

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM9®
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	Audio Codec, EBI/EMI, IrDA, Memory Card, SmartCard, SSP, UART/USART, USB
Peripherals	AC'97, DMA, LCD, POR, PWM, WDT
Number of I/O	60
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LFBGA
Supplier Device Package	256-CABGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/socle/lh7a400n0f000b5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PBGA PIN	CABGA PIN	SIGNAL	DESCRIPTION	RESET STATE	STANDBY STATE	OUTPUT DRIVE
R11	P12	VDDA	Analog Power for PLL			
N12	M10	VDDA				
P12	R13	VSSA	Analog Ground for PLL			
T11	N11	VSSA				
D3	E4	nPOR	Power On Reset	Input	Input	
H6	D1	nURESET	User Reset; should be pulled HIGH for normal or JTAG operation.	Input (Schmitt)	Input	
D4	E2	WAKEUP	Wake Up	Input (Schmitt)	Input	
E4	F2	nPWRFL	Power Fail Signal	Input (Schmitt)	Input	
C2	D2	nEXTPWR	External Power	Input (Schmitt)	Input	
R13	R14	XTALIN	14.7456 MHz Crystal Oscillator pins. An external clock source can be connected to XTALIN leav-	Input	Input	
T13	R15	XTALOUT	ing XTALOUT open.	LOW	LOW	
P16	N14	XTAL32IN	32.768 kHz Real Time Clock Crystal Oscillator pins. An external clock source can be connected	Input	Input	
P15	M13	XTAL32OUT	to XTAL32IN leaving XTAL32OUT open.	Output	Output	
P14	M12	CLKEN	External Oscillator Clock Enable Output	LOW	LOW	8 mA
J6	J5	PGMCLK	Programmable Clock (14.7456 MHz MAX.)	LOW	LOW	8 mA
K11	P14	nCS0	Asynchronous Memory Chip Select 0	HIGH	HIGH	12 mA
K10	P16	nCS1	Asynchronous Memory Chip Select 1	HIGH	HIGH	12 mA
P13	N15	nCS2	Asynchronous Memory Chip Select 2	HIGH	HIGH	12 mA
M12	N16	nCS3/ nMMSPICS	 Asynchronous Memory Chip Select 3 MultiMediaCard SPI Mode Chip Select 	HIGH: nCS3	HIGH	12 mA

Table 1.	Functional	Pin	List ((Cont'd))
	i unotionui		LISU		

PBGA PIN	CABGA PIN	SIGNAL	DESCRIPTION	RESET STATE	STANDBY STATE	OUTPUT DRIVE
M13	L15	A2/SA0		LOW	LOW	12 mA
K16	K12	A3/SA1		LOW	LOW	12 mA
K15	K13	A4/SA2		LOW	LOW	12 mA
K14	K16	A5/SA3		LOW	LOW	12 mA
J8	J13	A6/SA4		LOW	LOW	12 mA
J16	J11	A7/SA5		LOW	LOW	12 mA
J14	J16	A8/SA6	Asynchronous Address Bus	LOW	LOW	12 mA
J9	H15	A9/SA7	Synchronous Address Bus	LOW	LOW	12 mA
H16	H10	A10/SA8		LOW	LOW	12 mA
H14	H12	A11/SA9		LOW	LOW	12 mA
G16	G15	A12/SA10	-	LOW	LOW	12 mA
G14	G10	A13/SA11	-	LOW	LOW	12 mA
G13	G11	A14/SA12	-	LOW	LOW	12 mA
F16	F16	A15/SA13	-	LOW	LOW	12 mA
F14	E16	A16/SB0	 Asynchronous Address Bus Synchronous Device Bank Address 0 	LOW	LOW	12 mA
E16	F13	A17/SB1	 Asynchronous Address Bus Synchronous Device Bank Address 1 	LOW	LOW	12 mA
E13	E14	A18				
F11	D15	A19				
D15	C16	A20		LOW	LOW	
C16	C15	A21	Asynchronous Address Bus			12 mA
B16	C14	A22				
A15	B15	A23				
A13	E11	A24				
G8	D8	A25/SCIO	 Asynchronous Memory Address Bus Smart Card Interface I/O (Data) 	LOW: A25	LOW	12 mA
F8	B7	A26/SCCLK	 Asynchronous Memory Address Bus Smart Card Interface Clock 	LOW: A26	LOW	12 mA
A8	A7	A27/SCRST	 Asynchronous Memory Address Bus Smart Card Interface Reset 	LOW: A27	LOW	12 mA
D8	C8	nOE	Asynchronous Memory Output Enable	HIGH	HIGH	12 mA
C8	F8	nWE0	Asynchronous Memory Write Byte Enable 0	HIGH	HIGH	12 mA
D10	D9	nWE3	Asynchronous Memory Write Byte Enable 3	HIGH	HIGH	8 mA
B10	E9	CS6/SCKE1_2	 Asynchronous Memory Chip Select 6 Synchronous Memory Clock Enable 1 OR 2 	LOW: CS6	LOW	12 mA
C10	A10	CS7/SCKE0	 Asynchronous Memory Chip Select 7 Synchronous Memory Clock Enable 0 	LOW: CS7	LOW	12 mA
G9	A11	SCKE3	Synchronous Memory Clock Enable 3	LOW	LOW	12 mA
A10	B10	SCLK	Synchronous Memory Clock	LOW	LOW	20 mA (sink) 12 mA
_	_					(source)
C14	C13	nSCS0	Synchronous Memory Chip Select 0	HIGH	HIGH	12 mA
D13	A15	nSCS1	Synchronous Memory Chip Select 1	HIGH	HIGH	12 mA
E11	D11	nSCS2	Synchronous Memory Chip Select 2	HIGH	HIGH	12 mA
A12	E10	nSCS3	Synchronous Memory Chip Select 3	HIGH	HIGH	12 mA
C12	A13	nSWE	Synchronous Memory Write Enable	HIGH	HIGH	12 mA
C11	B11	nCAS	Synchronous Memory Column Address Strobe Signal	HIGH	HIGH	12 mA

Table 1.	Functional	Pin List	(Cont'd)
----------	------------	----------	----------

PBGA	CABGA	SIGNAL	DESCRIPTION	RESET	STANDBY	OUTPUT	
PIN	PIN	SIGNAL	DESCRIPTION	STATE	STATE	DRIVE	
T2	R2	PC6/LCDHRLP	GPIO Port C LCD Latch Pulse	LOW: PC6	No Change	12 mA	
R2	N5	PC7/LCDSPL	GPIO Port C LCD Start Pulse Left	LOW: PC7	No Change	12 mA	
M11	M9	PD0/LCDVD8		LOW: PD0			
L11	K10	PD1/LCDVD9		LOW: PD1	LOW if		
K8	P10	PD2/LCDVD10		LOW: PD2	Dual-Panel		
N11	T11	PD3/LCDVD11	GPIO Port D	LOW: PD3	LCD is	12 mA	
R9	T12	PD4/LCDVD12	 LCD Video Data Bus 	LOW: PD4	Enabled;	12 1114	
Т9	R11	PD5/LCDVD13		LOW: PD5	otherwise,		
P10	R12	PD6/LCDVD14		LOW: PD6	No Change		
R10	T13	PD7/LCDVD15		LOW: PD7			
L10	Т9	PE0/LCDVD4		Input: PE0	LOW if 8-bit		
N10	K9	PE1/LCDVD5	• GPIO Port E	Input: PE1	LCD is		
M9	T10	PE2/LCDVD6	LCD Video Data Bus	Input: PE2	Enabled,	12 mA	
M10	R10	PE3/LCDVD7		Input: PE3	otherwise		
WITO	IX10	1 23/200 00/		input. I ES	No Change		
A6	A5	PF0/INT0	 GPIO Port F External FIQ Interrupt. Interrupts can be level or edge triggered and are internally debounced. 	Input: PF0 (Schmitt)	No Change	8 mA	
B6	B4	PF1/INT1	GPIO Port F External IRQ Interrupts. Interrupts can be level	Input: PF1 (Schmitt)	No Change	8 mA	
C6	E7	PF2/INT2	or edge triggered and are internally debounced.	Input: PF2 (Schmitt)	No Change	8 mA	
H8	B3	PF3/INT3	 GPIO Port F External IRQ Interrupt. Interrupts can be level or edge triggered and are internally debounced. 	Input: PF3 (Schmitt)	No Change	8 mA	
B5	C5	PF4/INT4/ SCVCCEN	 GPIO Port F External IRQ Interrupt. Interrupts can be level or edge triggered and are internally debounced. Smart Card Supply Voltage Enable 	Input: PF4 (Schmitt)	LOW if SCI is Enabled; otherwise, No Change	8 mA	
D6	D6	PF5/INT5/ SCDETECT	 GPIO Port F External IRQ Interrupt. Interrupts can be level or edge triggered and are internally debounced. Smart Card Detection 	Input: PF5 (Schmitt)	No Change	8 mA	
E6	A4	PF6/INT6/ PCRDY1	 GPIO Port F External IRQ Interrupt. Interrupts can be level or edge triggered and are internally debounced. Ready for Card 1 for PC Card (PCMCIA or CompactFlash) in single or dual card mode 	Input: PF6 (Schmitt)	No Change	8 mA	
C5	A3	PF7/INT7/ PCRDY2	 GPIO Port F External IRQ Interrupt. Interrupts can be level or edge triggered and are internally debounced. Ready for Card 2 for PC Card (PCMCIA or CompactFlash) in single or dual card mode 	Input: PF7 (Schmitt)	No Change	8 mA	
R3	M6	PG0/nPCOE	 GPIO Port G Output Enable for PC Card (PCMCIA or CompactFlash) in single or dual card mode 	LOW: PG0	No Change	8 mA	
Т3	T1	PG1/nPCWE	 GPIO Port G Write Enable for PC Card (PCMCIA or CompactFlash) in single or dual card mode 	LOW: PG1	No Change	8 mA	

Table 1. Functional Pin List (Cont'd)

PBGA PIN	CABGA PIN	SIGNAL	DESCRIPTION	RESET STATE	STANDBY STATE	OUTPUT DRIVE
L6	P4	PG2/nPCIOR	 GPIO Port G I/O Read Strobe for PC Card (PCMCIA or CompactFlash) in single or dual card mode 	LOW: PG2	No Change	8 mA
M6	R3	PG3/nPCIOW	 GPIO Port G I/O Write Strobe for PC Card (PCMCIA or CompactFlash) in single or dual card mode 	LOW: PG3	No Change	8 mA
N6	T2	PG4/nPCREG	 GPIO Port G Register Memory Access for PC Card (PCMCIA or CompactFlash) in single or dual card mode 	LOW: PG4	No Change	8 mA
М7	P5	PG5/nPCCE1	 GPIO Port G Card Enable 1 for PC Card (PCMCIA or CompactFlash) in single or dual card mode. This signal and nPCCE2 are used by the PC Card for decoding low and high byte accesses. 	LOW: PG5	No Change	8 mA
M8	R4	PG6/nPCCE2	 GPIO Port G Card Enable 2 for PC Card (PCMCIA or CompactFlash) in single or dual card mode. This signal and nPCCE1 are used by the PC Card for decoding low and high byte accesses. 	LOW: PG6	No Change	8 mA
N4	Т3	PG7/PCDIR	 GPIO Port G Direction for PC Card (PCMCIA or CompactFlash) in single or dual card mode 	LOW: PG7	No Change	8 mA
P4	P6	PH0/ PCRESET1	 GPIO Port H Reset Card 1 for PC Card (PCMCIA or CompactFlash) in single or dual card mode 	Input: PH0	No Change	8 mA
R4	T4	PH1/CFA8/ PCRESET2	 GPIO Port H Address Bit 8 for PC Card (CompactFlash) in single card mode Reset Card 2 for PC Card (PCMCIA or CompactFlash) in dual card mode 	Input: PH1	No Change	8 mA
T4	M7	PH2/ nPCSLOTE1	 GPIO Port H Enable Card 1 for PC Card (PCMCIA or CompactFlash) in single or dual card mode. This signal is used for gating other control sig- nals to the appropriate PC Card. 	Input: PH2	No Change	8 mA
N7	T5	PH3/CFA9/ PCMCIAA25/ nPCSLOTE2	 GPIO Port H Address Bit 9 for PC Card (CompactFlash) in single card mode Address Bit 25 for PC Card (PCMCIA) in single card mode Enable Card 2 for PC Card (PCMCIA or CompactFlash) in dual card mode. This signal is used for gating other control signals to the appropriate PC Card. 	Input: PH3	No Change	8 mA
P8	R6	PH4/ nPCWAIT1	 GPIO Port H WAIT Signal for Card 1 for PC Card (PCMCIA or CompactFlash) in single or dual card mode 	Input: PH4	No Change	8 mA
P5	R7	PH5/CFA10/ PCMCIAA24/ nPCWAIT2	 GPIO Port H Address Bit 10 for PC Card (CompactFlash) in single card mode Address Bit 24 for PC Card (PCMCIA) in single card mode WAIT Signal for Card 2 for PC Card (PCMCIA or CompactFlash) in dual card mode 	Input: PH5	No Change	8 mA

Table 1. Functional Pin List (Cont'd)

			STN							
PBGA	CABGA	LCD DATA	MONC	4-BIT	MONC	8-BIT	COI	OR	TFT	AD-TFT/
PIN	PIN	SIGNAL	SINGLE PANEL	DUAL PANEL	SINGLE PANEL	DUAL PANEL	SINGLE PANEL	DUAL PANEL		HR-TFT
K1	K2	LCDVD17								LOW
J5	K1	LCDVD16								LOW
R10	T13	LCDVD15				MLSTN7		CLSTN7	Intensity	Intensity
P10	R12	LCDVD14				MLSTN6		CLSTN6	BLUE4	BLUE4
Т9	R11	LCDVD13				MLSTN5		CLSTN5	BLUE3	BLUE3
R9	T12	LCDVD12				MLSTN4		CLSTN4	BLUE2	BLUE2
N11	T11	LCDVD11				MLSTN3		CLSTN3	BLUE1	BLUE1
K8	P10	LCDVD10				MLSTN2		CLSTN2	BLUE0	BLUE0
L11	K10	LCDVD9				MLSTN1		CLSTN1	GREEN4	GREEN4
M11	M9	LCDVD8				MLSTN0		CLSTN0	GREEN3	GREEN3
M10	R10	LCDVD7		MLSTN3	MUSTN7	MUSTN7	CUSTN7	CUSTN7	GREEN2	GREEN2
M9	T10	LCDVD6		MLSTN2	MUSTN6	MUSTN6	CUSTN6	CUSTN6	GREEN1	GREEN1
N10	K9	LCDVD5		MLSTN1	MUSTN5	MUSTN5	CUSTN5	CUSTN5	GREEN0	GREEN0
L10	Т9	LCDVD4		MLSTN0	MUSTN4	MUSTN4	CUSTN4	CUSTN4	RED4	RED4
N8	T8	LCDVD3	MUSTN3	MUSTN3	MUSTN3	MUSTN3	CUSTN3	CUSTN3	RED3	RED3
T7	R8	LCDVD2	MUSTN2	MUSTN2	MUSTN2	MUSTN2	CUSTN2	CUSTN2	RED2	RED2
R7	P8	LCDVD1	MUSTN1	MUSTN1	MUSTN1	MUSTN1	CUSTN1	CUSTN1	RED1	RED1
P7	M8	LCDVD0	MUSTN0	MUSTN0	MUSTN0	MUSTN0	CUSTN0	CUSTN0	RED0	RED0

Table 3. LCD Data Multiplexing

NOTES:

The Intensity bit is identically generated for all three colors.
 MU = Monochrome Upper
 CU = Color Upper
 CL = Color Lower

BGA PIN	SIGNAL	RESET STATE	STANDBY STATE
F11	A19	LOW	LOW
F12	D17	LOW	LOW
F13	VDD		
F14	A16/SB0	LOW: SBANK0	LOW
F15	D16	LOW	LOW
F16	A15/SA13	LOW: SA13	LOW
G1	COL2	HIGH	HIGH
G2	COL3	HIGH	HIGH
G3	VSS		
G4	COL4	HIGH	HIGH
G5	COL5	HIGH	HIGH
G6	VSSC		
G7	VDD		
G8	A25/SCIO	LOW: A25	LOW
G9	SCKE3	LOW	LOW
G10	D28	LOW	LOW
G11	D14	LOW	LOW
G12	D15	LOW	LOW
G13	A14/SA12	LOW: SA12	LOW
G14	A13/SA11	LOW: SA11	LOW
G15	D13	LOW	LOW
G16	A12/SA10	LOW: SA10	LOW
H1	COL6	HIGH	HIGH
H2	COL7	HIGH	HIGH
H3	TBUZ	LOW	LOW
H4	SSPCLK	LOW	LOW
H5	VSSC		
H6	nURESET	Input	Input
H7	VSS		
H8	PF3/INT3	Input: PF3	No Change
H9	VSS		
H10	D20	LOW	LOW
H11	D6	LOW	LOW
H12	VSSC		
H13	D12	LOW	LOW
H14	A11/SA9	LOW: SA9	LOW
H15	D11	LOW	LOW
H16	A10/SA8	LOW: SA8	LOW
J1	SSPRX	Input	Input
J2	SSPTX	LOW	LOW
J3	SSPFRM/nSSPFRM	Input: nSSPFRM	Input
J4	VDDC		
J5	PA0/LCDVD16	Input: PA0	No Change
J6	PGMCLK	LOW	LOW
J7	UARTRX2	Input	Input

CABGA PIN	SIGNAL	RESET STATE	STANDBY STATE
L13	D1	LOW	LOW
L14	D2	LOW	LOW
L15	A2/SA0	LOW	LOW
L16	D4	LOW	LOW
M1	PB1/UARTTX3	Input: PB1	LOW if UART3 is Enabled, otherwise No Change
M2	PB2/UARTRX3	Input: PB2	No Change
M3	PB3/UARTCTS3	Input: PB3	No Change
M4	PB7/SMBCLK	Input: PB7	Input if SMB is Enabled, otherwise No Change
M5	PC3/LCDREV	LOW: PC3	No Change
M6	PG0/nPCOE	LOW: PG0	No Change
M7	PH2/nPCSLOTE1	Input: PH2	No Change
M8	LCDVD0	LOW	LOW
M9	PD0/LCDVD8	LOW: PD0	LOW if Dual-Panel LCD is Enabled; otherwise, No Change
M10	VDDA		
M11	VSS		
M12	CLKEN	LOW	LOW
M13	XTAL32OUT	Output	Output
M14	VSS		
M15	A0/nWE1	HIGH: nWE1	HIGH
M16	A1/nWE2	HIGH: nWE2	HIGH
N1	PB5/UARTDSR3	Input: PB5	No Change
N2	PB6/SWID/SMBD	Input: PB6	Input if SMB is Enabled, otherwise No Change
N3	VSSC		
N4	PC5/LCDCLS	LOW: PC5	No Change
N5	PC7/LCDSPL	LOW: PC7	No Change
N6	VDD		
N7	VSSC		
N8	VDD		
N9	LCDDCLK	LOW	LOW
N10	VSSC		
N11	VSSA		
N12	VDD		
N13	VDD		
N14	XTAL32IN	Input	Input
N15	nCS2	HIGH	HIGH
N16	nCS3/nMMSPICS	HIGH: nCS3	HIGH
P1	PC0/UARTTX1	LOW: PC0	No Change
P2	PC1/LCDPS	LOW: PC1	No Change
P3	PC4/LCDSPS	LOW: PC4	No Change
P4	PG2/nPCIOR	LOW: PG2	No Change
P5	PG5/nPCCE1	LOW: PG5	No Change
P6	PH0/PCRESET1	Input: PH0	No Change

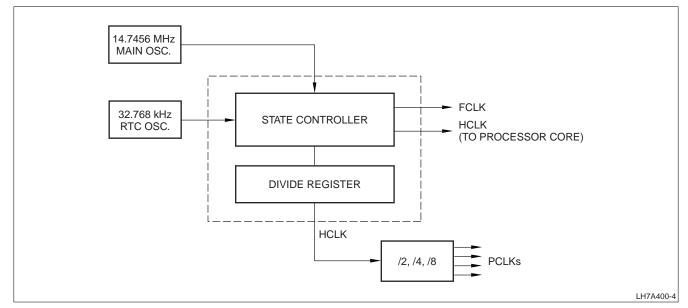


Figure 3. Clock and State Controller Block Diagram

Power Modes

The LH7A400 has three operational states: Run, Halt, and Standby. In Run mode, all clocks are hardware-enabled and the processor is clocked. Halt mode stops the processor clock while waiting for an event such as a key press, but the device continues to function. Finally, Standby equates to the computer being switched 'off', i.e. no display (LCD disabled) and the main oscillator is shut down. The 32.768 kHz oscillator operates in all three modes.

Reset Modes

There are three external signals that can generate resets to the LH7A400; these are nPOR (power on reset), nPWRFL (power failure) and nURESET (user reset). If any of these are active, a system reset is generated internally. A nPOR reset performs a full system reset. The nPWRFL and nURESET resets will perform a full system reset except for the SDRAM refresh control, SDRAM Global Configuration, SDRAM Device Configuration and the RTC peripheral registers. The SDRAM controller will issue a self-refresh command to external SDRAM before the system enters this reset (the nPWRFL and nURESET resets only, not so for the nPOR reset). This allows the system to maintain its Real Time Clock and SDRAM contents. On coming out of reset, the chip enters Standby mode. Once in Run mode the PWRSR register can be interrogated to determine the nature of the reset, and the trigger source, after which software can then take appropriate actions.

Data Paths

The data paths in the LH7A400 are:

- The AMBA AHB bus
- The AMBA APB bus
- The External Bus Interface
- The LCD AHB bus
- The DMA busses.

AMBA AHB BUS

The Advanced Microprocessor Bus Architecture Advanced High-performance Bus (AMBA AHB) bus is a high speed 32-bit-wide data bus. The AMBA AHB is for high-performance, high clock frequency system modules.

Peripherals that have high bandwidth requirements are connected to the LH7A400 core processor using the AHB bus. These include the external and internal memory interfaces, the LCD registers, palette RAM and the bridge to the Advanced Peripheral Bus (APB) interface. The APB Bridge transparently converts the AHB access into the slower speed APB accesses. All of the control registers for the APB peripherals are programmed using the AHB - APB bridge interface. The main AHB data and address lines are configured using a multiplexed bus. This removes the need for tri-state buffers and bus holders, and simplifies bus arbitration.

LH7A400-6

			1
F000.0000	ASYNCHRONOUS MEMORY (nCS0)	SYNCHRONOUS MEMORY (nSCS3)	256MB
E000.0000	SYNCHRONOUS MEMORY (nSCS2)	SYNCHRONOUS MEMORY (nSCS2)	256MB
D000.0000	SYNCHRONOUS MEMORY (nSCS1)	SYNCHRONOUS MEMORY (nSCS1)	256MB
C000.0000	SYNCHRONOUS MEMORY (nSCS0)	SYNCHRONOUS MEMORY (nSCS0)	256MB
B001.4000	RESERVED	RESERVED	
B000.0000	EMBEDDED SRAM	EMBEDDED SRAM	80KB
8000.3800	RESERVED	RESERVED	
8000.2000	AHB INTERNAL REGISTERS	AHB INTERNAL REGISTERS	
8000.0000	APB INTERNAL REGISTERS	APB INTERNAL REGISTERS	
7000.0000	ASYNCHRONOUS MEMORY (CS7)	ASYNCHRONOUS MEMORY (CS7)	256MB
6000.0000	ASYNCHRONOUS MEMORY (CS6)	ASYNCHRONOUS MEMORY (CS6)	256MB
5000.0000	PCMCIA/CompactFlash (nPCSLOTE2)	PCMCIA/CompactFlash (nPCSLOTE2)	256MB
4000.0000	PCMCIA/CompactFlash (nPCSLOTE1)	PCMCIA/CompactFlash (nPCSLOTE1)	256MB
3000.0000	ASYNCHRONOUS MEMORY (nCS3)	ASYNCHRONOUS MEMORY (nCS3)	256MB
2000.0000	ASYNCHRONOUS MEMORY (nCS2)	ASYNCHRONOUS MEMORY (nCS2)	256MB
1000.0000	ASYNCHRONOUS MEMORY (nCS1)	ASYNCHRONOUS MEMORY (nCS1)	256MB
0000.0000	SYNCHRONOUS ROM (nSCS3)	ASYNCHRONOUS ROM (nCS0)	256MB
	SYNCHRONOUS MEMORY BOOT	ASYNCHRONOUS MEMORY BOOT	_

Figure 4. Memory Mapping for Each Boot Mode

External Bus Interface

The external bus interface allows the ARM922T, LCD controller and DMA engine access to an external memory system. The LCD controller has access to an internal frame buffer in embedded SRAM and an extension buffer in Synchronous Memory for large displays. The processor and DMA engine share the main system bus, providing access to all external memory devices and the embedded SRAM frame buffer.

An arbitration unit ensures that control over the External Bus Interface (EBI) is only granted when an existing access has been completed. See Figure 5.

Embedded SRAM

The amount of Embedded SRAM contained in the LH7A400 is 80KB. This Embedded memory is designed to be used for storing code, data, or LCD frame data and to be contiguous with external SDRAM. The 80KB is large enough to store a QVGA panel (320×240) at 8 bits per pixel, equivalent to 70KB of information.

Containing the frame buffer on chip reduces the overall power consumed in any application that uses the LH7A400. Normally, the system has to perform external accesses to acquire this data. The LCD controller is designed to automatically use an overflow frame buffer in SDRAM if a larger screen size is required. This overflow buffer can be located on any 4KB page boundary in SDRAM, allowing software to set the MMU (in the LCD controller) page tables such that the two memory areas appear contiguous. Byte, Half-Word and Word accesses are permissible.

Asynchronous Memory Controller

The Asynchronous memory controller is incorporated as part of the memory controller to provide an interface between the AMBA AHB system bus and external (off-chip) memory devices.

The Asynchronous Memory Controller provides support for up to eight independently configurable memory banks simultaneously. Each memory bank is capable of supporting:

- SRAM
- ROM
- Flash EPROM
- Burst ROM memory.

Each memory bank may use devices using either 8-, 16-, or 32-bit external memory data paths. The memory controller can be configured to support either littleendian or big-endian operation.

The memory banks can be configured to support:

- Non-burst read and write accesses only to highspeed CMOS static RAM.
- Non-burst write accesses, nonburst read accesses and asynchronous page mode read accesses to fast-boot block flash memory.

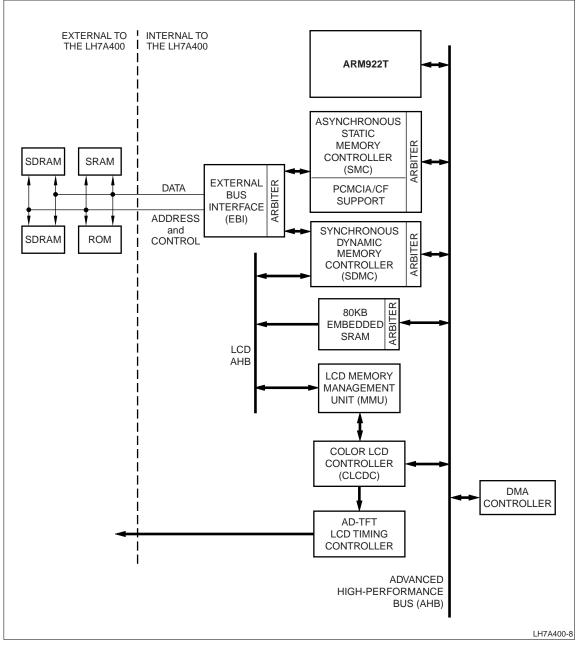


Figure 5. External Bus Interface Block Diagram

The Asynchronous Memory Controller has six main functions:

- Memory bank select
- Access sequencing
- · Wait states generation
- Byte lane write control
- External bus interface
- CompactFlash or PCMCIA interfacing.

Synchronous Memory Controller

The Synchronous memory controller provides a high speed memory interface to a wide variety of Synchronous memory devices, including SDRAM, Synchronous Flash and Synchronous ROMs.

The key features of the controller are:

- LCD DMA port for high bandwidth
- Up to four Synchronous Memory banks that can be independently set up
- Special configuration bits for Synchronous ROM operation
- Ability to program Synchronous Flash devices using write and erase commands
- On booting from Synchronous ROM, (and optionally with Synchronous Flash), a configuration sequence is performed before releasing the processor from reset
- Data is transferred between the controller and the SDRAM in quad-word bursts. Longer transfers within the same page are concatenated, forming a seamless burst
- Programmable for 16- or 32-bit data bus size
- Two reset domains are provided to enable SDRAM contents to be preserved over a 'soft' reset
- Power saving Synchronous Memory SCKE and external clock modes provided.

MultiMediaCard (MMC)

The MMC adapter combines all of the requirements and functions of an MMC host. The adapter supports the full MMC bus protocol, defined by the MMC Definition Group's specification v.2.11. The controller can also implement the SPI interface to the cards.

INTERFACE DESCRIPTION AND MMC OVERVIEW

The MMC controller uses the three-wire serial data bus (clock, command, and data) to transfer data to and from the MMC card, and to configure and acquire status information from the card's registers. MMC bus lines can be divided into three groups:

- Power supply: VDD and VSS
- Data Transfer: MMCCMD, MMCDATA
- Clock: MMCLK.

MULTIMEDIACARD ADAPTER

The MultiMediaCard Adapter implements MultiMedia-Card specific functions, serves as the bus master for the MultiMediacard Bus and implements the standard interface to the MultiMediaCard Cards (card initialization, CRC generation and validation, command/response transactions, etc.).

Smart Card Interface (SCI)

The SCI (ISO7816) interfaces to an external Smart Card reader. The SCI can autonomously control data transfer to and from the smart card. Transmit and receive data FIFOs are provided to reduce the required interaction between the CPU core and the peripheral.

SCI FEATURES

- Supports asynchronous T0 and T1 transmission protocols
- Supports clock rate conversion factor F = 372, with bit rate adjustment factors D = 1, 2, or 4 supported
- · Eight-character-deep buffered Tx and Rx paths
- Direct interrupts for Tx and Rx FIFO level monitoring
- Interrupt status register
- Hardware-initiated card deactivation sequence on detection of card removal
- Software-initiated card deactivation sequence on transaction complete
- Limited support for synchronous Smart Cards via registered input/output.

PROGRAMMABLE PARAMETERS

- Smart Card clock frequency
- Communication baud rate
- Protocol convention
- Card activation/deactivation time
- Check for maximum time for first character of Answer to Reset - ATR reception
- Check for maximum duration of ATR character stream
- Check for maximum time of receipt of first character of data stream
- Check for maximum time allowed between characters
- Character guard time
- Block guard time
- Transmit/receive character retry.

Audio Codec Interface (ACI)

The ACI provides:

- A digital serial interface to an off-chip 8-bit CODEC
- All the necessary clocks and timing pulses to perform serialization or de-serialization of the data stream to or from the CODEC device.

The interface supports full duplex operation and the transmit and receive paths are buffered with internal FIFO memories allowing up to 16 bytes to be stored independently in both transmit and receive modes.

The ACI includes a programmable frequency divider that generates a common transmit and receive bit clock output from the on-chip ACI clock input (ACICLK). Transmit data values are output synchronous with the rising edge of the bit clock output. Receive data values are sampled on the falling edge of the bit clock output. The start of a data frame is indicated by a synchronization output signal that is synchronous with the bit clock.

Synchronous Serial Port (SSP)

The LH7A400 SSP is a master-only interface for synchronous serial communication with device peripheral devices that has either Motorola SPI, National Semiconductor MICROWIRE or Texas Instruments Synchronous Serial Interfaces.

The LH7A400 SSP performs serial-to-parallel conversion on data received from a peripheral device. The transmit and receive paths are buffered with internal FIFO memories allowing up to eight 16-bit values to be stored independently in both transmit and receive modes. Serial data is transmitted on SSPTXD and received on SSPRXD.

The LH7A400 SSP includes a programmable bit rate clock divider and prescaler to generate the serial output clock SCLK from the input clock SSPCLK. Bit rates are supported to 2 MHz and beyond, subject to choice of frequency for SSPCLK; the maximum bit rate will usually be determined by peripheral devices.

UART/IrDA

The LH7A400 contains three UARTs, UART1, UART2, and UART3.

The UART performs:

- Serial-to-Parallel conversion on data received from the peripheral device
- Parallel-to-Serial conversion on data transmitted to the peripheral device.

The transmit and receive paths are buffered with internal FIFO memories allowing up to 16 bytes to be stored independently in both transmit and receive modes.

The UART can generate:

- Four individually maskable interrupts from the receive, transmit and modem status logic blocks
- A single combined interrupt so that the output is asserted if any of the individual interrupts are asserted and unmasked.

If a framing, parity or break error occurs during reception, the appropriate error bit is set, and is stored in the FIFO. If an overrun condition occurs, the overrun register bit is set immediately and the FIFO data is prevented from being overwritten. UART1 also supports IrDA 1.0 (15.2 kbit/s).

The modem status input signals Clear to Send (CTS), Data Carrier Detect (DCD) and Data Set Ready (DSR) are supported on UART2 and UART3.

Timers

Two identical timers are integrated in the LH7A400. Each of these timers has an associated 16-bit read/write data register and a control register. Each timer is loaded with the value written to the data register immediately, this value will then be decremented on the next active clock edge to arrive after the write. When the timer underflows, it will immediately assert its appropriate interrupt. The timers can be read at any time. The clock source and mode is selectable by writing to various bits in the system control register. Clock sources are 508 kHz and 2 kHz.

Timer 3 (TC3) has the same basic operation, but is clocked from a single 7.3728 MHz source. It has the same register arrangement as Timer 1 and Timer 2, providing a load, value, control and clear register. Once the timer has been enabled and is written to, unlike the Timer 1 and Timer 2, will decrement the timer on the next rising edge of the 7.3728 MHz clock after the data register has been updated. All the timers can operate in two modes, free running mode or pre-scale mode.

FREE-RUNNING MODE

In free-running mode, the timer will wrap around to 0xFFFF when it underflows and continue counting down.

PRE-SCALE MODE

In pre-scale (periodic) mode, the value written to each timer is automatically re-loaded when the timer underflows. This mode can be used to produce a programmable frequency to drive the buzzer or generate a periodic interrupt.

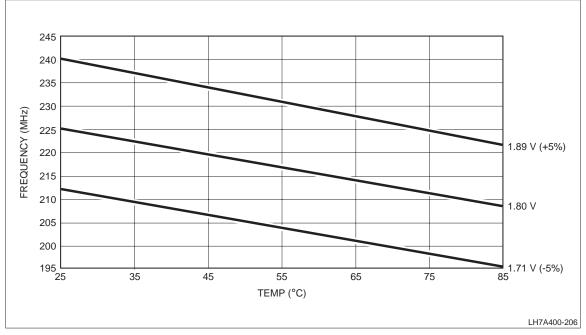


Figure 6. Temperature/Voltage/Speed Chart

AC Specifications

All signals described in Table 10 relate to transitions after a reference clock signal. The illustration in Figure 7 represents all cases of these sets of measurement parameters.

The reference clock signals in this design are:

- HCLK, internal System Bus clock ('C' in timing data)
- PCLK, Peripheral Bus clock
- SSPCLK, Synchronous Serial Port clock
- UARTCLK, UART Interface clock
- LCDDCLK, LCD Data clock from the LCD Controller
- ACBITCLK, AC97 clock
- SCLK, Synchronous Memory clock.

All signal transitions are measured from the 50% point of the clock to the 50% point of the signal.

For outputs from the LH7A400, tOVXXX (e.g. tOVA) represents the amount of time for the output to become valid from a valid address bus, or rising edge of the peripheral clock. Maximum requirements for tOVXXX are shown in Table 10.

The signal tOHXXX (e.g. tOHA) represents the amount of time the output will be held valid from the valid address bus, or rising edge of the peripheral clock. Minimum requirements for tOHXXX are listed in Table 10.

For Inputs, tISXXX (e.g. tISD) represents the amount of time the input signal must be valid after a valid address bus, or rising edge of the peripheral clock. Maximum requirements for tISXXX are shown in Table 10.

The signal tIHXXX (e.g. tIHD) represents the amount of time the output must be held valid from the valid address bus, or rising edge of the peripheral clock. Minimum requirements are shown in Table 10.

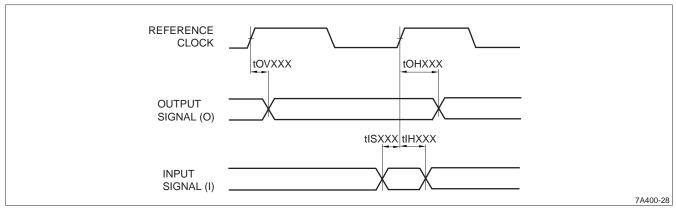


Figure 7. LH7A400 Signal Timing

Table 10. AC Signal Characteristics						
SIGNAL	TYPE	LOAD	SYMBOL	MIN.	MAX.	DESCRIPTION
	AS	YNCHRO	NOUS MEMORY	INTERFACE SIG	SNALS (+ wait	states × C) ¹
	Output	50 pF	tRC	4C ns		Read Cycle Time
A[27:0]	Output	50 pF	tWC	4C ns		Write Cycle Time
	Output	50 pF	tAW	2C – 10 ns		Address Valid to Write Edge
	NA		None	1C ns	1C ns	Wait State Width
	Output	50 pF	tDW	1C – 9 ns		Data Valid to Write Edge
D[21:0]	Output	50 pr	tDH	1C + 3 ns		Data Hold after Write Edge
D[31:0]	Input		tAA	3C – 20 ns		Address Valid to Data Valid
	input		tOH	0 ns		Data Output Hold
			tCO	3C – 20 ns		Chip Select Valid to Data Valid (Read)
			tCW		1C – 10 ns	Chip Select Valid to Write edge
nCS[3:0]/CS[7:6]	Output	30 pF	tAS (Write)	1C ns		Address Valid to Chip Select Valid (Address setup time)
			tAS (Read)	0		Address Valid to Chip Select Valid (Address setup time)
	<u></u>	oc. –	tWP	1C – 10 ns		Write Pulse Width
nWE[3:0]	Output	30 pF	tWHZ	0 ns		Write Edge to High Z on SRAM
05			tOE		2C – 20 ns	Output Enable Valid to Data Valid
nOE	Output	30 pF	tOHZ	0 ns		Output Enable invalid to High Z on SRAM
		SI	(NCHRONOUS N	EMORY INTERI	FACE SIGNAL	
			tOVA		7.5 ns	Address Valid
SA[13:0]	Output	50 pF	tOHA	1.5 ns		Address Hold
SA[17:16]/SB[1:0]	Output	50 pF	tOVB		7.5 ns	Bank Select Valid
	Output	50 pF	tOVD	2 ns	7.5 ns	Data Valid
D[31:0]	Input	00 pi	tISD	2.5 ns	7.0113	Data Setup
5[01:0]			tIHD	1.5 ns		Data Hold
			tOVCA	2 ns	7.5 ns	CAS Valid
nCAS	Output	30 pF	tOHCA	2 ns		CAS Hold
			tOVRA	2 ns	7.5 ns	RAS Valid
nRAS	Output	30 pF	tOHRA	2 ns		RAS Hold
			tOVSDW	2 ns	7.5 ns	Write Enable Valid
nSWE	Output	30 pF	tOHSDW	2 ns		Write Enable Hold
SCKE[1:0]	Output	30 pF	tOVC	2 ns	7.5 ns	Clock Enable Valid
DQM[3:0]	Output	30 pF	tOVDQ	2 ns	7.5 ns	Data Mask Valid
	Output		tOVSC	2 ns	7.5 ns	Synchronous Chip Select Valid
nSCS[3:0]	Output	30 pF	tOHSC	2 ns	110 110	Synchronous Chip Select Hold
		PC		E SIGNALS (+)		
nPCREG	Output	30 pF	tOVDREG	10 5 ***	1C	nREG Valid
			tOHDREG	4C – 5 ns	10	nREG Hold
	Output	50 pF	tOVD	40 5 40	1C	Data Valid
D[31:0]			tOHD	4C – 5 ns	10 10 10	Data Hold
	Input		tISD	10 5	1C - 10 ns	Data Setup Time
			tIHD	4C – 5 ns	10	Data Hold Time
nPCCE1	Output	30 pF	tOVCE1	10 5	1C	Chip Enable 1 Valid
		30 pF	tOHCE1	4C – 5 ns	40	Chip Enable 1 Hold
nPCCE2	Output		tOVCE2	40 5	1C	Chip Enable 2 Valid
			tOHCE2	4C – 5 ns	10.1	Chip Enable 2 Hold
nPCOE	Output	30 pF	tOVOE		1C + 1 ns	Output Enable Valid
			tOHOE	3C – 5 ns		Output Enable Hold
nPCWE	Output	30 pF	tOVWE		1C + 1 ns	Write Enable Valid
			tOHWE	3C – 5 ns		Write Enable Hold
PCDIR	Output	30 pF	tOVPCD		1C	Card Direction Valid
	Carbon	'	tOHPCD	4C – 5 ns		Card Direction Hold

Table 10. AC Signal Characteristics

SMC Waveforms

Figure 8 and Figure 9 show the waveform and timing for an External Asynchronous Memory Write. Note that the deassertion of nWE can precede the deassertion of nCS by a maximum of one HCLK, or at minimum, can coincide (see Table 10). Figure 10 and Figure 11 show the waveform and timing for an External Asynchronous Memory Read.

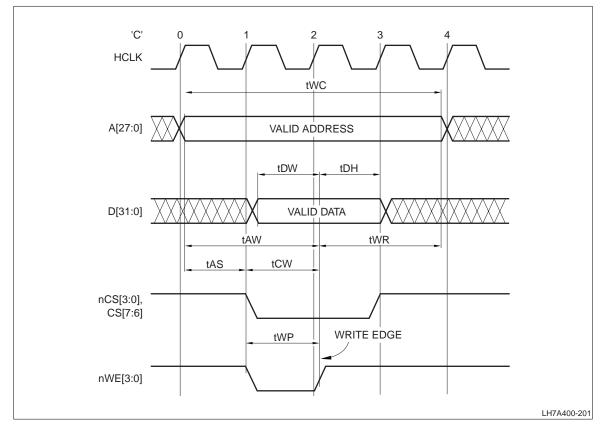


Figure 8. External Asynchronous Memory Write with 0 Wait States (BCRx:WST1 = 0b000)

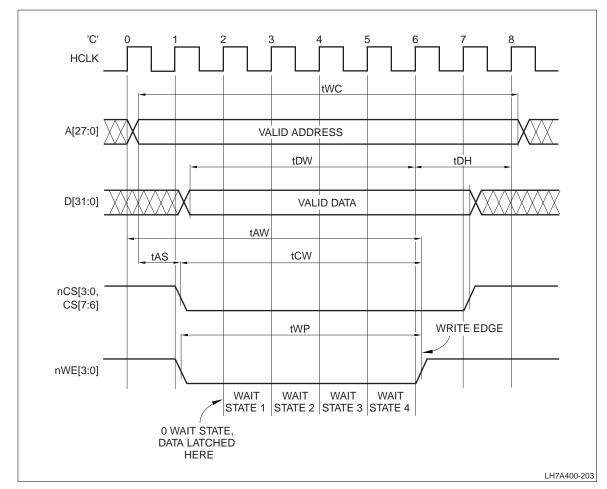


Figure 9. External Asynchronous Memory Write with 4 Wait States (BCRx:WST1 = 0b100)

Clock and State Controller (CSC) Waveforms

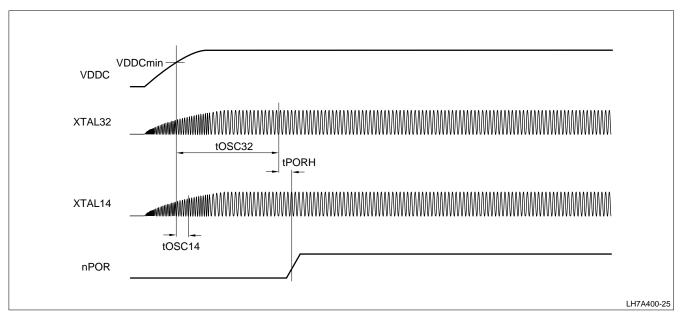

Figure 21 shows the behavior of the LH7A400 when coming out of Reset or Power On. Figure 22 shows external reset timing, and Table 11 gives the timing parameters. Figure 23 depicts signal timing following a Reset. On transition from Standby to Run (including a Cold Boot), the Wakeup pin must not be asserted for 2 seconds after assertion of nPOR to allow time for sampling BATOK and nEXTPWR. The delay prevents a false 'battery good' indication caused by alkaline battery recovery that can immediately follow a battery-low switch off. The battery sampling takes place on the rising edge of the 1 Hz clock. This clock is derived from the 32.768 kHz oscillator. The WAKEUP pin can be pulsed, but at least one edge must follow the 2 second delay to be recognized. For more information, see the application note "Implementing Auto-Wakeup on the LH7A4xx Series Devices" at www.sharpsma.com.

Figure 24 shows the recommended components for the SHARP LH7A400 32.768 kHz external oscillator circuit. Figure 25 shows the same for the 14.7456 MHz external oscillator circuit. In both figures, the NAND gate represents the internal logic of the chip.


PARAMETER	DESCRIPTION	MIN.	MAX.	UNIT
tOSC32	32.768 kHz Oscillator Stabilization Time after Power On*		550	ms
tPORH	nPOR Hold Time after tOSC32	0		ms
tOSC14	14.7456 MHz Oscillator Stabilization Time after Wake UP		4	ms
tPLLL	Phase Locked Loop Lockup Time		250	μS
tURESET/tPWRFL	nURESET/nPWRFL Pulse Width (once sampled LOW)	2		System Clock Cycles

Table 11. Reset AC Timing

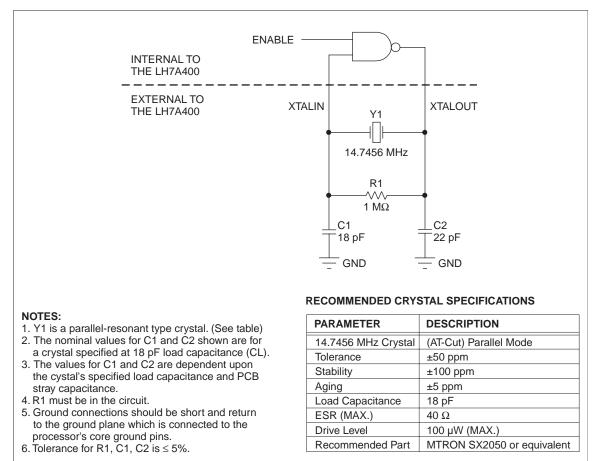

NOTE: *VDDC = VDDCmin

Figure 21. Oscillator Start-up

LH7A400-188

Figure 25. 14.7456 MHz External Oscillator Components and Schematic

CONTENT REVISIONS

This document contains the following changes to content, causing it to differ from previous versions.

DATE	PAGE NO.	PARAGRAPH OR ILLUSTRATION	SUMMARY OF CHANGES			
	1	Features	256-ball CABGA package added			
	3-11	Table 1	CABGA Pins added; VDDA1/VDDA2 combined to VDDA; VSSA1/VSSA2 combined to VSSA			
	12	Table 3	Signal ordering corrected			
	12-18	Table 4	Table title added to differentiate between PBGA and CABGA packages			
	18-24	Table 5	CABGA numerical pin list table added			
8-19-2003	39	Figure 7 and Figure 8	'CSx' added to figures			
0 10 2000	41-42	Figures 11 and 12	PCDIR signal corrected in PCMCIA timing diagrams			
	44	Table 10 and Figure 16	tOSC14 added to both table and figure; XTAL14 added to figure; tPLLL added to table			
	45-47	Figures 19-21 and Printed Circuit Board Layout Practices	d Circuit Board Figures and text added			
	49	Figure 23	Figure added for CABGA package			
11-15-03	1	Text	Corrected minor text errors; added separate Commercial and Industrial temperature specification.			
	2	Figure 1	Updated to show ALI Interface			
	34	'Recommended Operating Conditions'	Broke out "Commercial" and "Industrial" speed ranges.			
	39	Table 10	Minor corrections to type.			
	39	Table 10	Added ACI timing.			
	54	Figure 27	PBGA package drawing added.			
0.04.04	11	Table 1	Changed names of BOOTWIDTH0 and BOOTWIDTH1 to WIDTH0 and WIDTH1 for consistency with other Sharp SoCs.			
6-21-04	53	Figure 26; text	Revised text and drawing to indicate that the VSSA pin must be grounded			
	50	Table 11	Added table.			
	ALL		Rolled revision to Version 1.0			
	1	Text	Run current corrected to 125 mA and Halt to 25 mA			
	34	Table 7, Figure 6	Added table and accompanying graph for speed/temperature/voltage			
12-07-04	36	'DC Specifications'	Added IRUN, IHALT, and ISTANDBY; corrected IIN.			
	37	Table 8	Corrected values in Table 8.			
	39 Table 10		Changed Asynchronous Memory timing to match SRAM datasheet parameter naming conventions. Corrected Synchronous Memory times; added synchronous memory Address Hold time.			
	41-44	Figure 8 - Figure 11	Changed Asynchronous Memory timing diagrams to match renamed parameters.			
	51	Text and Figure 23	Clarification made to timing for cold boot power-on sequence.			
12-13-04	36	'DC Specifications'	Added IIN without pullup resistors.			