

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	·
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1501-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 7.5 "Automatic Context Saving"**, for more information.

2.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See **Section 3.5 "Stack"** for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.6 "Indirect Addressing"** for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 26.0 "Instruction Set Summary**" for more details.

IADEE	<u> </u>												
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets		
Bank 1	0		•							•			
50Ch to 51Fh	_	Unimplemen	Inimplemented —										
Bank 1	1												
58Ch to 59Fh	_	Unimplemen	nimplemented — —										
Bank 1	2												
60Ch to 610h	_	Unimplemen	Unimplemented										
611h	PWM1DCL	PWM1D	CL<7:6>	—	—	—	—	—	—	00	00		
612h	PWM1DCH				PWM1	DCH<7:0>				xxxx xxxx	uuuu uuuu		
613h	PWM1CON0	PWM1EN	PWM10E	PWM10UT	PWM1POL		_			0000	0000		
614h	PWM2DCL	PWM2D	CL<7:6>	—	—		_			00	00		
615h	PWM2DCH	PWM2DCH<7:0>							xxxx xxxx	uuuu uuuu			
616h	PWM2CON0	PWM2EN	PWM2OE	PWM2OUT	PWM2POL		_			0000	0000		
617h	PWM3DCL	PWM3D	CL<7:6>	—	—		_			00	00		
618h	PWM3DCH				PWM3	DCH<7:0>				xxxx xxxx	uuuu uuuu		
619h	PWM3CON0	PWM3EN	PWM3OE	PWM3OUT	PWM3POL	-	—	—	_	0000	0000		
61Ah	PWM4DCL	PWM4D	CL<7:6>	—	—	-	—	—	_	00	00		
61Bh	PWM4DCH				PWM4	DCH<7:0>				xxxx xxxx	uuuu uuuu		
61Ch	PWM4CON0	PWM4EN	PWM4OE	PWM4OUT	PWM4POL	—	—	_	_	0000	0000		
61Dh to 61Fh	_	Unimplemented — — —									-		
Bank 1	3												
68Ch to 690h	_	Unimplemented — -								_			
691h	CWG1DBR	_	_			CWG1	DBR<5:0>			00 0000	00 0000		
692h	CWG1DBF	—	—			CWG1	DBF<5:0>			xx xxxx	xx xxxx		
693h	CWG1CON0	G1EN	G10EB	G10EA	G1POLB	G1POLA	—	—	G1CS0	0000 00	0000 00		
694h	CWG1CON1	G1ASD	LB<1:0>	G1ASD	LA<1:0>	_		G1IS<2:0>		0000 -000	0000 -000		
695h	CWG1CON2	G1ASE	G1ARSEN	—	—	—	G1ASDSC1	G1ASDSFLT	G1ASDSCLC2	00000	00000		
696h to 69Fh	—	Unimplemen	ted							-	-		

TABLE 3-5 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. PIC12F1501 only. Unimplemented, read as '1'. Legend: Note 1: 1: 2:

5.0 OSCILLATOR MODULE

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from an external clock or from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fast start-up oscillator allows internal circuits to power-up and stabilize before switching to the 16 MHz HFINTOSC

The oscillator module can be configured in one of the following clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 20 MHz)
- 4. INTOSC Internal oscillator (31 kHz to 16 MHz)

Clock Source modes are selected by the FOSC<1:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source.

The INTOSC internal oscillator block produces a low and high-frequency clock source, designated LFINTOSC and HFINTOSC. (See Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these two clock sources.

5.2.2.4 Peripheral Clock Sources

The clock sources described in this chapter and the Timer's are available to different peripherals. Table 5-1 lists the clocks and timers available for each peripheral.

TABLE 5-1:	PERIPHERAL CLOCK
	SOURCES

	FOSC	FRC	HFINTOSC	LFINTOSC	TMR0	TMR1	TMR2
ADC	٠	•					
CLC	٠	•	•	•	٠	٠	•
COMP						٠	
CWG	٠		•				
NCO	٠		•				
PWM	٠						•
PWRT				•			
TMR0	•						
TMR1	٠			•			
TMR2	٠						
WDT				•			

5.2.2.5 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The postscaled output of the 16 MHz HFINTOSC and 31 kHz LFINTOSC connect to a multiplexer (see Figure 5-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register (Register 5-1) select the frequency output of the internal oscillators.

Note:	Following any Reset, the IRCF<3:0> bits								
	of the USCCON register are set to '0111'								
	and the frequency selection is set to								
	500 kHz. The user can modify the IRCF								
	bits to select a different frequency.								

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

5.2.2.6 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-3). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 5-3 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-2.

Start-up delay specifications are located in Table 27-8, "Oscillator Parameters".

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 8.0 "Power-Down Mode (Sleep)"** for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

8.3 Register Definitions: Voltage Regulator Control

REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1
—	—	—	—	—	—	VREGPM	Reserved
bit 7							bit 0
L a manuali							

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

0'
(

bit 1	VREGPM: Voltage Regulator Power Mode Selection bit
	$1 \rightarrow 1$

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾ Draws lowest current in Sleep, slower wake-up
- 0 = Normal Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up
- bit 0 **Reserved:** Read as '1'. Maintain this bit set.

Note 1: PIC12F1501 only.

2: See Section 27.0 "Electrical Specifications".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
IOCAF	—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	103
IOCAN	—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	103
IOCAP	—	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	103
PIE1	TMR1GIE	ADIE	—	—	—	—	TMR2IE	TMR1IE	65
PIE2	—	—	C1IE	—	_	NCO1IE	—	—	66
PIE3	—	_	—	—	—	—	CLC2IE	CLC1IE	67
PIR1	TMR1GIF	ADIF	—	—	_	_	TMR2IF	TMR1IF	68
PIR2	—	—	C1IF	—	_	NCO1IF	—	—	67
PIR3	—	_	—	—	_	—	CLC2IF	CLC1IF	70
STATUS	—	—	—	TO	PD	Z	DC	С	17
WDTCON	—	_		V	VDTPS<4:0	>		SWDTEN	77

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in Power-Down mode.

13.3 Register Definitions: FVR Control

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
FVREN ⁽¹	I) FVRRDY ⁽²⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFV	R<1:0> ⁽¹⁾	ADFVR	<1:0> ⁽¹⁾		
bit 7						•	bit 0		
Legend:									
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is s	set	'0' = Bit is cle	ared	q = Value de	pends on condit	ion			
bit 7	FVREN: Fixed 1 = Fixed Vol 0 = Fixed Vol	d Voltage Refe Itage Referenc Itage Referenc	rence Enable e is enabled e is disabled	bit ⁽¹⁾					
bit 6	FVRRDY: Fixed Voltage Reference Ready Flag bit ⁽²⁾ 1 = Fixed Voltage Reference output is ready for use 0 = Fixed Voltage Reference output is not ready or not enabled								
bit 5	TSEN: Temperat 1 = Temperat 0 = Temperat	TSEN: Temperature Indicator Enable bit ⁽³⁾ 1 = Temperature Indicator is enabled 0 = Temperature Indicator is disabled							
bit 4	TSRNG: Tem 1 = VOUT = V 0 = VOUT = V	TSRNG: Temperature Indicator Range Selection bit ⁽³⁾ 1 = VOUT = VDD - 4VT (High Range) 0 = VOUT = VDD - 2VT (Low Range)							
bit 3-2	CDAFVR<1:0 11 = Compara 10 = Compara 01 = Compara 00 = Compara	CDAFVR<1:0>: Comparator FVR Buffer Gain Selection bits ⁽¹⁾ 11 = Comparator FVR Buffer Gain is 4x, with output voltage = 4x VFVR (4.096V nominal) ⁽⁴⁾ 10 = Comparator FVR Buffer Gain is 2x, with output voltage = 2x VFVR (2.048V nominal) ⁽⁴⁾ 01 = Comparator FVR Buffer Gain is 1x, with output voltage = 1x VFVR (1.024V nominal) 00 = Comparator FVR Buffer is off							
bit 1-0	ADFVR<1:0> 11 = ADC FV 10 = ADC FV 01 = ADC FV 00 = ADC FV	: ADC FVR Bu R Buffer Gain R Buffer Gain R Buffer Gain R Buffer is off	iffer Gain Sele is 4x, with out _l is 2x, with out _l is 1x, with out _l	ection bit ⁽¹⁾ out voltage = 4 out voltage = 2 out voltage = 1	x Vfvr (4.096V x Vfvr (2.048V x Vfvr (1.024V	nominal) ⁽⁴⁾ nominal) ⁽⁴⁾ nominal)			
Note 1:	To minimize curren ing the Buffer Gain	t consumption	when the FVF	R is disabled, t	ne FVR buffers s	should be turne	ed off by clear-		

REGISTER 13-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

- **2:** FVRRDY is always '1' for the PIC12F1501 devices.
- 3: See Section 14.0 "Temperature Indicator Module" for additional information.
- 4: Fixed Voltage Reference output cannot exceed VDD.

TABLE 13-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR>1:0>		ADFVI	R<1:0>	107

Legend: Shaded cells are unused by the Fixed Voltage Reference module.

22.1.2 DATA GATING

Outputs from the input multiplexers are directed to the desired logic function input through the data gating stage. Each data gate can direct any combination of the four selected inputs.

Note: Data gating is undefined at power-up.

The gate stage is more than just signal direction. The gate can be configured to direct each input signal as inverted or non-inverted data. Directed signals are ANDed together in each gate. The output of each gate can be inverted before going on to the logic function stage.

The gating is in essence a 1-to-4 input AND/NAND/OR/NOR gate. When every input is inverted and the output is inverted, the gate is an OR of all enabled data inputs. When the inputs and output are not inverted, the gate is an AND or all enabled inputs.

Table 22-2 summarizes the basic logic that can be obtained in gate 1 by using the gate logic select bits. The table shows the logic of four input variables, but each gate can be configured to use less than four. If no inputs are selected, the output will be zero or one, depending on the gate output polarity bit.

TABLE 22-2:DATA GATING LOGIC

CLCxGLS0	LCxG1POL	Gate Logic
0x55	1	AND
0x55	0	NAND
0xAA	1	NOR
0xAA	0	OR
0x00	0	Logic 0
0x00	1	Logic 1

It is possible (but not recommended) to select both the true and negated values of an input. When this is done, the gate output is zero, regardless of the other inputs, but may emit logic glitches (transient-induced pulses). If the output of the channel must be zero or one, the recommended method is to set all gate bits to zero and use the gate polarity bit to set the desired level.

Data gating is configured with the logic gate select registers as follows:

- Gate 1: CLCxGLS0 (Register 22-5)
- Gate 2: CLCxGLS1 (Register 22-6)
- Gate 3: CLCxGLS2 (Register 22-7)
- Gate 4: CLCxGLS3 (Register 22-8)

Register number suffixes are different than the gate numbers because other variations of this module have multiple gate selections in the same register. Data gating is indicated in the right side of Figure 22-2. Only one gate is shown in detail. The remaining three gates are configured identically with the exception that the data enables correspond to the enables for that gate.

22.1.3 LOGIC FUNCTION

There are eight available logic functions including:

- AND-OR
- OR-XOR
- AND
- S-R Latch
- D Flip-Flop with Set and Reset
- D Flip-Flop with Reset
- J-K Flip-Flop with Reset
- · Transparent Latch with Set and Reset

Logic functions are shown in Figure 22-3. Each logic function has four inputs and one output. The four inputs are the four data gate outputs of the previous stage. The output is fed to the inversion stage and from there to other peripherals, an output pin, and back to the CLCx itself.

22.1.4 OUTPUT POLARITY

The last stage in the configurable logic cell is the output polarity. Setting the LCxPOL bit of the CLCxCON register inverts the output signal from the logic stage. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

FIGURE 22-3: PROGRAMMABLE LOGIC FUNCTIONS

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG1D4T	LCxG1D4N	LCxG1D3T	LCxG1D3N	LCxG1D2T	LCxG1D2N	LCxG1D1T	LCxG1D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG1D4T: O	Gate 1 Data 4 1	rue (non-inve	rted) bit			
	1 = lcxd4T is	gated into long	j1				
hit 6	0 = 100041 is	The galed Into	ICXY I Negated (invo	rtad) bit			
DILO	$1 = \log d4N$ is	dated into Icx	negaleu (inve n1	neu) bli			
	0 = lcxd4N is	not gated into	lcxg1				
bit 5	LCxG1D3T: G	Gate 1 Data 3 1	rue (non-inve	rted) bit			
	1 = Icxd3T is	gated into lcxg	j 1				
	0 = Icxd3T is	not gated into	lcxg1				
bit 4	LCxG1D3N: (Gate 1 Data 3	Negated (inve	rted) bit			
	1 = lcxd3N is	gated into lcx	g1 Jova1				
hit 3		Late 1 Data 2 1	icxy i True (non-inve	rtad) hit			
bit 5	1 = lcxd2T is	dated into love	1100 (11011-111Ve) 11	neu) bit			
	0 = lcxd2T is	not gated into	lcxg1				
bit 2	LCxG1D2N:	Gate 1 Data 2	Negated (inve	rted) bit			
	1 = Icxd2N is	gated into Icx	g1				
	0 = Icxd2N is	not gated into	lcxg1				
bit 1	LCxG1D1T: C	Gate 1 Data 1 1	rue (non-inve	rted) bit			
	1 = Icxd1T is gated into Icxg1						
hit 0		Tiol galed Into	Negated (inve	rtad) hit			
bit 0	1 = lcxd1N is	dated into Icx	negaleu (inve n1	neu) bii			
	0 = lcxd1N is	not gated into	lcxg1				

REGISTER 22-5: CLCxGLS0: GATE 1 LOGIC SELECT REGISTER

LCxG2D4T bit 7	LCxG2D4N	LCxG2D3T	LCxG2D3N	LCxG2D2T	LCxG2D2N	LCxG2D1T	LCxG2D1N
bit 7				·		•	
Legend:							Dit U
Legend:							
R = Readable bit		W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unchan	ged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
L:1 7 I	0-00D (T. (
DIT / L	CXG2D41: (Sate 2 Data 4 I	rue (non-invei	rted) bit			
1	= 10x041 is = 10x04T is	not gated into icxe	J∠ Icxa2				
bit 6 L	CxG2D4N:	Gate 2 Data 4	Negated (inver	rted) bit			
1	= lcxd4N is	gated into Icxo	q2	,			
0	= lcxd4N is	not gated into	lcxg2				
bit 5 L	.CxG2D3T: (Gate 2 Data 3 1	rue (non-invei	rted) bit			
1	1 = Icxd3T is gated into Icxg2						
0	= lcxd3T is	not gated into	lcxg2				
bit 4 L	.CxG2D3N: (Gate 2 Data 3 I	Negated (inver	rted) bit			
1	= lcxd3N is	gated into Icx	j2 Jova2				
bit 3		anoi galeu inio Sate 2 Data 2 T	iuxyz True (non-invei	rted) hit			
1 DIL 5	= lcxd2T is	dated into love	10e (11011-111Ve) 12	neu) bit			
0	= lcxd2T is	not gated into	lcxg2				
bit 2 L	.CxG2D2N: (Gate 2 Data 2	Negated (inver	rted) bit			
1	= lcxd2N is	gated into Icx	g2				
0	= lcxd2N is	not gated into	lcxg2				
bit 1 L	CxG2D1T: (Gate 2 Data 1 1	rue (non-inve	rted) bit			
1	= lcxd1T is	gated into loxo	j2				
0		not gated into	Icxg2				
bit 0 L	.CxG2D1N: (Jate 2 Data 1	Negated (inver	rted) bit			
1	= 10x01N is = 10x01N is	yated Into ICX	J∠ Icxa2				
0		not gated into	ionge				

REGISTER 22-6: CLCxGLS1: GATE 2 LOGIC SELECT REGISTER

REGISTER 23-6: NCOxINCL: NCOx INCREMENT REGISTER – LOW BYTE⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1
			NCOXIN	C<7:0>			
bit 7 bit 0							

Legend:

Logonan		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<7:0>: NCOx Increment, Low Byte

Note 1: Write the NCOxINCH register first, then the NCOxINCL register. See 23.1.4 "Increment Registers" for more information.

REGISTER 23-7: NCOxINCH: NCOx INCREMENT REGISTER – HIGH BYTE⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NCOxIN	C<15:8>			
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<15:8>: NCOx Increment, High Byte

Note 1: Write the NCOxINCH register first, then the NCOxINCL register. See 23.1.4 "Increment Registers" for more information.

TABLE 23-1:	SUMMARY OF REGISTERS ASSOCIATED WITH NCOX
-------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	CWG1BSEL	CWGA1SEL	_	_	T1GSEL	_	CLC1SEL	NCO1SEL	96
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
NCO1ACCH	NCO1ACC<15:8>							178	
NCO1ACCL				NCO1A	CC<7:0>				178
NCO1ACCU	— NCO1ACC<19:16>							178	
NCO1CLK		N1PWS<2:0>		_	_	— N1CKS<1:0>			177
NCO1CON	N1EN	N10E	N1OUT	N1POL	-	-	-	N1PFM	177
NCO1INCH				NCO1IN	C<15:8>				179
NCO1INCL				NCO1IN	IC<7:0>				179
PIE2	_	_	C1IE			NCO1IE		_	66
PIR2	_	_	C1IF	_	_	NCO1IF	_	_	69
TRISA	_	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	98

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', g = value depends on condition. Shaded cells are not used for NCOx module.

Note 1: Unimplemented, read as '1'.

24.8 Dead-Band Uncertainty

When the rising and falling edges of the input source triggers the dead-band counters, the input may be asynchronous. This will create some uncertainty in the deadband time delay. The maximum uncertainty is equal to one CWG clock period. Refer to Equation 24-1 for more detail.

EQUATION 24-1: DEAD-BAND UNCERTAINTY

$$TDEADBAND_UNCERTAINTY = \frac{1}{Fcwg_clock}$$

Example:
$$Fcwg_clock = 16 MHz$$

Therefore:
$$TDEADBAND_UNCERTAINTY = \frac{1}{Fcwg_clock}$$
$$= \frac{1}{16 MHz}$$
$$= 62.5 ns$$

24.9 Auto-Shutdown Control

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software.

24.9.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

24.9.1.1 Software Generated Shutdown

Setting the GxASE bit of the CWGxCON2 register will force the CWG into the shutdown state.

When auto-restart is disabled, the shutdown state will persist as long as the GxASE bit is set.

When auto-restart is enabled, the GxASE bit will clear automatically and resume operation on the next rising edge event. See Figure 24-6.

24.9.1.2 External Input Source

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the selected override levels without software delay. Any combination of two input sources can be selected to cause a shutdown condition. The sources are:

- Comparator C1 C1OUT_async
- CLC2 LC2_out
- CWG1FLT

Shutdown inputs are selected in the CWGxCON2 register. (Register 24-3).

Note: Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling auto-shutdown, as long as the shutdown input level persists.

R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
GxASE	GxARSEN	_	_		GxASDSC1	GxASDSFLT	GxASDSCLC2	
bit 7							bit 0	
Legend								
R - Readah	le hit	M = Mritable	hit	II – Unimplei	mented bit read	l as '0'		
		v - Dit is upl		o = 0	at DOD and DO		thar Dagata	
		X = BIL IS UIIr				R/Value at all 0	iner Reseis	
T = BIT IS SE	et	$0^{\circ} = Bit is cle$	eared	q = value de	penas on condit	ion		
bit 7	GxASE: Auto	o-Shutdown Ev	/ent Status bi	t				
Sit	1 = An auto-shutdown event has occurred							
	0 = No auto-shutdown event has occurred							
bit 6	GxARSEN: A	GxARSEN: Auto-Restart Enable bit						
	1 = Auto-res	start is enabled						
	0 = Auto-res	start is disabled	1					
bit 5-3	Unimplemer	nted: Read as	'0'					
bit 2	GxASDSC1:	CWG Auto-sh	utdown on C	omparator C1	Enable bit			
	1 = Shutdown when Comparator C1 output (C1OUT_async) is high							
		ator C1 output	nas no eπeci					
bit 1	GxASDSFLT: CWG Auto-shutdown on FLI Enable bit							
	$1 = \frac{\text{Shutdow}}{\text{CWG1E}}$	1 = Snutdown when GWG1FLI input is low $0 = CWG1FLT$ input has no effect on shutdown						
bit 0	GYASDSCI	CrASDSCI C2: CWC Auto abutdown on CLC2 Enable bit						
	1 = Shutdow	vn when Cl C2	output (LC2	out) is high				
	0 = CLC2 ou	0 = CLC2 output has no effect on shutdown						

REGISTER 24-3: CWGxCON2: CWG CONTROL REGISTER 2

ΜΟΥΨΙ	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31
Operation:	$\label{eq:W} \begin{split} W &\rightarrow INDFn \\ \text{Effective address is determined by} \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR + 1 \ (\text{predecrement}) \\ \bullet \ FSR + k \ (\text{relative offset}) \\ \text{After the Move, the FSR value will be either:} \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \text{Unchanged} \end{split}$
Status Affected:	None

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \to OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by software.

TABLE 27-7: CLOCK OSCILLATOR TIMING REQUIREMENTS

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	0.5	MHz	External Clock (ECL)
			DC	—	4	MHz	External Clock (ECM)
			DC	—	20	MHz	External Clock (ECH)
OS02	Tosc	External CLKIN Period ⁽¹⁾	50	—	∞	ns	External Clock (EC)
OS03	TCY	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	Tcy = 4/Fosc

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to CLKIN pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 28-21: IPD BASE, LOW-POWER SLEEP MODE, PIC12LF1501 ONLY

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		4.40		
Overall Width	Z			5.85	
Contact Pad Width (X8)	X1			0.45	
Contact Pad Length (X8)	Y1			1.45	
Distance Between Pads	G1	2.95			
Distance Between Pads	GX	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2111A