

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 × 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f1501-i-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3.5 DEVICE MEMORY MAPS

The memory maps for Bank 0 through Bank 31 are shown in the tables in this section.

TABLE 3-3: PIC12(L)F1501 MEMORY MAP

	BANK 0	•	BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	_	30Ch	_	38Ch	_
00Dh	—	08Dh	_	10Dh	—	18Dh		20Dh		28Dh	_	30Dh	—	38Dh	—
00Eh	_	08Eh		10Eh	_	18Eh	_	20Eh	_	28Eh	_	30Eh	_	38Eh	_
00Fh		08Fh		10Fh	_	18Fh	_	20Fh	_	28Fh	_	30Fh	_	38Fh	_
010h		090h		110h	-	190h		210h		290h		310h	_	390h	-
0110	PIR1	0910	PIET	1110	CM1CONU	1910	PMADRL	2110		2910		3110	_	391N	IOCAN
0120	PIRZ	09211 002h	PIEZ	1120 112b	CIVITCONT	1920 102b		2120 212b		2920 2026		31211 212h		39211 202h	IOCAR
013H	FIRJ	09311 004h	FIES	11311 114b		19311 104b		21311 214h		29311 2046		317H	_	39311 304h	100/1
015h	TMR0	09 4 11	OPTION REG	115h	CMOUT	195h	PMCON1	215h		2041 205h	_	315h	_	395h	
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	_	296h	_	316h	_	396h	_
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON	217h		297h	_	317h	_	397h	_
018h	T1CON	098h	—	118h	DACCON0	198h	—	218h	_	298h	—	318h	_	398h	—
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	—	219h	—	299h	—	319h	—	399h	—
01Ah	TMR2	09Ah	OSCSTAT	11Ah	_	19Ah	_	21Ah	_	29Ah	_	31Ah	_	39Ah	—
01Bh	PR2	09Bh	ADRESL	11Bh	_	19Bh	—	21Bh	_	29Bh	—	31Bh	—	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch	_	19Ch	—	21Ch	—	29Ch	—	31Ch	—	39Ch	—
01Dh	_	09Dh	ADCON0	11Dh	APFCON	19Dh	—	21Dh	—	29Dh	—	31Dh	—	39Dh	—
01Eh	—	09Eh	ADCON1	11Eh	—	19Eh	—	21Eh	—	29Eh	—	31Eh	—	39Eh	—
01Fh	—	09Fh	ADCON2	11Fh	_	19Fh	—	21Fh	_	29Fh	_	31Fh	—	39Fh	—
020h		UAUN		120h		1A0h		220h		2A0h		320h		3A0h	
	General Purpose														
	A8 Bytes														
04Eb	+0 Dytes		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented
0506			Read as 0		Read as 0		Read as 0		Read as 0		Read as 0		Read as 0		Read as 0
05011	Unimplemented														
	Read as '0'											26 5 6		2556	
06Fh				16Fh		1EFh		26Fh		2EFh		270h		3EFN	
0700		UFUN	Common RAM	1700	Common RAM	IFUN	Common RAM	2700	Common RAM	ZEON	Common RAM	3700	Common RAM	SFUN	Common RAM
	Common RAM		(Accesses		(Accesses		(Accesses		(Accesses		(Accesses		(Accesses		(Accesses
			70h – 7Fh)	4754	70h – 7Fh)	1556	70h – 7Fh)	07Fh	70h – 7Fh)	2EEb	70h – 7Fh)	27Eb	70h – 7Fh)	255h	70h – 7Fh)

Legend: = Unimplemented data memory locations, read as '0'

6.0 RESETS

There are multiple ways to reset this device:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Low-Power Brown-out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- Stack Underflow
- Programming mode exit

To allow VDD to stabilize, an optional power-up timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-chip Reset Circuit is shown in Figure 6-1.

2: Asynchronous interrupt latency = 3-5 TCY. Synchronous latency = 3-4 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.

3: For minimum width of INT pulse, refer to AC specifications in Section 27.0 "Electrical Specifications".

4: INTF is enabled to be set any time during the Q4-Q1 cycles.

8.3 Register Definitions: Voltage Regulator Control

REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1
—	—	—	—	—	—	VREGPM	Reserved
bit 7							bit 0
L a manuali							

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

0'
(

bit 1	VREGPM: Voltage Regulator Power Mode Selection bit
	$1 \rightarrow 1$

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾ Draws lowest current in Sleep, slower wake-up
- 0 = Normal Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up
- bit 0 **Reserved:** Read as '1'. Maintain this bit set.

Note 1: PIC12F1501 only.

2: See Section 27.0 "Electrical Specifications".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
IOCAF	—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	103
IOCAN	—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	103
IOCAP	—	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	103
PIE1	TMR1GIE	ADIE	—	—	_	—	TMR2IE	TMR1IE	65
PIE2	—	—	C1IE	—	_	NCO1IE	—	—	66
PIE3	—	_	—	—	—	—	CLC2IE	CLC1IE	67
PIR1	TMR1GIF	ADIF	—	—	_	_	TMR2IF	TMR1IF	68
PIR2	—	—	C1IF	—	_	NCO1IF	—	—	67
PIR3	—	_	—	—	_	_	CLC2IF	CLC1IF	70
STATUS	—	—	—	TO	PD	Z	DC	С	17
WDTCON	—	_		V	SWDTEN	77			

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in Power-Down mode.

10.2.4 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the address in PMADRH:PMADRL of the row to be programmed.
- 2. Load each write latch with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 10-5 (row writes to program memory with 16 write latches) for more details.

The write latches are aligned to the Flash row address boundary defined by the upper 10-bits of PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:5>) with the lower five bits of PMADRL, (PMADRL<7:0>) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the PMDATH:PMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory.

Note:	The special unlock sequence is required							
	to load a write latch with data or initiate a							
	Flash programming operation. If the							
	unlock sequence is interrupted, writing to							
	the latches or program memory will not be							
	initiated.							

- 1. Set the WREN bit of the PMCON1 register.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the PMADRH:PMADRL register pair with the address of the location to be written.
- 5. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The write latch is now loaded.
- 7. Increment the PMADRH:PMADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The entire program memory latch content is now written to Flash program memory.
- Note: The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state.

An example of the complete write sequence is shown in Example 10-3. The initial address is loaded into the PMADRH:PMADRL register pair; the data is loaded using indirect addressing.

EXAMPLE 10-3: WRITING TO FLASH PROGRAM MEMORY (16 WRITE LATCHES)

; This ; 1. 32 ; 2. E; ; store ; 3. A ; 4. AI	write routi 2 bytes of d ach word of ed in little valid start DDRH and ADE	ne assumes the f data are loaded, data to be writt e endian format ting address (the DRL are located in	ollowing: starting at the address in DATA_ADDR en is made up of two adjacent bytes in DATA_ADDR, least significant bits = 00000) is loaded in ADDRH:ADDRL n shared data memory 0x70 - 0x7F (common RAM)
i	RCF	INTCON CIT	: Disable into so required sequences will evenute properly
	BANKGEL	DMADDU	: Park 3
	MOVE	ADRH W	: Load initial address
	MOVWE	PMADRH	:
	MOVE	ADDRI. W	
	MOVWE	PMADRI.	
	MOVLW	LOW DATA ADDR	, ; Load initial data address
	MOVWF	FSR0L	;
	MOVLW	HIGH DATA ADDR	; Load initial data address
	MOVWF	FSR0H	;
	BCF	PMCON1,CFGS	; Not configuration space
	BSF	PMCON1,WREN	; Enable writes
	BSF	PMCON1,LWLO	; Only Load Write Latches
LOOP			-
	MOVIW	FSR0++	; Load first data byte into lower
	MOVWF	PMDATL	;
	MOVIW	FSR0++	; Load second data byte into upper
	MOVWF	PMDATH	;
	MOVF	PMADRL,W	; Check if lower bits of address are '00000'
	XORLW	0x0F	; Check if we're on the last of 16 addresses
	ANDLW	0x0F	;
	BTFSC	STATUS, Z	; Exit if last of 16 words,
	GOTO	START_WRITE	;
	MOVLW	55h	; Start of required write sequence:
	MOVWF	PMCON2	; Write 55h
	MOVLW	0AAh	;
	MOVWF	PMCON2	; Write AAh
	BSF	PMCON1,WR	; Set WR bit to begin write
	NOP		; NOP instructions are forced as processor
			; loads program memory write latches
	NOP		;
	INCF	PMADRL, F	; Still loading latches Increment address
	GOTO	LOOP	; Write next latches
START_V	WRITE		
	BCF	PMCON1,LWLO	; No more loading latches - Actually start Flash program
			; memory write
	NOTITI	F F]-	
	MOVLW	55n	; Start of required write sequence:
0	MOVWF	PMCON2	, Write 550
ed nce	MOVLW	UAAn	i
int	MOVWF.	PMCONZ	/ Write AAN : Cot ND bit to begin write
Zec Seq	DOD NOD	FMCON1,WK	, bet we bit to begin write
± 0)	NOF		, NOF INSTRUCTIONS are forced as processor writes
	NOD		, all the program memory write latches simultaneously
	NOF		, to program memory.
<u> </u>			ALLEL NUPS, LHE PLOCESSOF
			, stars until the self-write process in complete
	DCE		, aller write processor continues with 3rd instruction
	BCF	INTONI, WKEN	, Disable Milles
	160	TNICON, GIE	, Enable Intellable

13.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference (FVR) is a stable voltage reference, independent of VDD, with a nominal output level (VFVR) of 1.024V. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- Comparator positive input
- · Comparator negative input

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

13.1 Independent Gain Amplifier

The output of the FVR supplied to the peripherals, (listed above), is routed through a programmable gain amplifier. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 15.0 "Analog-to-Digital Converter** (ADC) Module" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the comparator modules. Reference **Section 17.0 "Comparator Module**" for additional information.

To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits.

13.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See the FVR Stabilization Period characterization graph, Figure 28-52.

FIGURE 13-1: VOLTAGE REFERENCE BLOCK DIAGRAM

16.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (VSOURCE+) of the DAC can be connected to:

- External VREF+ pin
- VDD supply voltage

The negative input source (VSOURCE-) of the DAC can be connected to:

Vss

The output of the DAC (DACx_output) can be selected as a reference voltage to the following:

- Comparator positive input
- · ADC input channel
- DACxOUT1 pin
- DACxOUT2 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACxCON0 register.

FIGURE 16-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

17.2.5 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 17-2 shows the output state versus input conditions, including polarity control.

TABLE 17-2: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

17.2.6 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the Normal-Speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

17.3 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 17-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
CxINTP	CxINTN	CxPCI	H<1:0>	—			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	OR/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	CxINTP: Con	nparator Interru	pt on Positive	Going Edge E	Enable bits		
	1 = The CxIF	interrupt flag	will be set upor	n a positive go	oing edge of the	CxOUT bit	
	0 = No interr	upt flag will be	set on a positi	ve going edge	e of the CxOUT	bit	
bit 6	CxINTN: Con	nparator Interru	pt on Negative	e Going Edge	Enable bits		
	1 = The CxIF	interrupt flag	will be set upor	n a negative g	joing edge of the	e CxOUT bit	
	0 = No interr	upt flag will be	set on a negat	ive going eag		DIT	
bit 5-4	CxPCH<1:0>	: Comparator F	Positive Input (Channel Selec	ct bits		
	11 = CxVPc	onnects to Vss	Valtara Dafa				
	10 = CXVP co	onnects to DAC	Voltage Refe	rence			
	00 = CxVP cc	onnects to CxII	Voltage Rele V+ pin	Tenee			
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	CxNCH<2:0>	Comparator I	Negative Input	Channel Sele	ect bits		
	111 = Reser	ved	0 1				
	110 = Reser	ved					
	101 = Reser	ved					
	100 = CxVN	connects to F\	R Voltage refe	erence			
	011 = Reser	ved					
	010 = Reserved	connects to C	/INI1- nin				
	000 = CxVN	connects to C	(INO- pin				
			· F				

REGISTER 17-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

REGISTER 17-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0/0
_	_	—	—	—	—	—	MC10UT
bit 7		•		•			bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 Unimplemented: Read as '0'

bit 0 MC1OUT: Mirror Copy of C1OUT bit

20.5 **Register Definitions: Timer2 Control**

T2CON: TIMER2 CONTROL REGISTER REGISTER 20-1: U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 T2OUTPS<3:0> TMR2ON T2CKPS<1:0> bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared bit 7 Unimplemented: Read as '0' bit 6-3 T2OUTPS<3:0>: Timer2 Output Postscaler Select bits 0000 = 1:1 Postscaler 0001 = 1:2 Postscaler 0010 = 1:3 Postscaler 0011 = 1:4 Postscaler 0100 = 1:5 Postscaler 0101 = 1:6 Postscaler 0110 = 1:7 Postscaler 0111 = 1:8 Postscaler 1000 = 1:9 Postscaler 1001 = 1:10 Postscaler 1010 = 1:11 Postscaler 1011 = 1:12 Postscaler 1100 = 1:13 Postscaler 1101 = 1:14 Postscaler 1110 = 1:15 Postscaler 1111 = 1:16 Postscaler bit 2 TMR2ON: Timer2 On bit 1 = Timer2 is on 0 = Timer2 is off bit 1-0 T2CKPS<1:0>: Timer2 Clock Prescale Select bits 00 = Prescaler is 101 = Prescaler is 4 10 = Prescaler is 16 11 = Prescaler is 64

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
PIE1	TMR1GIE	ADIE	_	_	_	—	TMR2IE	TMR1IE	65
PIR1	TMR1GIF	ADIF	_	_	_	—	TMR2IF	TMR1IF	68
PR2	Timer2 Module Period Register								148*
T2CON	—	T2OUTPS<3:0> TMR2ON T2CKPS					'S<1:0>	150	
TMR2	Holding Register for the 8-bit TMR2 Count								148*

- = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module. Legend:

Page provides register information.

REGISTER 23-3: NCOxACCL: NCOx ACCUMULATOR REGISTER – LOW BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NCOxA	CC<7:0>			
bit 7							bit 0
Legend:							
R = Readable	hit	W = Writable bi	it i	II = I Inimpler	mented hit read	1 as '0'	

		0 – Ohimpiemented bit, read as 0
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	NCOxACC<7:0>: NCOx Accumulator, Low Byte
---------	--

REGISTER 23-4: NCOXACCH: NCOX ACCUMULATOR REGISTER – HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NCOxAC	C<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other F			

bit 7-0 NCOxACC<15:8>: NCOx Accumulator, High Byte

'0' = Bit is cleared

REGISTER 23-5: NCOxACCU: NCOx ACCUMULATOR REGISTER – UPPER BYTE

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		NCOxAC	C<19:16>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCOxACC<19:16>: NCOx Accumulator, Upper Byte

'1' = Bit is set

REGISTER 23-6: NCOxINCL: NCOx INCREMENT REGISTER – LOW BYTE⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1	
NCOxINC<7:0>								
bit 7	bit 7 bit 0							

Legend:

Logonan		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<7:0>: NCOx Increment, Low Byte

Note 1: Write the NCOxINCH register first, then the NCOxINCL register. See 23.1.4 "Increment Registers" for more information.

REGISTER 23-7: NCOxINCH: NCOx INCREMENT REGISTER – HIGH BYTE⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
	NCOxINC<15:8>							
bit 7 bit 0								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<15:8>: NCOx Increment, High Byte

Note 1: Write the NCOxINCH register first, then the NCOxINCL register. See 23.1.4 "Increment Registers" for more information.

TABLE 23-1:	SUMMARY OF REGISTERS ASSOCIATED WITH NCOx
-------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
APFCON	CWG1BSEL	CWGA1SEL	_	_	T1GSEL	—	CLC1SEL	NCO1SEL	96	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64	
NCO1ACCH	NCO1ACC<15:8>									
NCO1ACCL	NCO1ACC<7:0>									
NCO1ACCU		-	_			178				
NCO1CLK		N1PWS<2:0>		_	_	_	177			
NCO1CON	N1EN	N1OE	N1OUT	N1POL	-	—	-	N1PFM	177	
NCO1INCH	NCO1INC<15:8>									
NCO1INCL	NCO1INC<7:0>									
PIE2	_	_	C1IE			NCO1IE		_	66	
PIR2	_	_	C1IF	_	_	NCO1IF	_	_	69	
TRISA	_	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	98	

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', g = value depends on condition. Shaded cells are not used for NCOx module.

Note 1: Unimplemented, read as '1'.

TABLE 27-2: SUPPLY CURRENT (IDD)^(1,2)

PIC12LF1501		Standard Operating Conditions (unless otherwise stated)							
PIC12F1501									
Param. Device						Conditions			
No.	Characteristics	Min.	Тур†	Max.	Units	VDD	Note		
D013			30	65	μA	1.8	Fosc = 1 MHz,		
		—	55	100	μA	3.0	External Clock (ECM), Medium Power mode		
D013			65	110	μA	2.3	Fosc = 1 MHz,		
			85	140	μA	3.0	External Clock (ECM),		
			115	190	μA	5.0	Medium Power mode		
D014			115	190	μA	1.8	Fosc = 4 MHz,		
			210	310	μA	3.0	External Clock (ECM), Medium Power mode		
D014			180	270	μA	2.3	Fosc = 4 MHz,		
			240	365	μA	3.0	External Clock (ECM),		
			295	460	μA	5.0	Medium Power mode		
D015		_	3.2	12	μA	1.8	Fosc = 31 kHz,		
			5.4	20	μA	3.0	LFINTOSC, -40°C ≤ Ta ≤ +85°C		
D015			13	28	μA	2.3	Fosc = 31 kHz,		
			15	30	μA	3.0			
			17	36	μA	5.0	-40 C \leq IA \leq +05 C		
D016			215	360	μA	1.8	Fosc = 500 kHz,		
		—	275	480	μA	3.0	HFINTOSC		
D016			270	450	μA	2.3	Fosc = 500 kHz,		
			300	500	μA	3.0	HFINTOSC		
			350	620	μA	5.0			
D017*			410	660	μA	1.8	Fosc = 8 MHz,		
			630	970	μA	3.0	HFINTOSC		
D017*			530	750	μA	2.3	Fosc = 8 MHz,		
			660	1100	μA	3.0	HFINTOSC		
			730	1200	μA	5.0			
D018			600	940	μA	1.8	Fosc = 16 MHz,		
		_	970	1400	μA	3.0	HFINTOSC		
D018			780	1200	μA	2.3	Fosc = 16 MHz,		
		_	1000	1550	μA	3.0	HFINTOSC		
		_	1090	1700	μA	5.0			

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

TABLE 27-8: OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions	
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±2%		16.0		MHz	VDD = 3.0V, TA = 25°C, (Note 2)	
OS09	LFosc	Internal LFINTOSC Frequency	_	_	31	_	kHz	(Note 3)	
OS10*	TIOSC ST	HFINTOSC Wake-up from Sleep Start-up Time	—		5	15	μS		
OS10A*	TLFOSC ST	LFINTOSC Wake-up from Sleep Start-up Time	_		0.5		ms	$-40^{\circ}C \leq TA \leq +125^{\circ}C$	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

2: See Figure 27-6: "HFINTOSC Frequency Accuracy over Device VDD and Temperature", Figure 28-60: "HFINTOSC Accuracy Over Temperature, VDD = 1.8V, PIC12LF1501 Only", and Figure 28-61: "HFINTOSC Accuracy Over Temperature, 2.3V ≤ VDD ≤ 5.5V".

3: See Figure 28-58: "LFINTOSC Frequency over VDD and Temperature, PIC12LF1501 Only", and Figure 28-59: "LFINTOSC Frequency over VDD and Temperature, PIC12F1501".

FIGURE 27-6: HFINTOSC FREQUENCY ACCURACY OVER VDD AND TEMPERATURE

FIGURE 28-25: IPD, FIXED VOLTAGE REFERENCE (FVR), PIC12LF1501 ONLY

FIGURE 28-54: COMPARATOR HYSTERESIS, LOW-POWER MODE (CxSP = 0, CxHYS = 1)

29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

29.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

29.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-111C Sheet 1 of 2