

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f1501-e-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Internal access to the program memory is unaffected by any code protection setting.

4.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See **Section 4.4 "Write Protection"** for more information.

4.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as bootloader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Words define the size of the program memory block that is protected.

4.5 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See **Section 10.4 "User ID, Device ID and Configuration Word Access"** for more information on accessing these memory locations. For more information on checksum calculation, see the "*PIC12(L)F1501/PIC16(L)F150X Memory Programming Specification*" (DS41573).

5.0 OSCILLATOR MODULE

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from an external clock or from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fast start-up oscillator allows internal circuits to power-up and stabilize before switching to the 16 MHz HFINTOSC

The oscillator module can be configured in one of the following clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 20 MHz)
- 4. INTOSC Internal oscillator (31 kHz to 16 MHz)

Clock Source modes are selected by the FOSC<1:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source.

The INTOSC internal oscillator block produces a low and high-frequency clock source, designated LFINTOSC and HFINTOSC. (See Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these two clock sources.

PIC12(L)F1501

121.114 1 (241) (2 mm	LENETOSC (WDT disabind)
HFINTOSC	
LFINTOSC	Osofistor Deleg ^{en} 2-cycle Syre
IRCF <3:0>	$\neq 0$ $= 0$
System Clock	
	LFINYONC (WUY envined)
HFINTOSC	
LFINTOSC	
IRCF <3:0>	$\neq 0$ $= 0$
System Clock	
	AFINYOSC
LENNIOSC	Crustorio de lumon de debero velos en electrorio de la composición de la composici
551N70200	
	×9X

6.4 Low-Power Brown-Out Reset (LPBOR)

The Low-Power Brown-out Reset (LPBOR) operates like the BOR to detect low voltage conditions on the VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit (BOR) is changed to indicate that a BOR Reset has occurred. The BOR bit in PCON is used for both BOR and the LPBOR. Refer to Register 6-2.

The LPBOR voltage threshold (Lapboard) has a wider tolerance than the BOR (Vpor), but requires much less current (LPBOR current) to operate. The LPBOR is intended for use when the BOR is configured as disabled (BOREN = 00) or disabled in Sleep mode (BOREN = 10).

Refer to Figure 6-1 to see how the LPBOR interacts with other modules.

6.4.1 ENABLING LPBOR

The LPBOR is controlled by the LPBOR bit of Configuration Words. When the device is erased, the LPBOR module defaults to disabled.

6.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 6-2).

TABLE 6-2: MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

6.5.1 MCLR ENABLED

When $\overline{\text{MCLR}}$ is enabled and the pin is held low, the device is held in Reset. The $\overline{\text{MCLR}}$ pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the MCLR pin low.

6.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 11.3 "PORTA Registers"** for more information.

6.6 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See **Section 9.0 "Watchdog Timer (WDT)**" for more information.

6.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 6-4 for default conditions after a RESET instruction has occurred.

6.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 3.5.2 "Overflow/Underflow Reset"** for more information.

6.9 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

6.10 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overline{\text{PWRTE}}$ bit of Configuration Words.

6.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See **Section 5.0 "Oscillator Module"** for more information.

The Power-up Timer runs independently of $\overline{\text{MCLR}}$ Reset. If $\overline{\text{MCLR}}$ is kept low long enough, the Power-up Timer will expire. Upon bringing $\overline{\text{MCLR}}$ high, the device will begin execution after 10 Foss cycles (see Figure 6-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

6.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON register bits are shown in Register 6-2.

6.14 Register Definitions: Power Control

REGISTER 6-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:		
HC = Bit is cleared by hardw	are	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	STKOVF: Stack Overflow Flag bit
	1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or cleared by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or cleared by firmware
bit 5	Unimplemented: Read as '0'
bit 4	RWDT: Watchdog Timer Reset Flag bit
	1 = A Watchdog Timer Reset has not occurred or set by firmware
	0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A $\overline{\text{MCLR}}$ Reset has not occurred or set by firmware
	0 = A MCLR Reset has occurred (cleared by hardware)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or set by firmware
	0 = A RESET instruction has been executed (cleared by hardware)
bit 1	POR: Power-On Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-Out Reset Status bit
	1 = No Brown-out Reset occurred
	 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

PIC12(L)F1501

TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN	BORFS			_		_	BORRDY	53
PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	57
STATUS	_	_	_	TO	PD	Z	DC	С	17
WDTCON	—	—		V	VDTPS<4:0	>		SWDTEN	77

Legend: — = unimplemented bit, reads as '0'. Shaded cells are not used by Resets.

TABLE 6-6: SUMMARY OF CONFIGURATION WORD WITH RESETS

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8					CLKOUTEN	BORE	N<1:0>		20
CONFIGT	7:0	CP	MCLRE	PWRTE	WD	TE<1:0>	_	FOSC	2<1:0>	38
	13:8		_	LVP	DEBUG	LPBOR	BORV	STVREN	—	20
CONFIGZ	7:0			_		_	_	WRT	<1:0>	39

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		
PIE1	TMR1GIE	ADIE	_	_	_	_	TMR2IE	TMR1IE	65
PIE2	_	_	C1IE	_	_	NCO1IE	_	_	66
PIE3	_	_	_	_	_	_	CLC2IE	CLC1IE	67
PIR1	TMR1GIF	ADIF	_	_	_	_	TMR2IF	TMR1IF	68
PIR2	_	_	C1IF	_	_	NCO1IF	_	_	68
PIR3	_	_		_	_		CLC2IF	CLC1IF	70

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

12.0 INTERRUPT-ON-CHANGE

The PORTA pins can be configured to operate as Interrupt-on-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual port pin, or combination of port pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- Individual pin interrupt flags

Figure 12-1 is a block diagram of the IOC module.

12.1 Enabling the Module

To allow individual port pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

12.2 Individual Pin Configuration

For each port pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both associated bits of the IOCxP and IOCxN registers, respectively.

12.3 Interrupt Flags

The IOCAFx bits located in the IOCAF register are status flags that correspond to the interrupt-on-change pins of the associated port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCAFx bits.

12.4 Clearing Interrupt Flags

The individual status flags, (IOCAFx bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 12-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW 0xff XORWF IOCAF, W ANDWF IOCAF, F

12.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCxF register will be updated prior to the first instruction executed out of Sleep.

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R>1:0>	ADFVF	۲<1:0>	107

Legend: Shaded cells are unused by the temperature indicator module.

REGISTER 15-3: ADCON2: ADC CONTROL REGISTER 2

R/W-0/0	R/W-0	/0 R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
	TRIC	GSEL<3:0> ⁽¹⁾		_	—		—
bit 7							bit 0
L							
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncl	hanged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set '0' = Bit is cleared			ared				
bit 7-4	TRIGSE	L<3:0>: Auto-Conve	ersion Trigger	Selection bits ⁽¹)		
	0000 =	No auto-conversion	n trigger selec	ted			
	0001 =	Reserved	00				
	0010 =	Reserved					
	0011 =	Timer0 – T0_overfl	ow ⁽²⁾				
	0100 =	Timer1 – T1 overfl	ow ⁽²⁾				
	0101 =	Timer2 – T2_matcl	า				
	0110 =	Comparator C1 – C	C1OUT sync				
	0111 =	Reserved	_ ,				
	1000 =	CLC1 – LC1 out					
	1001 =	CLC2 – LC2 out					
	1010 =	Reserved					
	1011 =	Reserved					
	1100 =	Reserved					
	1101 =	Reserved					
	1110 =	Reserved					
	1111 =	Reserved					
bit 3-0	Unimple	mented: Read as ')'				

- **Note 1:** This is a rising edge sensitive input for all sources.
 - 2: Signal also sets its corresponding interrupt flag.

17.8 Register Definitions: Comparator Control

R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0
CxON	CxOUT	CxOE	CxPOL		CxSP	CxHYS	CxSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unki	nown	-n/n = Value	e at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
hit 7	CYON: Com	parator Enchlo	hit				
DIL 7	1 = Compara		DIL				
	1 = Compara0 = Compara	ator is disabled	and consumes	no active po	wer		
bit 6	CxOUT: Com	nparator Output	bit	·			
	If CxPOL = 1	(inverted polar	it <u>y):</u>				
	1 = CxVP <	CxVN					
	0 = CxVP > 0	CxVN	o o lo rituli				
	1 = CxVP > 1	CxVN	<u>polanty).</u>				
	0 = CxVP <	CxVN					
bit 5	CxOE: Comp	parator Output	Enable bit				
	1 = CxOUT i	is present on th	e CxOUT pin. F	Requires that	the associated T	RIS bit be clea	red to actually
	drive the	e pin. Not affect	ed by CxON.				
L:1 4	0 = C X U U I	is internal only					
DIT 4	CXPOL: Con	nparator Outpu	Polarity Selec	t dit			
	1 = Compara0 = Compara	ator output is in	t inverted				
bit 3	Unimplemer	nted: Read as '	0'				
bit 2	CxSP: Comp	parator Speed/F	ower Select bi	t			
	1 = Compara	ator mode in no	rmal power, hig	her speed			
	0 = Compara	ator mode in lov	v-power, low-sp	beed			
bit 1	CxHYS: Con	nparator Hyster	esis Enable bit				
	1 = Compara	ator hysteresis	enabled				
	0 = Compara	ator hysteresis	disabled				
bit 0	CxSYNC: Co	omparator Outp	ut Synchronou	s Mode bit			
	1 = Compara	ator output to	I imer1 and I/O	pin is synch Timer1 clock	ronous to chang	ges on Timer1	clock source.
	0 = Compara	ator output to T	imer1 and I/O r	oin is asvnch	ronous		

REGISTER 17-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

20.0 TIMER2 MODULE

The Timer2 module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match with PR2

See Figure 20-1 for a block diagram of Timer2.

FIGURE 20-1: TIMER2 BLOCK DIAGRAM

FIGURE 20-2: TIMER2 TIMING DIAGRAM

	1	Rer.: 10-00020A 7/30/2013
Fosc/4		
Prescale	1:4	
PR2 <	0x03	
TMR2 0x00 0x01 0x02	0x03	0x00 0x01 0x02
T2_match	Pulse Width ⁽¹⁾	
Note 1: The Pulse Width of T2_match is equal to	b the scaled inpu	it of TMR2.

U-0	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u
	l	_CxD4S<2:0>()	—	L	.CxD3S<2:0>(1))
bit 7							bit 0
Legend:							
R = Readat	ble bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
u = Bit is ur	nchanged	x = Bit is unki	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	LCxD4S<2:0	>: Input Data 4	Selection Co	ntrol bits ⁽¹⁾			
	111 = 1 Cx ii	n[3] is selected	for lcxd4				
	110 = LCx ii	n[2] is selected	for lcxd4				
	101 = LCx ii	n[1] is selected	for lcxd4				
	100 = LCx ii	n[0] is selected	for lcxd4				
	011 = LCx i	n[15] is selecte	d for lcxd4				
	010 = LCx ii	n[14] is selecte	d for lcxd4				
	001 = LCx ii	n[13] is selecte	d for lcxd4				
	000 = LCx_ii	n[12] is selecte	d for lcxd4				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	LCxD3S<2:0	>: Input Data 3	Selection Co	ntrol bits ⁽¹⁾			
	111 = LCx ii	n[15] is selecte	d for lcxd3				
	110 = LCx i	n[14] is selecte	d for lcxd3				
	101 = LCx ii	n[13] is selecte	d for lcxd3				
	100 = LCx ii	n[12] is selecte	d for lcxd3				
	011 = LCx ii	n[11] is selecte	d for lcxd3				
	010 = LCx ii	n[10] is selecte	d for lcxd3				
	001 = LCx_ii	n[9] is selected	for lcxd3				
	000 = LCx_ii	n[8] is selected	for lcxd3				
	Can Table 22.4 for			the imposite			

REGISTER 22-4: CLCxSEL1: MULTIPLEXER DATA 3 AND 4 SELECT REGISTER

Note 1: See Table 22-1 for signal names associated with inputs.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG3D4T: O	Gate 3 Data 4 1	True (non-inve	rted) bit			
	1 = lcxd4T is	gated into lcxg	j3 Jova2				
bit 6		Tiol galeu inilo Cato 3 Data 4 I	Negated (inve	rted) hit			
bit 0	1 = lcxd4N is	aated into Icx	negaleu (invei n3	ieu) bii			
	0 = lcxd4N is	not gated into	lcxg3				
bit 5	LCxG3D3T: G	Gate 3 Data 3 1	True (non-inve	rted) bit			
	1 = Icxd3T is	gated into lcxg	j 3				
	0 = lcxd3T is	not gated into	lcxg3				
bit 4	LCxG3D3N: (Gate 3 Data 3	Negated (invei	rted) bit			
	\perp = ICX03N IS 0 = ICX03N is	not gated into icx	js Icxa3				
bit 3	LCxG3D2T: 0	Gate 3 Data 2 1	Frue (non-inve	rted) bit			
	1 = lcxd2T is	gated into lcxc	13				
	0 = lcxd2T is	not gated into	lcxg3				
bit 2	LCxG3D2N:	Gate 3 Data 2 I	Negated (inver	rted) bit			
	1 = lcxd2N is	gated into Icxe	g3				
L:1 4		not gated into	icxg3	-tl \ - :t			
DIT	$1 = \log d1$	ated into lovo	rue (non-invei 13	rted) bit			
	0 = lcxd1T is	not gated into	lcxq3				
bit 0	LCxG3D1N:	Gate 3 Data 1	Negated (inve	rted) bit			
	1 = lcxd1N is	gated into Icx	g3				
	0 = Icxd1N is	not gated into	lcxg3				

REGISTER 22-7: CLCxGLS2: GATE 3 LOGIC SELECT REGISTER

23.0 NUMERICALLY CONTROLLED OSCILLATOR (NCO) MODULE

The Numerically Controlled Oscillator (NCOx) module is a timer that uses the overflow from the addition of an increment value to divide the input frequency. The advantage of the addition method over simple counter driven timer is that the resolution of division does not vary with the divider value. The NCOx is most useful for applications that require frequency accuracy and fine resolution at a fixed duty cycle.

Features of the NCOx include:

- · 16-bit increment function
- Fixed Duty Cycle (FDC) mode
- Pulse Frequency (PF) mode
- Output pulse width control
- · Multiple clock input sources
- Output polarity control
- · Interrupt capability

Figure 23-1 is a simplified block diagram of the NCOx module.

23.1 NCOx Operation

The NCOx operates by repeatedly adding a fixed value to an accumulator. Additions occur at the input clock rate. The accumulator will overflow with a carry periodically, which is the raw NCOx output (NCO_overflow). This effectively reduces the input clock by the ratio of the addition value to the maximum accumulator value. See Equation 23-1.

The NCOx output can be further modified by stretching the pulse or toggling a flip-flop. The modified NCOx output is then distributed internally to other peripherals and optionally output to a pin. The accumulator overflow also generates an interrupt (NCO_interrupt).

The NCOx period changes in discrete steps to create an average frequency. This output depends on the ability of the receiving circuit (i.e., CWG or external resonant converter circuitry) to average the NCOx output to reduce uncertainty.

23.1.1 NCOx CLOCK SOURCES

Clock sources available to the NCOx include:

- HFINTOSC
- Fosc
- LC1_out
- CLKIN pin

The NCOx clock source is selected by configuring the NxCKS<2:0> bits in the NCOxCLK register.

EQUATION 23-1:

FOVERFLOW= <u>NCO Clock Frequency × Increment Value</u>

 2^n

n = Accumulator width in bits

23.1.2 ACCUMULATOR

The accumulator is a 20-bit register. Read and write access to the accumulator is available through three registers:

- NCOxACCL
- NCOxACCH
- NCOxACCU

23.1.3 ADDER

The NCOx adder is a full adder, which operates independently from the system clock. The addition of the previous result and the increment value replaces the accumulator value on the rising edge of each input clock.

23.1.4 INCREMENT REGISTERS

The increment value is stored in two 8-bit registers making up a 16-bit increment. In order of LSB to MSB they are:

- NCOxINCL
- NCOxINCH

When the NCO module is enabled, the NCOxINCH should be written first, then the NCOxINCL register. Writing to the NCOxINCL register initiates the increment buffer registers to be loaded simultaneously on the second rising edge of the NCOx_clk signal.

The registers are readable and writable. The increment registers are double-buffered to allow value changes to be made without first disabling the NCOx module.

When the NCO module is disabled, the increment buffers are loaded immediately after a write to the increment registers.

Note: The increment buffer registers are not user-accessible.

24.12 Register Definitions: CWG Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
GxEN	GxOEB	GxOEA	GxPOLB	GxPOLA	_	_	GxCS0
bit 7							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on conditi	on	
bit 7	GxEN: CWG	x Enable bit					
	1 = Module is	s enabled					
	0 = Module is	s disabled					
bit 6	GxOEB: CW	GxB Output En	able bit				
	1 = CWGxB	is available on	appropriate I/	O pin			
	0 = CWGxB	is not available	on appropria	te I/O pin			
bit 5	GxOEA: CWO	GxA Output En	able bit				
	1 = CWGxA	is available on	appropriate I/	O pin			
		is not available	on appropria	te i/O pin			
bit 4	GXPOLB: CV	VGxB Output P	olarity bit				
	\perp = Output is	nverted polar	ity				
hit 3			y Iolarity bit				
DIL 3	1 = Output is	inverted polar					
	0 = Output is	normal polarit	v				
bit 2-1	Unimplemen	ted: Read as '	,),				
bit 0	GxCS0: CWC	The Source Source	e Select bit				
	1 = HFINTOS	SC	2 201001 511				

REGISTER 24-1: CWGxCON0: CWG CONTROL REGISTER 0

R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0			
GxASE	GxARSEN	_	_	_	GxASDSC1	GxASDSFLT	GxASDSCLC2			
bit 7							bit 0			
Legend										
E -genu. D = Deadable bit $W = W/ritable bit$ $U = Unimplemented bit read as '0'$										
		v - Dit is upl		o = 0	at DOD and DO		thar Dagata			
		X = BIL IS UIIr				R/Value at all 0	iner Reseis			
T = BIT IS SE	et	$0^{\circ} = Bit is cle$	eared	q = value de	penas on condit	ion				
bit 7	GxASE: Auto	o-Shutdown Ev	/ent Status bi	t						
Sit	1 = An auto-	-shutdown eve	nt has occurr	ed						
	0 = No auto-	-shutdown eve	nt has occurr	ed						
bit 6	GxARSEN: A	Auto-Restart E	nable bit							
	1 = Auto-res	start is enabled								
	0 = Auto-res	start is disabled	1							
bit 5-3	Unimplemer	nted: Read as	'0'							
bit 2	GxASDSC1:	CWG Auto-sh	utdown on C	omparator C1	Enable bit					
	1 = Shutdow	n when Comp	arator C1 out	tput (C1OUT_a	async) is high					
		ator C1 output	nas no effect							
bit 1	bit 1 GXASUSELI: CWG Auto-shutdown on FLI Enable bit									
	$1 = \frac{\text{Shutdow}}{\text{CWG1E}}$	$\perp = Snutaown when CWGTFLT input is low = CWG1FLT input has no effect on shutdown $								
bit 0	GYASDSCI		-shutdown or	n CI C2 Enable	hit					
	1 = Shutdow	vn when Cl C2	output (LC2	out) is high						
	0 = CLC2 ou	0 = CLC2 output has no effect on shutdown								

REGISTER 24-3: CWGxCON2: CWG CONTROL REGISTER 2

27.2 Standard Operating Conditions

The standard operating conditions for any device are defined as:

Operating Voltage: Operating Temperature:	$\label{eq:VDDMin} \begin{array}{l} \forall VDD \leq VDDMAX \\ TA_MIN \leq TA \leq TA_MAX \end{array}$	
VDD — Operating Supply	v Voltage ⁽¹⁾	
PIC12LF1501		
VDDMIN (F	osc ≤ 16 MHz)	+1.8V
VDDMIN (1)	6 MHz < Fosc ≤ 20 MHz)	
VDDMAX		
PIC12F1501		
VDDMIN (F	$osc \le 16 \text{ MHz}$)	
VDDMIN (10	6 MHz < Fosc ≤ 20 MHz)	
VDDMAX		+5.5V
TA — Operating Ambient	Temperature Range	
Industrial Temperate	ure	
TA_MIN		40°C
Та_мах		+85°C
Extended Temperat	ure	
TA_MIN		40°C
Та_мах		+125°C

Note 1: See Parameter D001, DC Characteristics: Supply Voltage.

TABLE 27-5:	MEMORY PROGRAMMING SPECIFICATIONS
-------------	-----------------------------------

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	Vінн	Voltage on MCLR/VPP pin	8.0	—	9.0	V	(Note 2)
D112	VPBE	VDD for Bulk Erase	2.7		VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN		VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	—	1.0	—	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA	
		Program Flash Memory					
D121	Ер	Cell Endurance	10K	_	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
D122	Vprw	VDD for Read/Write	VDDMIN	—	VDDMAX	V	
D123	Tiw	Self-timed Write Cycle Time	_	2	2.5	ms	
D124	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K			E/W	$0^{\circ}C \le TA \le +60^{\circ}C$, lower byte last 128 addresses

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

TABLE 27-6: THERMAL CONSIDERATIONS

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Тур.	Units	Conditions			
TH01	θJA	Thermal Resistance Junction to Ambient	89.3	°C/W	8-pin PDIP package			
			149.5	°C/W	8-pin SOIC package			
			211	°C/W	8-pin MSOP package			
			56.7	°C/W	8-pin DFN 3X3mm package			
			68	°C/W	8-pin DFN 2X3mm package			
			60	°C/W	8-pin UDFN 2X3mm package			
TH02	θJC	Thermal Resistance Junction to Case	43.1	°C/W	8-pin PDIP package			
			39.9	°C/W	8-pin SOIC package			
			39	°C/W	8-pin MSOP package			
			10.7	°C/W	8-pin DFN 3X3mm package			
			12.7	°C/W	8-pin DFN 2X3mm package			
			11	°C/W	8-pin UDFN 2X3mm package			
TH03	TJMAX	Maximum Junction Temperature	150	°C				
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O			
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾			
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$			
TH07	Pder	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾			

Note 1:IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature.

3: T_J = Junction Temperature.

PIC12(L)F1501

