

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VFDFN Exposed Pad
Supplier Device Package	8-DFN (2x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f1501-i-mc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- · Automatic Interrupt Context Saving
- · 16-level Stack with Overflow and Underflow
- · File Select Registers
- Instruction Set

FIGURE 2-1: CORE BLOCK DIAGRAM

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH operator will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2:	ACCESSING PROGRAM
	MEMORY VIA FSR

constants		
DW DATA	0	;First constant
DW DATA	1	;Second constant
DW DATA	2	
DW DATA	3	
my_function	on	
; LOTS	OF CODE	
MOVLW	DATA_INDEX	
ADDLW	LOW constants	
MOVWF	FSR1L	
MOVLW	HIGH constant:	s;MSb sets
		automatically
MOVWF	FSR1H	
BTFSC	STATUS, C	;carry from ADDLW?
INCF	FSR1h, f	;yes
MOVIW	0[FSR1]	
;THE PROGR	RAM MEMORY IS	IN W

3.3.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- the arithmetic status of the ALU
- · the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

REGISTER 3-1: STATUS: STATUS REGISTER

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to **Section 26.0 "Instruction Set Summary"**).

Note 1: The <u>C</u> and <u>DC</u> bits operate as Borrow and <u>Digit</u> Borrow out bits, respectively, in subtraction.

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u
		_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7					•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
u = Bit is unchanged x = Bit is unknown		iown	-n/n = Value at POR and BOR/Value at all other Resets			ther Resets	
'1' = Bit is set '0' = Bit is cleared			ared	q = Value de	pends on condit	ion	

Unimplemented: Read as '0'
TO: Time-Out bit
 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
PD: Power-Down bit
 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction
Z: Zero bit
 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero
DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result
C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	BORFS	—	—	—	—	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-Out Reset Enable bit If BOREN <1:0> in Configuration Words = 01:
	1 = BOR Enabled
	0 = BOR Disabled
	SBOREN is read/write, but has no effect on the BOR
bit 6	BORFS: Brown-Out Reset Fast Start bit ⁽¹⁾
	If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):
	1 = Band gap is forced on always (covers sleep/wake-up/operating cases)
	0 = Band gap operates normally, and may turn off
	<u>If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)</u>
	BORFS is Read/Write, but has no effect.
bit 5-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-Out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active
	0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.

PIC12(L)F1501

8.3 Register Definitions: Voltage Regulator Control

REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1
—	—	—	—	—	—	VREGPM	Reserved
bit 7							bit 0
L a manuali							

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

0'
(

bit 1	VREGPM: Voltage Regulator Power Mode Selection bit
	$1 \rightarrow 1$

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾ Draws lowest current in Sleep, slower wake-up
- 0 = Normal Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up
- bit 0 **Reserved:** Read as '1'. Maintain this bit set.

Note 1: PIC12F1501 only.

2: See Section 27.0 "Electrical Specifications".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
IOCAF	—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	103
IOCAN	—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	103
IOCAP	—	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	103
PIE1	TMR1GIE	ADIE	—	—	—	—	TMR2IE	TMR1IE	65
PIE2	—	—	C1IE	—	_	NCO1IE	—	—	66
PIE3	—	_	—	—	—	—	CLC2IE	CLC1IE	67
PIR1	TMR1GIF	ADIF	—	—	_	_	TMR2IF	TMR1IF	68
PIR2	—	—	C1IF	—	_	NCO1IF	—	—	67
PIR3	—	_	—	—	_	_	CLC2IF	CLC1IF	70
STATUS	—	—	—	TO	PD	Z	DC	С	17
WDTCON	—	_		V	SWDTEN	77			

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in Power-Down mode.

10.4 User ID, Device ID and Configuration Word Access

Instead of accessing program memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the PMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 10-2.

When read access is initiated on an address outside the parameters listed in Table 10-2, the PMDATH:PMDATL register pair is cleared, reading back '0's.

TABLE 10-2:	USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS	= 1)
-------------	--	------

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8006h	Device ID/Revision ID	Yes	No
8007h-8008h Configuration Words 1 and 2		Yes	No

EXAMPLE 10-4: CONFIGURATION WORD AND DEVICE ID ACCESS

* This code block will read 1 word of program memory at the memory address:

* PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables;

* PROG_DATA_HI, PROG_DATA_LO

BANKSEL	PMADRL	;	Select correct Bank
MOVLW	PROG_ADDR_LO	;	
MOVWF	PMADRL	;	Store LSB of address
CLRF	PMADRH	;	Clear MSB of address
BSF	PMCON1,CFGS	;	Select Configuration Space
BCF	INTCON,GIE	;	Disable interrupts
BSF	PMCON1,RD	;	Initiate read
NOP		;	Executed (See Figure 10-2)
NOP		;	Ignored (See Figure 10-2)
BSF	INTCON, GIE	;	Restore interrupts
MOVF	PMDATL,W	;	Get LSB of word
MOVWF	PROG_DATA_LO	;	Store in user location
MOVF	PMDATH,W	;	Get MSB of word
MOVWF	PROG_DATA_HI	;	Store in user location

10.6 Register Definitions: Flash Program Memory Control

REGISTER 10-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PMDA	AT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at f	POR and BOR/Valu	ue at all other Res	sets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

PMDAT<7:0>: Read/write value for Least Significant bits of program memory

REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
—	—		PMDAT<13:8>						
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PMDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 10-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
	PMADR<7:0>								
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

PMADR<7:0>: Specifies the Least Significant bits for program memory address

REGISTER 10-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				PMADR<14:8>	>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 PMADR<14:8>: Specifies the Most Significant bits for program memory address

Note 1: Unimplemented, read as '1'.

PIC12(L)F1501

15.3 Register Definitions: ADC Control

REGISTER 15-1: ADCON0: ADC CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Reada	ıble bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	DR/Value at all o	other Resets
'1' = Bit is :	set	'0' = Bit is cle	ared				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-2	CHS<4:0>:	Analog Channel	Select bits				
	00000 = AN	10					
	00001 = AN	N1					
	00010 = AP	N2					
	00011 = Ar	NO Served No cha	nnel connecte	d			
	•			u.			
	•						
	•						
	11100 = Re	eserved. No cha	nnel connecte	d.			
	11101 = Te	mperature Indica	ator ⁽¹⁾	(2)			
	11110 = DA	C (Digital-to-An	alog Converte	r)(3)	2)		
	11111 = FV	R (Fixed Voltage	e Reference) E		_)		
bit 1	GO/DONE:	ADC Conversion	n Status bit				
	1 = ADC col	nversion cycle ir	n progress. Se	tting this bit sta	rts an ADC co	nversion cycle.	
		s automatically	cleared by har	dware when the	e ADC convers	sion has comple	eted.
				Jiess			
bit 0		Enable bit					
	1 = ADC is c	disabled and cor		erating current			
Note 1.	See Section 14		Indicator Me	dule" for more	information		
1101E 1. 2.	See Section 13	0 "Fixed Voltage	- Reference	(EVR)" for more	information		
2.	Occ Section 13.					a a na infanna atian	_

3: See Section 16.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information.

19.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 19-1 displays the Timer1 enable selections.

TABLE 19-1:	TIMER1 ENABLE
	SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

19.2 Clock Source Selection

The TMR1CS<1:0> bits of the T1CON register are used to select the clock source for Timer1. Table 19-2 displays the clock source selections.

19.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1 gate
- · C1 or C2 comparator input to Timer1 gate

19.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI. The external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

Note: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:

- · Timer1 enabled after POR
- Write to TMR1H or TMR1L
- · Timer1 is disabled
- Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TABLE 19-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0>	Clock Source			
11	LFINTOSC			
10	External Clocking on T1CKI Pin			
01	System Clock (Fosc)			
00	Instruction Clock (Fosc/4)			

REGISTER 21-2: PWMxDCH: PWM DUTY CYCLE HIGH BITS

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PWMxD)CH<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit		U = Unimpleme	ented bit, read as	'0'	
u = Bit is uncha	nged	x = Bit is unknowr	ı	-n/n = Value at	POR and BOR/V	alue at all other F	Resets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

PWMxDCH<7:0>: PWM Duty Cycle Most Significant bits These bits are the MSbs of the PWM duty cycle. The two LSbs are found in the PWMxDCL register.

REGISTER 21-3: PWMxDCL: PWM DUTY CYCLE LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
PWMxD	CL<7:6>	—	_	_	—	—	—
bit 7						•	bit 0
Legend:							
R = Readable b	bit W = Writable bit U = Unimplemented bit, read as '0'						
u = Bit is uncha	unchanged y = Rit is unknown						Resets

u = Bit is unchar	nged x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	
bit 7-6	PWMxDCL<7:6>: PWM Duty Cycle Least	Significant bits

These bits are the LSbs of the PWM duty cycle. The MSbs are found in the PWMxDCH register. bit 5-0 **Unimplemented:** Read as '0'

TABLE 21-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
PR2	Timer2 module Period Register									
PWM1CON	PWM1EN	PWM10E	PWM1OUT	PWM1POL	_	_	_	_	155	
PWM1DCH	1DCH PWM1DCH<7:0>									
PWM1DCL	PWM1D	CL<7:6>	_			_	_	_	156	
PWM2CON	PWM2EN	PWM2OE	PWM2OUT	PWM2POL		_		_	155	
PWM2DCH		PWM2DCH<7:0>								
PWM2DCL	PWM2D	CL<7:6>	_			_		_	156	
PWM3CON	PWM3EN	PWM3OE	PWM3OUT	PWM3POL		_		_	155	
PWM3DCH				PWM3D0	CH<7:0>				156	
PWM3DCL	PWM3D	CL<7:6>	_			_		_	156	
PWM4CON	PWM4EN	PWM40E	PWM4OUT	PWM4POL		_		_	155	
PWM4DCH				PWM4D0	CH<7:0>				156	
PWM4DCL	PWM4D	CL<7:6>	—	_	—	—	-	_	156	
T2CON		T2OUTPS<3:0> TMR2ON T2CKPS<1:0>							150	
TMR2				Timer2 modu	ule Register				148*	
TRISA	_	_	TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	98	

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

* Page provides register information.

Note 1: Unimplemented, read as '1'.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-0/0	R/W-0/0	R/W-0/0
GxASDLB<1:0>		GxASD	LA<1:0>	_		GxIS<2:0>	
bit 7		• •					bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
u = Bit is uncl	hanged	x = Bit is unk	nown	-n/n = Value	at POR and BC	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value de	pends on condi	tion	
bit 7-6 bit 5-4	GxASDLB<1 When an aut 11 = CWGXE 10 = CWGXE 01 = CWGXE 00 = CWGXE control 1 GxASDLA<1 When an aut 11 = CWGXA 10 = CWGXA 01 = CWGXA	1:0>: CWGx Sh o shutdown eve 3 pin is driven to 3 pin is driven to 3 pin is tri-state 3 pin is driven to the polarity of t 1:0>: CWGx Sh o shutdown eve A pin is driven to A pin is driven to	utdown State ent is present o '1', regardle o '0', regardle d its inactive s he output. utdown State ent is present o '1', regardle o '0', regardle d its inactive s	for CWGxB (GxASE = 1): ss of the settin state after the s for CWGxA (GxASE = 1): ss of the settin ss of the settin	g of the GxPOL g of the GxPOL selected dead-b g of the GxPOL g of the GxPOL selected dead-b	.B bit. .B bit. and interval. Gx .A bit. .A bit. and interval. Gx	POLB still will POLA still will
hit 2	control t	the polarity of t	he output.				
		Reau as	U uran Coloct h	:4-			
DIT 2-0	GXIS<2:0>: (111 = CLC1 110 = NCO1 101 = PWM 100 = PWM 011 = PWM 010 = PWM 010 = Reser	- LC1_out I – NCO1_out 4 – PWM4_out 3 – PWM3_out 2 – PWM2_out 1 – PWM1_out ved	urce Select b	ITS			

REGISTER 24-2: CWGxCON1: CWG CONTROL REGISTER 1

000 = Comparator C1 – C1OUT_async

PIC12(L)F1501

FIGURE 25-2: PICkit[™] PROGRAMMER STYLE CONNECTOR INTERFACE

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 25-3 for more information.

FIGURE 25-3: TYPICAL CONNECTION FOR ICSP™ PROGRAMMING

TABLE 27-3: POW	ER-DOWN CURRENTS	(IPD) ^(1,2)
-----------------	-------------------------	------------------------

PIC12LF1	501	Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode						
PIC12F15	01	Low-Power Sleep Mode, VREGPM = 1						
Param.			T	Max.	Max.	11		Conditions
No.	Device Characteristics	MIN.	турт	+85°C	+125°C	Units	Vdd	Note
D022	Base IPD	—	0.020	1.0	8.0	μA	1.8	WDT, BOR, FVR and SOSC
		—	0.03	2.0	9.0	μA	3.0	disabled, all Peripherals inactive
D022	Base IPD	_	0.25	3.0	10	μA	2.3	WDT, BOR, FVR and SOSC
		—	0.30	4.0	12	μA	3.0	disabled, all Peripherals inactive,
		—	0.40	6.0	15	μA	5.0	Low-Fower Sleep mode
D022A	Base IPD		10	16	18	μA	2.3	WDT, BOR, FVR and SOSC
			11	18	20	μA	3.0	disabled, all Peripherals inactive,
		—	12	21	26	μA	5.0	VREGPM = 0
D023		—	0.26	2.0	9.0	μA	1.8	WDT Current
		—	0.44	3.0	10	μA	3.0	
D023		_	0.43	6.0	15	μA	2.3	WDT Current
			0.53	7.0	20	μA	3.0	
		—	0.64	8.0	22	μA	5.0	
D023A			15	28	30	μA	1.8	FVR Current
		—	18	30	33	μA	3.0	
D023A			18	33	35	μA	2.3	FVR Current
			19	35	37	μA	3.0	
		—	20	37	39	μA	5.0	
D024		—	6.0	17	20	μA	3.0	BOR Current
D024			7.0	17	30	μA	3.0	BOR Current
		—	8.0	20	40	μA	5.0	
D24A			0.1	4.0	10	μA	3.0	LPBOR Current
D24A			0.35	5.0	14	μA	3.0	LPBOR Current
		—	0.45	8.0	17	μA	5.0	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral △ current can be determined by subtracting the base IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.

28.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for design guidance and are not tested.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "MAXIMUM", "Max.", "MINIMUM" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

PIC12(L)F1501

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL C

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		8			
Pitch	е		0.65 BSC			
Overall Height	A	-	-	1.10		
Molded Package Thickness	A2	0.75	0.85	0.95		
Standoff	A1	0.00	-	0.15		
Overall Width	E	4.90 BSC				
Molded Package Width	E1		3.00 BSC			
Overall Length	D		3.00 BSC			
Foot Length	L	0.40	0.60	0.80		
Footprint	L1		0.95 REF			
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.08	0.08 - 0.23			
Lead Width	b	0.22	-	0.40		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or

protrusions shall not exceed 0.15mm per side. 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111C Sheet 2 of 2

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	0.65 BSC			
Contact Pad Spacing	С		4.40	
Overall Width	Z			5.85
Contact Pad Width (X8)	X1			0.45
Contact Pad Length (X8)	Y1			1.45
Distance Between Pads	G1	2.95		
Distance Between Pads	GX	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2111A

8-Lead Plastic Dual Flat, No Lead Package (MU) – 2x3x0.5 mm Body [UDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	8		
Pitch	е	0.50 BSC		
Overall Height	А	0.45	0.50	0.55
Standoff	A1			0.07
Contact Thickness	A3	0.127 REF		
Overall Length	D	1.95	2.00	2.05
Overall Width	E	2.95	3.00	3.05
Exposed Pad Length	D2	1.30	1.40	1.50
Exposed Pad Width	E2	1.20	1.30	1.40
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.25	0.30	0.35
Contact-to-Exposed Pad	K	0.55 REF		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-136B