- <3> If a hardware trigger is input while ADCS = 1, A/D conversion is performed on the analog input specified by the analog input channel specification register (ADS).
- <4> When A/D conversion ends, the conversion result is stored in the A/D conversion result register (ADCR, ADCRH), and the A/D conversion end interrupt request signal (INTAD) is generated. After A/D conversion ends, the next A/D conversion immediately starts.
- <5> If a hardware trigger is input during conversion operation, the current A/D conversion is interrupted, and conversion restarts. The partially converted data is discarded.
- <6> When the value of the ADS register is rewritten or overwritten during conversion operation, the current A/D conversion is interrupted, and A/D conversion is performed on the analog input respecified by the ADS register. The partially converted data is discarded.
- <7> When ADCS is overwritten with 1 during conversion operation, the current A/D conversion is interrupted, and conversion restarts. The partially converted data is discarded.
- <8> When ADCS is cleared to 0 during conversion operation, the current A/D conversion is interrupted, and the system enters the A/D conversion standby status. However, the A/D converter does not stop in this status.
- <9> When ADCE is cleared to 0 while in the A/D conversion standby status, the A/D converter enters the stop status. When ADCS = 0, inputting a hardware trigger is ignored and A/D conversion does not start.

Figure 15-22. Example of Hardware Trigger No-wait Mode (Select Mode, Sequential Conversion Mode) Operation Timing

	<1 	> ADCE is set	to 1.							ADCE	is cleare	d to 0. <	<u>}></u>
ADCE	Ì		is set to 1.										
Hardware trigger			> A hardward is generate		<5	 A hardware trig generated durin conversion ope 	ng A/D						
	The trigge acknowle	r is not dged.						ADCS is over with 1 durin conversion ope		ADCS is to 0 du conversion o	cleared< ring A/D peration.	8> The tr ackn	igger is not owledged.
ADCS							<6	> ADS is rewritten A/D conversion of (from ANI0 to ANIC)	operation				
ADS				Data 0 (ANI0)					Data 1 (ANI1)				
A/D			<4	> A/D convers ends and th conversion	e next	Conversion is interrupted <		Conversion is interrupted <4 and restarts.	>	Conversion interrupted restarts.	and	Conversion is interrupted.	
	Conversion stopped	Conversion standby	Data 0 (ANI0)	Data 0 (ANI0)	Data 0 (ANI0)	Data 0 (ANI0)	Data 0 (ANI0)	Data 1 (ANI1)	Data 1 (ANI1)	Data 1 (ANI1)	Data 1 (ANI1)	Conversion standby	Conversion stopped
	C	onversion start	/	D (0		2.1.2							
ADCR, ADCRH				Data 0 (ANI0)		Data 0 (ANI0)		Data 0 (ANI0)		ata 1 NI1)		Data ' (ANI1	
INTAD													

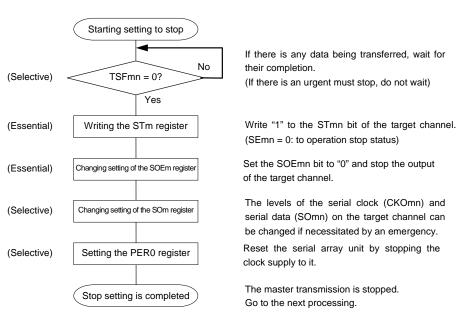
17.2.13 Peripheral clock control register (PCKC)

The PCKC register is used to control peripheral clocks. Set bit 0 to select a clock for the 24-bit $\Delta\Sigma$ A/D converter. The PCKC register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 17-20. Format of Peripheral Clock Control Register (PCKC)

Address: F0098H	After rea	set: 00H R/	W					
Symbol	7	6	5	4	3	2	<1>	<0>
PCKC	0	0	0	0	0	0	PLLCK	DSADCK


DSADCK	Selection of operation clock for 24-bit $\Delta\Sigma$ A/D converter
0	Supply high-speed on-chip oscillator clock (fill). (Stop f _{MX} supply) ^{Note 1}
1	Supply high-speed system clock (f _{MX}) ^{Note 2}

Notes 1. When selecting the high-speed on-chip oscillator clock, be sure to run the high-speed on-chip oscillator clock frequency correction function.

2. Only a 12 MHz crystal oscillator can be used as the high-speed system clock frequency (fmx).

Caution Be sure to clear bits 7 to 2 to "0".

Figure 18-44. Procedure for Stopping Master Transmission/Reception

CHAPTER 19 SERIAL INTERFACE IICA

19.1 Functions of Serial Interface IICA

Serial interface IICA has the following three modes.

(1) Operation stop mode

This mode is used when serial transfers are not performed. It can therefore be used to reduce power consumption.

(2) I²C bus mode (multimaster supported)

This mode is used for 8-bit data transfers with several devices via two lines: a serial clock (SCLAn) line and a serial data bus (SDAAn) line.

This mode complies with the l²C bus format and the master device can generated "start condition", "address", "transfer direction specification", "data", and "stop condition" data to the slave device, via the serial data bus. The slave device automatically detects these received status and data by hardware. This function can simplify the part of application program that controls the l²C bus.

Since the SCLAn and SDAAn pins are used for open drain outputs, serial interface IICA requires pull-up resistors for the serial clock line and the serial data bus line.

(3) Wakeup mode

The STOP mode can be released by generating an interrupt request signal (INTIICAn) when an extension code from the master device or a local address has been received while in STOP mode. This can be set by using the WUPn bit of IICA control register n1 (IICCTLn1).

Figure 19-1 shows a block diagram of serial interface IICA.

Remark n = 0

19.2 Configuration of Serial Interface IICA

Serial interface IICA includes the following hardware.

Item	Configuration
Registers	IICA shift register n (IICAn) Slave address register n (SVAn)
Control registers	Peripheral enable register 0 (PER0) Peripheral Reset Control Register 0 (PRR0) IICA control register n0 (IICCTLn0) IICA status register n (IICSn) IICA flag register n (IICFn) IICA control register n1 (IICCTLn1) IICA control register n1 (IICCTLn1) IICA low-level width setting register n (IICWLn) IICA high-level width setting register n (IICWHn) Port mode register 6 (PM6) Port register 6 (P6)

Table 19-1. Configuration of Serial Interface IICA

Remark n = 0

(1) IICA shift register n (IICAn)

The IICAn register is used to convert 8-bit serial data to 8-bit parallel data and vice versa in synchronization with the serial clock. The IICAn register can be used for both transmission and reception.

The actual transmit and receive operations can be controlled by writing and reading operations to the IICAn register.

Cancel the wait state and start data transfer by writing data to the IICAn register during the wait period.

The IICAn register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears IICAn to 00H.

Figure 19-3. Format of IICA Shift Register n (IICAn)

Address: FFF50H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
IICAn								

Cautions 1. Do not write data to the IICAn register during data transfer.

- 2. Write or read the IICAn register only during the wait period. Accessing the IICAn register in a communication state other than during the wait period is prohibited. When the device serves as the master, however, the IICAn register can be written only once after the communication trigger bit (STTn) is set to 1.
- 3. When communication is reserved, write data to the IICAn register after the interrupt triggered by a stop condition is detected.

Remark n = 0

(2) When communication reservation function is disabled (bit 0 (IICRSVn) of IICA flag register n (IICFn) = 1)

When bit 1 (STTn) of IICA control register n0 (IICCTLn0) is set to 1 when the bus is not used in a communication during bus communication, this request is rejected and a start condition is not generated. The following two statuses are included in the status where bus is not used.

- When arbitration results in neither master nor slave operation
- When an extension code is received and slave operation is disabled (ACK is not returned and the bus was released by setting bit 6 (LRELn) of the IICCTLn0 register to 1 and saving communication)

To confirm whether the start condition was generated or request was rejected, check STCFn (bit 7 of the IICFn register). It takes up to 5 clocks of f_{MCK} until the STCFn bit is set to 1 after setting STTn = 1. Therefore, secure the time by software.

Remark n = 0

20.3.2 Transmission

In transmission, the signals output from the SAU (UART frames) are converted to the IR frame data through the IrDA (see **Figure 20-5**). When IRTXINV bit is 0 and serial data is 0, high-level pulses with the width of 3/16 the bit rate (1-bit width period) are output (initial setting). The high-level pulse width can be changed by using the IRCKS2 to IRCKS0 bits. The standard prescribes that the minimum high-level pulse width should be 1.41 μ s and the maximum high-level pulse width be (3/16 + 2.5%) × bit rate or (3/16 × bit rate) + 1.08 μ s.

When the CPU/peripheral hardware clock (fcLk) is 20 MHz, the high-level pulse width can be 1.41 μ s to 1.6 μ s. When serial data is 1, no pulses are output.

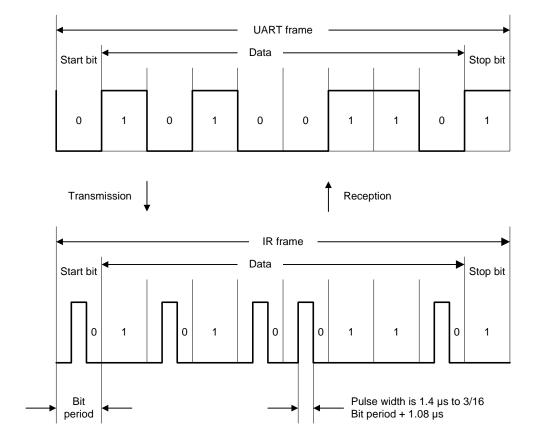
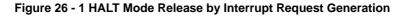
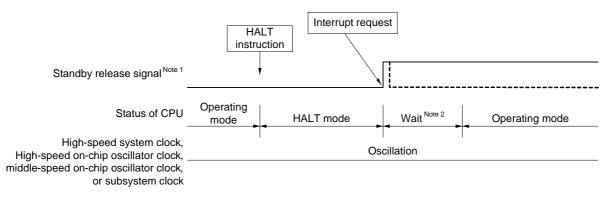


Figure 20-5. IrDA Transmission/Reception




(2) HALT mode release

The HALT mode can be released by the following two sources.

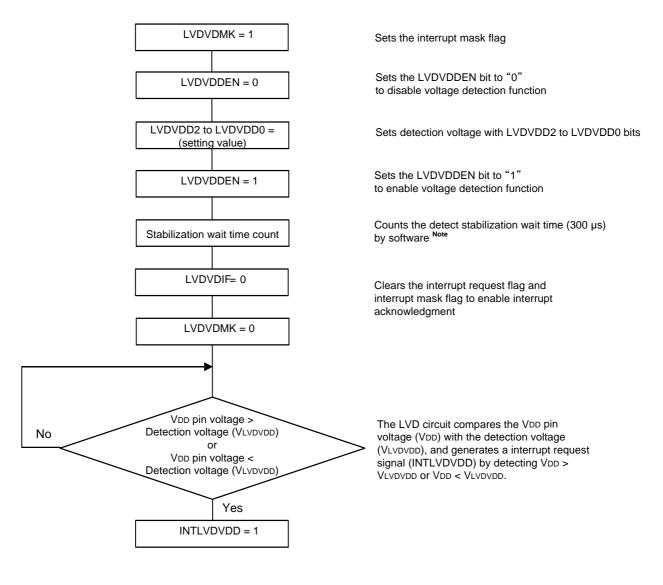
(a) Release by unmasked interrupt request

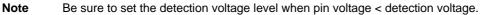
When an unmasked interrupt request is generated, the HALT mode is released. If interrupt acknowledgment is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgment is disabled, the next address instruction is executed.

Note 1. For details of the standby release signal, see Figure 24 - 1 Basic Configuration of Interrupt Function.

Note 2. Wait time for HALT mode release

When vectored interrupt servicing is	carried out
Main system clock:	15 to 16 clocks
Subsystem clock (RTCLPC = 0):	10 to 11 clocks
Subsystem clock (RTCLPC = 1):	11 to 12 clocks
• When vectored interrupt servicing is	not carried out
Main system clock:	9 to 10 clocks
Subsystem clock (RTCLPC = 0):	4 to 5 clocks
Subsystem clock (RTCLPC = 1):	5 to 6 clocks


Remark The broken lines indicate the case when the interrupt request which has released the standby mode is acknowledged.


29.4.4 Each power supply pin voltage detection setting procedure

(1) Vdd

The setting procedure of VDD pin voltage detection is shown below.

Figure 29 - 21 Setting Procedure of VDD Pin Voltage Detection

Caution If other process operating secures the stabilization wait time after setting the LVDVDDEN bit to 1 to enable the voltage detect function operation, the count process isn't required.

Table 36 - 12 Relationship Between Enabling Security Function and Command

(1) During serial programming

Valid Security	Executed Command			
Valid Security	Block Erase	Write		
Prohibition of block erase	Blocks cannot be erased.	Can be performed. Note		
Prohibition of writing	Blocks can be erased.	Cannot be performed.		
Prohibition of rewriting boot cluster 0	Boot cluster 0 cannot be erased.	Boot cluster 0 cannot be written.		

Note Confirm that no data has been written to the write area. Because data cannot be erased after block erase is prohibited, do not write data if the data has not been erased.

(2) During self-programming

Valid Security	Executed	Command	
Valid Security	Block Erase	Write	
Prohibition of block erase	Blocks can be erased. Can be performed.		
Prohibition of writing			
Prohibition of rewriting boot cluster 0	Boot cluster 0 cannot be erased.	Boot cluster 0 cannot be written.	

Remark To prohibit writing and erasing during self-programming, use the flash shield window function (see 36.6.3 for detail).

Table 36 - 13 Setting Security in Each Programming Mode

(1) During serial programming

Security	Security Setting	How to Disable Security Setting
Prohibition of block erase	Set via GUI of dedicated flash memory	Cannot be disabled after set.
Prohibition of writing	programmer, etc.	Set via GUI of dedicated flash memory programmer, etc.
Prohibition of rewriting boot cluster 0		Cannot be disabled after set.

Caution Releasing the setting of prohibition of writing is enabled only when the security is not set as the block erase prohibition and the boot cluster 0 rewrite prohibition with code flash memory area and data flash memory area being blanks.

(2) During self-programming

Security	Security Setting	How to Disable Security Setting
Prohibition of block erase	Set by using flash self-programming	Cannot be disabled after set.
Prohibition of writing	library.	Cannot be disabled during self- programming (set via GUI of dedicated flash memory programmer, etc. during serial programming).
Prohibition of rewriting boot cluster 0		Cannot be disabled after set.

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks		Flag	J
Group				Note 1	Note 2		Z	AC	CY
8-bit data	ХСН	A, [HL+B]	2	2	_	$A \longleftrightarrow (HL+B)$			
transfer		A, ES:[HL+B]	3	3	_	$A \longleftrightarrow ((ES, HL)+B)$			
		A, [HL+C]	2	2	-	$A \longleftrightarrow (HL+C)$			
		A, ES:[HL+C]	3	3	-	$A \leftarrow \rightarrow ((ES, HL)+C)$			
	ONEB	А	1	1	-	A ← 01H			
		х	1	1	-	X ← 01H			
		В	1	1	-	B ← 01H			
		С	1	1	-	C ← 01H			
		!addr16	3	1	-	(addr16) ← 01H			
		ES:laddr16	4	2	-	(ES, addr16) ← 01H			
		saddr	2	1	-	(saddr) ← 01H			
	CLRB	А	1	1	-	A ← 00H			
		х	1	1	-	X ← 00H			
		В	1	1	-	B ← 00H			
		С	1	1	-	C ← 00H			
		!addr16	3	1	-	(addr16) ← 00H			
		ES:laddr16	4	2	-	(ES,addr16) ← 00H			
		saddr	2	1	-	(saddr) ← 00H			
	MOVS	[HL+byte], X	3	1	-	(HL+byte) \leftarrow X	×		×
		ES:[HL+byte], X	4	2	-	(ES, HL+byte) $\leftarrow X$	×		×
16-bit	MOVW	rp, #word	3	1	-	$rp \leftarrow word$			
data transfer		saddrp, #word	4	1	-	$(saddrp) \leftarrow word$			
liansier		sfrp, #word	4	1	_	sfrp ← word			
		AX, rp Note 3	1	1	_	AX ← rp			
		rp, AX Note 3	1	1	-	$rp \leftarrow AX$			
		AX, !addr16	3	1	4	AX ← (addr16)			
		!addr16, AX	3	1	-	(addr16) ← AX			
		AX, ES:!addr16	4	2	5	$AX \leftarrow (ES, addr16)$			
		ES:!addr16, AX	4	2	-	(ES, addr16) ← AX			
		AX, saddrp	2	1	-	$AX \leftarrow (saddrp)$			
		saddrp, AX	2	1	_	$(saddrp) \leftarrow AX$			
		AX, sfrp	2	1	-	AX ← sfrp			
		sfrp, AX	2	1	_	sfrp \leftarrow AX			

Table 40-5. Operation List (4/18)

Notes 1. Number of CPU clocks (fcLK) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.

2. Number of CPU clocks (fcLK) when the code flash area is accessed.

3. Except rp = AX

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

41.6.2 24-bit $\Delta\Sigma$ A/D converter characteristics

(1) Reference voltage

(TA = -40 to +85°C, 2.4 V \leq VDD^{Note} \leq 5.5 V, Vss = AVss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Internal reference voltage	Vavrto			0.8		V
<r></r>	Temperature coefficient for	dREF/dt	0.47 μ F capacitor connected to AREGC, AVRT,		10		ppm/°C
	internal reference voltage		and AVCM pins				

Note Either V_{DD} or VBAT is selected by the battery backup function.

(2) Analog input

(TA = -40 to +85°C, 2.4 V \leq VDD^{Note} \leq 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage range	VAIN	x1 gain	-500		500	mV
(differential voltage)		x2 gain	-250		250	
		x4 gain	-125		125	
		x8 gain	-62.5		62.5	
		x16 gain	-31.25		31.25	
		x32 gain (for current channels)	-15.625		15.625	
Input gain	ainGAIN	x1 gain		1		dB
		x2 gain		2		
		x4 gain		4		
		x8 gain		8		
		x16 gain		16		
		x32 gain (for current channels)		32		
Input impedance	ainRIN	Differential voltage	150	360		kΩ
		Single-ended voltage	100	240		

Note Either VDD or VBAT is selected by the battery backup function.

41.8 LCD Characteristics

41.8.1 Resistance division method

(1) Static display mode

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{L4} \text{ (MIN.)} \leq \text{EVDD0} = \text{EVDD1} \leq \text{VDD}^{\text{Note}} \leq 5.5 \text{ V}, \text{ Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		$V_{\text{DD}}{}^{\text{Note}}$	V

Note Either VDD or VBAT is selected by the battery backup function.

(2) 1/2 bias method, 1/4 bias method

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD}^{\text{Note}} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		V_{DD}^{Note}	V

Note Either VDD or VBAT is selected by the battery backup function.

(3) 1/3 bias method

$(T_A = -40 \text{ to } +85^{\circ}C, V_{L4} \text{ (MIN.)} \le EVDD0 = EVDD1 \le VDD^{Note} \le 5.5 \text{ V}, \text{ Vss} = EVss0 = EVss1 = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		V_{DD}^{Note}	V

Note Either VDD or VBAT is selected by the battery backup function.

