

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I²C, IrDA, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 5.5V
Data Converters	A/D 6x10b, 4x24b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10npjdfb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.2.4	Special function registers (SFRs)	64
	3.2.5	Extended special function registers (2nd SFRs: 2nd Special Function Registers)	69
3.3	Instruc	ction Address Addressing	81
	3.3.1	Relative addressing	81
	3.3.2	Immediate addressing	81
	3.3.3	Table indirect addressing	82
	3.3.4	Register direct addressing	82
3.4	Addres	ssing for Processing Data Addresses	83
	3.4.1	Implied addressing	83
	3.4.2	Register addressing	83
	3.4.3	Direct addressing	84
	3.4.4	Short direct addressing	85
	3.4.5	SFR addressing	86
	3.4.6	Register indirect addressing	87
	3.4.7	Based addressing	88
	3.4.8	Based indexed addressing	92
	3.4.9	Stack addressing	93
CHAPTE	R4PC	DRT FUNCTIONS	97
4.1	Port F	unctions	97
4.2	Port C	onfiguration	97
	4.2.1	Port 0	98
	4.2.2	Port 1	98
	4.2.3	Port 2	99
		Port 3	99
	4.2.4	POIL 5	
	4.2.4 4.2.5	Port 4	
			99
	4.2.5	Port 4	99 100
	4.2.5 4.2.6	Port 4 Port 5	99 100 100
	4.2.5 4.2.6 4.2.7	Port 4 Port 5 Port 6	99 100 100 100
	4.2.5 4.2.6 4.2.7 4.2.8	Port 4 Port 5 Port 6 Port 7	99 100 100 100 100
	4.2.5 4.2.6 4.2.7 4.2.8 4.2.9	Port 4 Port 5 Port 6 Port 7 Port 8	99 100 100 100 100 101
	4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10	Port 4	99 100 100 100 101 101
4.3	4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10 4.2.11 4.2.12	Port 4	
4.3	4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10 4.2.11 4.2.12	Port 4	
4.3	4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10 4.2.11 4.2.12 Regist	Port 4 Port 5 Port 6 Port 7 Port 8 Port 12 Port 13 Port 15 ers Controlling Port Function	
4.3	4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10 4.2.11 4.2.12 Regist 4.3.1	Port 4	
4.3	4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10 4.2.11 4.2.12 Regist 4.3.1 4.3.2	Port 4	
4.3	4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10 4.2.11 4.2.12 Regist 4.3.1 4.3.2 4.3.3	Port 4	
4.3	4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10 4.2.11 4.2.12 Regist 4.3.1 4.3.2 4.3.3 4.3.4	Port 4 Port 5 Port 6 Port 7 Port 8 Port 12 Port 13 Port 15 ers Controlling Port Function	

CHAPTER 3 CPU ARCHITECTURE

3.1 Memory Space

Products in the RL78/I1C can access a 1 MB address space. Figures 3-1 and 3-3 show the memory maps.

Address	Special Function Register (SFR) Name	Sym	ıbol	R/W	Manip	After Reset		
					1-bit	8-bit	16-bit	
FFF90H	12-bit interval timer control register	ITMC		R/W	_	_	\checkmark	0FFFH
FFF91H								
FFFA0H	Clock operation mode control register	CMC		R/W	_	\checkmark	-	00H ^{Note 1}
FFFA1H	Clock operation status control register	CSC		R/W	\checkmark	\checkmark	-	C0H ^{Note 1}
FFFA2H	Oscillation stabilization time counter status register	OSTC		R	\checkmark	\checkmark	-	00H
FFFA3H	Oscillation stabilization time select register	OSTS		R/W	Ι	\checkmark	-	07H
FFFA4H	System clock control register	СКС		R/W	\checkmark	\checkmark	-	00H
FFFA5H	Clock output select register 0	CKS0		R/W	\checkmark	\checkmark	-	00H
FFFA6H	Clock output select register 1	CKS1		R/W	\checkmark	\checkmark	-	00H
FFFA7H	Subsystem clock select resister	CKSEL	-	R/W	\checkmark	\checkmark	-	00H
FFFA8H	Reset control flag register	RESF		R	_	\checkmark	-	Undefined
								Note 2
FFFA9H	Voltage detection register	LVIM		R/W	\checkmark	\checkmark	I	00H ^{Note 2}
FFFAAH	Voltage detection level register	LVIS		R/W	\checkmark	\checkmark	-	00H/01H/
								81H ^{Note 2}
FFFABH	Watchdog timer enable register	WDTE		R/W	Ι	\checkmark	-	1AH/9AH
								Note 3
FFFACH	CRC input register	CRCIN		R/W	_	\checkmark	-	00H
FFFD0H	Interrupt request flag register 2L	IF2L	IF2	R/W	\checkmark	\checkmark	\checkmark	00H
FFFD1H	Interrupt request flag register 2H	IF2H		R/W	\checkmark	\checkmark		00H
FFFD2H	Interrupt request flag register 3L	IF3L	IF3	R/W	\checkmark	\checkmark	\checkmark	00H
FFFD4H	Interrupt mask flag register 2L	MK2L	MK2	R/W	\checkmark	\checkmark	\checkmark	FFH
FFFD5H	Interrupt mask flag register 2H	MK2H		R/W	\checkmark	\checkmark		FFH
FFFD6H	Interrupt mask flag register 3L	MK3L	MK3	R/W	\checkmark	\checkmark	\checkmark	FFH

Table 3-5. SFR List (3/4)

Notes 1. This register is reset only by a power-on reset.

2. The reset values of the registers vary depending on the reset source as shown below.

Registe	Reset Source	RESET Input	Reset by POR	Reset by Execution of Illegal Instruction	Reset by WDT	Reset by RAM Parity Error	Reset by Illegal-Memory Access	Reset by LVD
RESF	TRAP	Cleared (0)		Set (1) Held				Held
	WDTRF			Held	Set (1)	Held		
	RPERF			Held		Set (1)	Held	
	IAWRF			Held				
	LVIRF			Held				Set (1)
LVIM	LVISEN	Cleared (0)						Held
	LVIOMSK	Held						
	LVIF							
LVIS		Cleared (00H/0	1H/81H)					Clear (00H/81H) ^{Note 4}

3. The reset value of the WDTE register is determined by the setting of the option byte.

4. When option byte LVIMDS1, LVIMDS0 = 0, 1: LVD reset is not generated.

	Address	Special Function Register (SFR) Name	Sym	lodr	R/W	Manip	ulable Bit	After Reset	
						1-bit	8-bit	16-bit	
<>	F0154H	Serial mode register 12	SMR12		R/W ^{Note 1}	_	_	\checkmark	0020H/0000H [№]
	F0155H								
<>	F0156H	Serial mode register 13	SMR13		R/W ^{Note 1}	-	_	\checkmark	0020H/0000H [№]
	F0157H								
	F0158H	Serial communication operation setting	SCR10		R/W	-	-	\checkmark	0087H
	F0159H	register 10							
	F015AH	Serial communication operation setting	SCR11		R/W	-	-	\checkmark	0087H
	F015BH	register 11							
۲>	F015CH	Serial communication operation setting	SCR12		R/W ^{Note 1}	—	—	\checkmark	0087H/0000H ^{NG}
	F015DH	register 12							
۲>	F015EH	Serial communication operation setting	SCR13		R/W ^{Note 1}	—	—	\checkmark	0087H/0000H [№]
	F015FH	register 13		-					
	F0160H	Serial channel enable status register 1	SE1L	SE1	R	\checkmark	\checkmark	\checkmark	0000H
	F0161H		-			-	-		
	F0162H	Serial channel start register 1	SS1L	SS1	R/W		\checkmark	\checkmark	0000H
	F0163H		—			-	-		
	F0164H	Serial channel stop register 1	ST1L	ST1	R/W		\checkmark	\checkmark	0000H
	F0165H		-			-	-		
	F0166H	Serial clock select register 1	SPS1L	SPS1	R/W	-	\checkmark	\checkmark	0000H
	F0167H		-			-	-		
	F0168H	Serial output register 1	SO1		R/W	-	-	\checkmark	0F0FH/0303HN
	F0169H								
	F016AH	Serial output enable register 1	SOE1L	SOE1	R/W	\checkmark	\checkmark	\checkmark	0000H
	F016BH		-			-	-		
	F0174H	Serial output level register 1	SOL1L	SOL1	R/W	-	\checkmark	\checkmark	0000H
	F0175H		-			-	-		
	F0180H	Timer counter register 00	TCR00		R	-	-	\checkmark	FFFFH
	F0181H								
	F0182H	Timer counter register 01	TCR01		R	-	-	\checkmark	FFFFH
	F0183H								
	F0184H	Timer counter register 02	TCR02		R	-	-	\checkmark	FFFFH
	F0185H								
	F0186H	Timer counter register 03	TCR03		R	-	-	\checkmark	FFFFH
	F0187H								
	F0188H	Timer counter register 04	TCR04		R	-	-	\checkmark	FFFFH
	F0189H								
	F018AH	Timer counter register 05	TCR05		R	-	-	\checkmark	FFFFH
	F018BH								
	F018CH	Timer counter register 06	TCR06		R	-		\checkmark	FFFFH
	F018DH								

<R> <R> Notes 1. These registers for R5F10NMG, R5F10NLG, R5F10NME, and R5F10NLE can only be read.

<R>

2. R5F10NPJ, R5F10NMJ, R5F10NPG: 0020H R5F10NMG, R5F10NLG, R5F10NME, R5F10NLE: 0000H 3. R5F10NPJ, R5F10NMJ, R5F10NPG: 0087H

R5F10NMG, R5F10NLG, R5F10NME, R5F10NLE: 0000H

<R> 4. R5F10NPJ, R5F10NMJ, R5F10NPG: 0F0FH R5F10NMG, R5F10NLG, R5F10NME, R5F10NLE: 0303H

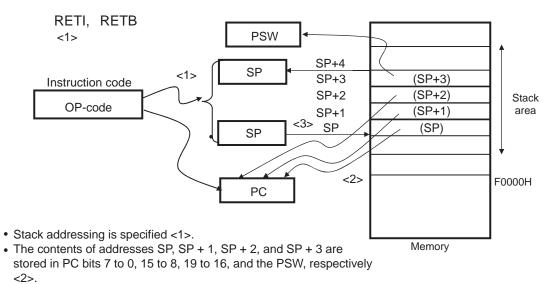


Figure 3-39. Example of RETI, RETB

• The value of SP <3> is increased by four.

5.5.2 Details of LS (low-speed main) mode

LS (low-speed main) mode supports both CPU processing capacity and operating voltage performance, suitable for applications that require low-power consumption at 1 to 8 MHz.

LS mode can be operated immediately after a reset release. Also, this mode can be entered from HS (high-speed main) mode, LV (low-voltage main) mode, or LP (low-power main) mode. When entering from HS mode to LS mode, make sure that the operating frequency is 1 MHz \leq fcLK \leq 8 MHz.

In LS mode, low-power consumption can be set by the MCSEL bit in the regulator mode control register (PMMC). When setting low-power consumption, set the MCSEL bit to 1 while the operating frequency is 1 MHz \leq fcLK \leq 4 MHz.

The suitable operating range in LS mode is when the supply voltage is $1.9 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$ and the operating frequency is $4 \text{ MHz} < \text{fcL} \text{K} \le 8 \text{ MHz}$ if MCSEL = 0, and when the supply voltage is $1.9 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$ and the operating frequency is $1 \text{ MHz} < \text{fcL} \text{K} \le 4 \text{ MHz}$ if MCSEL = 1.

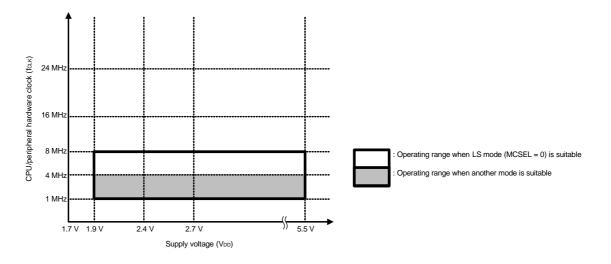


Figure 5 - 8 Operating Range in LS Mode (MCSEL = 0)

Figure 5 - 9 Operating Range in LS Mode (MCSEL = 1)

Caution When entering another flash operation mode, make sure that MCSEL = 0.

Address:	F00FAH	After reset: 00	H R/W										
Symbol	7	<6>	5	4	<3>	2	1	<0>					
PER1	0	FMCEN	0	0	DTCEN	0	0	DSADCEN					
[FMCEN		Control	of frequency n	neasurement cir	cuit input clock	supply						
	0	SFR used by	ops input clock supply. SFR used by the frequency measurement circuit cannot be written. The read value is 00H. The frequency measurement circuit is in the reset state.										
	1 Enables input clock supply. • SFR used by the frequency measurement circuit can be read and written.												
Γ	DTCEN			Control c	f DTC input cloc	k supply							
	0	Stops input clo • DTC cannot											
	1	Enables input DTC can run 	,										
DSADCEN Control of 24-bit ΔΣ A/D converter input clock supply													
	O Stops input clock supply. 0 • SFR used by the 24-bit ΔΣ A/D converter cannot be written. The read value is 00H. However, is not initialized. Note												

Figure 6 - 11 Format of Peripheral enable register 1 (PER1)

Note To initialize the 24-bit $\Delta\Sigma$ A/D converter and the SFR used by the 24-bit $\Delta\Sigma$ A/D converter, use bit 0 (DSADRES) of PRR1.

• SFR used by the 24-bit $\Delta\Sigma$ A/D converter can be read and written.

Caution 1. Be sure to clear the following bits to 0.

Enables input clock supply.

Bits 1, 2, 4, 5 and 7

1

Caution 2. Do not change the target bit in the PER1 register while operation of each peripheral function is enabled. Change the setting specified by PER1 while operation of each peripheral function assigned to PER1 is stopped.

9.2 **Register Descriptions**

When writing to or reading from RTC registers, do so in accordance with section 9.6.5, Notes when writing to and reading from registers.

If the value in an RTC register after a reset is given as undefined in the list, it is not initialized by a reset. When RTC enters the reset state or a low power consumption state during counting operations (i.e. while the RCR2.START bit is 1), the year, month, day of the week, date, hours, minutes, seconds, and 64-Hz counters continue to operate. Note that a reset generated during writing to or updating of a register might destroy the register value. In addition, do not allow the chip to enter STOP mode immediately after setting any of these registers. For details, refer to section 9.6.4, Transitions to low power consumption modes after setting registers.

<R>

9.2.1 Peripheral enable register 2 (PER2)

This register is used to enable or disable supplying the clock to the peripheral hardware. Clock supply to the hardware that is not used is also stopped so as to decrease the power consumption and noise.

To manipulate of the registers of the independent power supply real-time clock, set (1) the bit 0 (VRTCEN). Other than time when read/write accessing, clear (0) the bit 0 (VRTCEN).

The PER2 register can be set by a 1-bit or an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Address: F00	FDH A	After reset: 00H	R/W					
Symbol	<7>	<6>	5	4	3	<2>	1	<0>
PER2	TMKAEN	OSDCEN	0	0	0	MACEN	0	VRTCEN

Figure 9 - 2 Format of Peripheral enable register 2 (PER2)

Symbol	<7>	<6>	5	4	3	<2>	1	<0>	
PER2	TMKAEN	OSDCEN	0	0	0	MACEN	0	VRTCEN	
[VRTCEN Control of independent power supply RTC input clock supply								

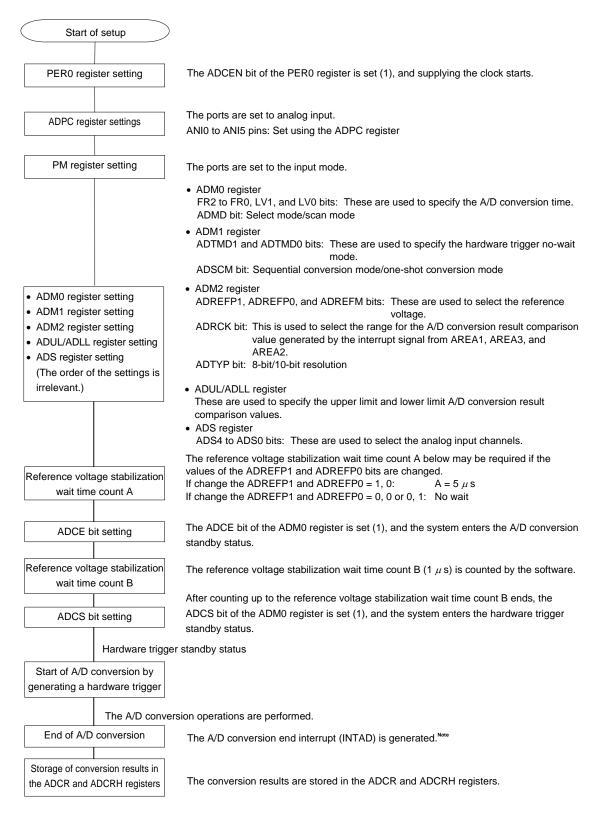
VRTCE	N Control of independent power supply RTC input clock supply					
0	Stops input clock supply. • SFR used by the independent power supply RTC cannot be written. The read value is 00H. The sub clock (fsx) clock can drive counting by the independent power supply RTC. Enables input clock supply. • SFR used by the independent power supply RTC can be read and written.					
1						
Note 1.	If the battery back-up function isn't used, leak current may be generated via the VRTC pin when the Vod pin power supply voltage is less than 1.9 V. Therefore, set the VRTCEN bit to 0 except during reading or writing of the SFRs of the independent power supply RTC.					
Note 2.	If the battery back-up function is used, leak current may be generated via the VRTC pin when the VBAT pin power supply voltage is less than 1.9 V. Therefore, set the VRTCEN bit to 0 except during reading or writing of the SFRs of the independent power supply RTC.					
Note 3.	When the power of the VRTC pin is not supplied, set the VRTCEN bit to 0.					
Caution	Be sure to clear the following bits to 0.					

Bits 1 and 3 to 5

9.2.31 RTC status register (RSR)

RSR is a flag register of the periodic interrupt, carry, and alarm. This register is a common function with the calendar count mode and the binary count mode.

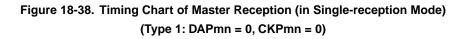
Each flag is set to 1 when the prescaler or the clock counter matches each interrupt setting condition. The prescaler, clock counter, and the setting register of each interrupt are not reset, so each flag may be set before it is read. This register is set to 00h by an RTC software reset.

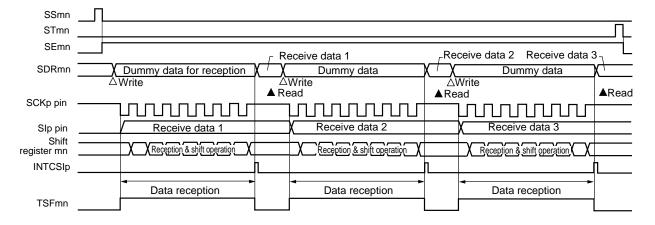

Figure 9 - 49 Format of RTC Status Register (RSR)

mbol	7	6	5	4	3	2	1	0				
RSR	0	0	0	0	0	PF	CF	AF				
Γ	PF			Pe	riodic interrupt	flag						
ľ	0	No interrupt o	occurs at a perio	od that is set wit	h RCR1.PES[3:0] bits						
	1	Interrupt occu	irs at a period t	hat is set with R	CR1.PES[3:0]	bits Note 2						
Du <0 • (<5	During PF = <clear cond<br="">• 0 is writte <set condit<="" td=""><td>n to the PF flag. ion></td><td>nterrupt occurs.</td><td></td><td></td><td>R1.PES[3:0] bit</td><td>5.</td><td></td></set></clear>	n to the PF flag. ion>	nterrupt occurs.			R1.PES[3:0] bit	5.					
	Interrupt occurs at a period that is set with RCR1.PES[3:0] bits. CF Carry flag											
	0	Carry flag No carry of second counter/binary counter 0, and no carry of the 64 Hz counter when the 64 Hz counter is reading										
	1	Carry of second counter/binary counter 0, or carry of the 64 Hz counter when the 64 Hz counter is reading										
	 During CF = 1, be sure to read again because the value which is read from the count register is not guaranteed. <clear conditions=""> 0 is written to the CF flag. <set condition=""></set> Carry of second counter/binary counter 0, or carry of the 64 Hz counter when the 64 Hz counter is reading 1 is written to the CF flag. </clear> 											
Γ	AF				Alarm flag							
F	0	The counter of	loes not match	the alarm regis	ters							
F	1	The counter r	natches the ala	rm registers Not	e 2							
	 This bit is set to 1 when the counter matches the alarm time set with the alarm registers (calender count mode: RSECAR, RMINAR, RHRAR, RWKAR, RDAYAR, RMONAR, RYRAR; binary count mode: BCNT0AR, BCNT1AR, BCNT2AR, BCNT3AR) (only registers that the ENB bit is set to 1). <clear conditions=""></clear> 0 is written to the AF flag. <set condition=""></set> 											
	 The counter matches the alarm registers (only registers that the ENB bit is set to 1). 											

Note 2. Writing "1" to this bit is invalid.

15.7.2 Setting up hardware trigger no-wait mode

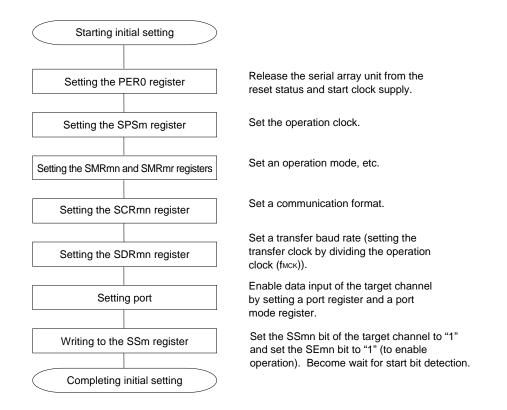



Figure 15-31. Setting up Hardware Trigger No-wait Mode

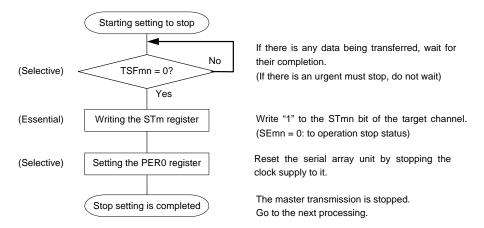
Note Depending on the settings of the ADRCK bit and ADUL/ADLL register, there is a possibility of no interrupt signal being generated. In this case, the results are not stored in the ADCR, ADCRH registers.

RENESAS

(3) Processing flow (in single-reception mode)



Remark m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), p: CSI number (p = 00, 10, 30), mn = 00, 02, 12



(2) Operation procedure

Figure 18-86. Initial Setting Procedure for UART Reception

Caution Set the RXEmn bit of SCRmn register to 1, and then be sure to set SSmn to 1 after 4 or more fmck clocks have elapsed.

Figure 18-87. Procedure for Stopping UART Reception

19.5.16 Communication operations

The following shows three operation procedures with the flowchart.

(1) Master operation in single master system

The flowchart when using the RL78/I1C as the master in a single master system is shown below.

This flowchart is broadly divided into the initial settings and communication processing. Execute the initial settings at startup. If communication with the slave is required, prepare the communication and then execute communication processing.

(2) Master operation in multimaster system

In the l^2C bus multimaster system, whether the bus is released or used cannot be judged by the l^2C bus specifications when the bus takes part in a communication. Here, when data and clock are at a high level for a certain period (1 frame), the RL78/I1C takes part in a communication with bus released state.

This flowchart is broadly divided into the initial settings, communication waiting, and communication processing. The processing when the RL78/I1C looses in arbitration and is specified as the slave is omitted here, and only the processing as the master is shown. Execute the initial settings at startup to take part in a communication. Then, wait for the communication request as the master or wait for the specification as the slave. The actual communication is performed in the communication processing, and it supports the transmission/reception with the slave and the arbitration with other masters.

(3) Slave operation

An example of when the RL78/I1C is used as the I²C bus slave is shown below.

When used as the slave, operation is started by an interrupt. Execute the initial settings at startup, then wait for the INTIICAn interrupt occurrence (communication waiting). When an INTIICAn interrupt occurs, the communication status is judged and its result is passed as a flag over to the main processing. By checking the flags, necessary communication processing is performed.

Remark n = 0

20.2.2 Peripheral reset control register 0 (PRR0)

The PRR0 register is used to control resetting of the on-chip peripheral modules.

Each bit in this register controls resetting and release of the reset state of the corresponding on-chip peripheral module. To reset the IrDA, be sure to set bit 6 (IRDARES) to 1.

The PRR0 register can be set by a 1-bit or an 8-bit memory manipulation instruction.

Reset signal generation clears the PRR0 register to 00H.

Figure 20-3. Format of Peripheral Reset Control Register 0 (PRR0)

Address: F	00F1H	After reset: 00H	H R/W					
Symbol	7	<6>	<5>	<4>	<3>	<2>	1	<0>
PRR0	0	IRDARES	ADCRES	IICA0RES	SAU1RES	SAU0RES	0	TAU0RES

IRDARES	IRDARES Control resetting of the IrDA						
0	Releases the IrDA from the reset state.						
1	The IrDA is in the reset state.						

20.4 Usage Notes on IrDA

- (1) The IrDA function cannot be used to transition to SNOOZE via IrRxD reception.
- (2) The input of IrDA operating clock can be disabled/enabled with the peripheral enable register. Initially, register access is disabled because clock input is disabled. Enable IrDA operating clock input with the peripheral enable register before setting the register.
- (3) During HALT mode, the IrDA function continues to run.
- (4) The use of SAU initialization function (SS bit= 1) is prohibited during IrDA communication.
- (5) The IRCR register bits IRRXINV, IRTXINV, and IRCKS[2:0] can be set only when IRE bit is 0.

21.1 Functions of LCD Controller/Driver

The functions of the LCD controller/driver in the RL78/I1C microcontrollers are as follows.

- (1) Waveform A or B selectable
- (2) The LCD driver voltage generator can switch internal voltage boosting method, capacitor split method, and external resistance division method.
- (3) Automatic output of segment and common signals based on automatic display data register read
- (4) The reference voltage to be generated when operating the voltage boost circuit can be selected from 16 steps (contrast adjustment).
- (5) LCD blinking is available

Table 21-2 lists the maximum number of pixels that can be displayed in each display mode.

Table 21-2. Maximum Number of Pixels (1/3)

(a) 64-pin products

Drive Waveform for	LCD Driver Voltage	Bias Mode	Number of Time	Maximum Number of Pixels
LCD Driver	Generator		Slices	
Waveform A	External resistance		Static	19 (19 segment signals, 1 common signal)
	division	1/2	2	38 (19 segment signals, 2 common signals)
			3	57 (19 segment signals, 3 common signals)
		1/3	3	
			4	76 (19 segment signals, 4 common signals)
			6	102 (17 segment signals, 6 common signals)
			8	120 (15 segment signals, 8 common signals)
		1/4	8	
	Internal voltage	1/3	3	57 (19 segment signals, 3 common signals)
	boosting		4	76 (19 segment signals, 4 common signals)
			6	102 (17 segment signals, 6 common signals)
			8	120 (15 segment signals, 8 common signals)
		1/4	6	102 (17 segment signals, 6 common signals)
			8	120 (15 segment signals, 8 common signals)
	Capacitor split	1/3	3	57 (19 segment signals, 3 common signals)
			4	76 (19 segment signals, 4 common signals)
			6	102 (17 segment signals, 6 common signals)
			8	120 (15 segment signals, 8 common signals)
Waveform B	External resistance	1/3	3	57 (19 segment signals, 3 common signals)
	division, internal		4	76 (19 segment signals, 4 common signals)
	voltage boosting		6	102 (17 segment signals, 6 common signals)
			8	120 (15 segment signals, 8 common signals)
		1/4	8	
	Capacitor split	1/3	3	57 (19 segment signals, 3 common signals)
			4	76 (19 segment signals, 4 common signals)
			6	102 (17 segment signals, 6 common signals)
			8	120 (15 segment signals, 8 common signals)

Interrupt Type	Defa		Interrupt Source	Internal/ External	Vector Table	Basic Co Type ^{nore ₂}	100-pin	80-pin	64-pin
1990	Default Priority ^{Note 1}	Name	Trigger	External	Address	Basic Configuration Type ^{№®2}	pin	in	5
Maskable	0	INTWDTI	Watchdog timer interval ^{Note 3} (75% of overflow time+1/2fı∟)	Internal	0004H	(A)	V	\checkmark	\checkmark
	1	INTLVI	Voltage detection ^{Note 4}		0006H		\checkmark	\checkmark	\checkmark
	2	INTP0 ^{Note 5}	Pin input edge detection	External	0008H	(B)	\checkmark	\checkmark	\checkmark
	3	INTP1			000AH		\checkmark	\checkmark	\checkmark
	4	INTP2			000CH		\checkmark	\checkmark	\checkmark
	5	INTP3			000EH		\checkmark	\checkmark	\checkmark
	6	INTP4			0010H		\checkmark	\checkmark	\checkmark
	7	INTP5			0012H		\checkmark	\checkmark	\checkmark
	8	INTST2	UART2 transmission transfer end or buffer empty interrupt	Internal	0014H	(A)	\checkmark	\checkmark	\checkmark
	9	INTSR2	UART2 reception transfer end		0016H		\checkmark	\checkmark	\checkmark
	10	INTSRE2	UART2 reception communication error occurrence		0018H		\checkmark	\checkmark	\checkmark
	11	INTCR	End of high-speed on-chip oscillator clock		001AH		\checkmark	\checkmark	\checkmark
			frequency correction						
	12	INTAES	AES encryption/decryption end		001CH		\checkmark	\checkmark	\checkmark
		INTAESF	AES encryption/decryption end of first block				\checkmark	\checkmark	\checkmark
	13	INTST0/	UART0 transmission transfer end or buffer		001EH		\checkmark	\checkmark	\checkmark
		INTCSI00/	empty interrupt/CSI00 transfer end or buffer						
		INTIIC00	empty interrupt/IIC00 transfer end						
	14	INTIICA0	End of IICA0 communication		0020H		\checkmark	\checkmark	\checkmark
	15	INTSR0	UART0 reception transfer end		0022H		\checkmark	\checkmark	\checkmark
	16	INTSRE0	UART0 reception communication error		0024H		\checkmark	\checkmark	\checkmark
			occurrence						
		INTTM01H	End of timer channel 01 count or capture (at				\checkmark	\checkmark	\checkmark
			higher 8-bit timer operation)						
	17	INTST1/	UART1 transmission transfer end or buffer		0026H		\checkmark	\checkmark	\checkmark
		INTCSI10/	empty interrupt/CSI10 transfer end or buffer						
		INTIIC10	empty interrupt/IIC10 transfer end						
	18	INTSR1	UART1 reception transfer end		0028H		\checkmark	\checkmark	\checkmark
	19	INTSRE1	UART1 reception communication error		002AH		\checkmark	\checkmark	\checkmark
			occurrence						
		INTTM03H	End of timer channel 03 count or capture (at				\checkmark	\checkmark	\checkmark
			higher 8-bit timer operation)						

Table 24-1. Interrupt Source List (1/4)

Notes 1. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 42 indicates the lowest priority.

- 2. Basic configuration types (A) to (C) correspond to (A) to (C) in Figure 24-1.
- 3. When bit 7 (WDTINT) of the option byte (000C0H) is set to 1.
- 4. When bit 7 (LVIMD) of the voltage detection level register (LVIS) is cleared to 0.
- 5. The input buffer power supply of P137 pins is connected to internal VDD. For PIOR04 = 0, interrupts can be accepted even when a battery backup function is used and power is supplied from the VBAT pin.

<R>

39.4 Operations of 32-bit Multiply-accumulator

39.4.1 Basic operation

The register configuration shows as follow when multiplication or multiply-accumulation is executed.

<multip< th=""><th colspan="3"><multiplier a=""></multiplier></th><th colspan="3"><multiplier b=""></multiplier></th><th colspan="3"><product></product></th></multip<>	<multiplier a=""></multiplier>			<multiplier b=""></multiplier>			<product></product>		
32	-bit			32-bit			64-bit		
Unsi	Unsigned			Unsigned			Unsigne		
[MUL32UH	, MUL3	2UL] ×	× [MDBH, M		=	[MULR3, MULR2, MULR1, MULR0]			
Register co	onfigura	ation during signed	multi	olication					
<multip< td=""><td></td><td></td><td colspan="2"><multiplier b=""></multiplier></td><td colspan="2"></td><td colspan="3"><product></product></td></multip<>			<multiplier b=""></multiplier>				<product></product>		
32	-bit			32-bit		64-bit Signed		64-bit	
Sig	ned			Signed				Signed	
[MUL32SH	, MUL3	2SL] ×	[MDBH, MDBL] =			[MULR3, MULR2, MULR1, MULR0]			
<multiplier a=""> 32-bit</multiplier>		<multiplier b=""> 32-bit</multiplier>	<accumulated value=""> 64-bit</accumulated>				<product> 64-bit</product>		
Unsigned		Unsigned	-		Jnsigned		Unsigned		
MAC32UH, MAC32UL]	×	[MDBH, MDBL]	+ [MULR3, MULR2, MULR1, MULR0			JLR0]			
Register configuratior	n durin	g signed multiply-a	ccum	ulation					
<multiplier a=""></multiplier>		<multiplier b=""></multiplier>		<accum< td=""><td>ulated value></td><td></td><td></td><td><product></product></td></accum<>	ulated value>			<product></product>	
		32-bit	-		64-bit		64-bit		
		Signed			Signed			Signed	
Signed	/AC32SH, MAC32SL] × [MDI					JLR0]			

39.4.2 Number of clocks for result availability

In case of multiplication or multiply-accumulation, the calculation is started automatically by setting upper 16-bit of the multiplier data (MULBH). Table 39-2 gives the number of clocks necessary to calculation.

Operation Mode	Operation	The Number of Clocks Necessary to Calculation						
		MULR0	MULR1	MULR2	MULR3	MACOF		
						MACSF		
Unsigned multiply	32 bits × 32 bits	2	4	5	5	5		
Signed multiply	32 bits × 32 bits	2	4	5	5	5		
Unsigned multiply-	32 bits × 32 bits +	2	4	5	5	5		
accumulate	64 bits							
Signed multiply-accumulate	32 bits × 32 bits +	2	4	5	5	5		
	64 bits							

Remark There is no difference in the clock number between the enabled and disabled fixed point modes.

39.6 Precautions for 32-bit Multiply-accumulator

39.6.1 Precautions during operation (MULST = 1)

Rewriting of the multiplication data register A (L)/(H), multiplication data register B (L)/(H), multiplication result register 0/1/2/3, and multiplication control register is prohibited during the operation. Otherwise, the operation result will be an undefined value.

Before rewriting to the multiplication data register B (H) as the operation start, rewriting the multiplication data register A (L)/(H), multiplication data register B (L), multiplication result register 0/1/2/3, and multiplication control register must be completed.

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks		Flag	J
Group				Note 1	Note 2			AC	CY
16-bit	ADDW	AX, #word	3	1	-	AX, CY \leftarrow AX+word	×	×	×
operation		AX, AX	1	1	-	AX, CY \leftarrow AX+AX	×	×	×
		AX, BC	1	1	-	AX, CY \leftarrow AX+BC	×	×	×
		AX, DE	1	1	-	AX, CY ← AX+DE	×	×	×
		AX, HL	1	1	-	AX, CY \leftarrow AX+HL	×	×	×
		AX, !addr16	3	1	4	AX, CY \leftarrow AX+(addr16)	×	×	×
		AX, ES:!addr16	4	2	5	AX, CY \leftarrow AX+(ES:addr16)	×	×	×
		AX, saddrp	2	1	-	AX, CY \leftarrow AX+(saddrp)	×	×	×
		AX, [HL+byte]	3	1	4	AX, CY \leftarrow AX+(HL+byte)	×	×	×
		AX, ES: [HL+byte]	4	2	5	AX, CY \leftarrow AX+((ES:HL)+byte)	×	×	×
	SUBW	AX, #word	3	1	-	AX, CY \leftarrow AX – word	×	×	×
		AX, BC	1	1	-	AX, CY \leftarrow AX – BC	×	×	×
		AX, DE	1	1	-	AX, CY \leftarrow AX – DE	×	×	×
		AX, HL	1	1	-	AX, CY \leftarrow AX – HL	×	×	×
		AX, !addr16	3	1	4	AX, CY \leftarrow AX – (addr16)	×	×	×
		AX, ES:!addr16	4	2	5	AX, CY \leftarrow AX – (ES:addr16)	×	×	×
		AX, saddrp	2	1	-	AX, CY \leftarrow AX – (saddrp)	×	×	×
		AX, [HL+byte]	3	1	4	AX, CY \leftarrow AX – (HL+byte)	×	×	×
		AX, ES: [HL+byte]	4	2	5	AX, CY \leftarrow AX – ((ES:HL)+byte)	×	×	×
	CMPW	AX, #word	3	1	-	AX – word	×	×	×
		AX, BC	1	1	-	AX – BC	×	×	×
		AX, DE	1	1	-	AX – DE	×	×	×
		AX, HL	1	1	-	AX – HL	×	×	×
		AX, !addr16	3	1	4	AX – (addr16)	×	×	×
		AX, ES:!addr16	4	2	5	AX – (ES:addr16)	×	×	×
		AX, saddrp	2	1	-	AX – (saddrp)	×	×	×
		AX, [HL+byte]	3	1	4	AX – (HL+byte)	×	×	×
		AX, ES: [HL+byte]	4	2	5	AX – ((ES:HL)+byte)	×	×	×

Notes 1. Number of CPU clocks (fcLk) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.

2. Number of CPU clocks (fcLK) when the code flash area is accessed.

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

