

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-TSSOP, 8-MSOP (0.118", 3.00mm Width)
Supplier Device Package	8-MSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1501-i-ms

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

1.0	Device Overview	7
2.0	Enhanced Mid-Range CPU	11
3.0	Memory Organization	13
4.0	Device Configuration	37
5.0	Oscillator Module	42
6.0	Resets	51
7.0	Interrupts	59
8.0	Power-Down Mode (Sleep)	72
9.0	Watchdog Timer (WDT)	75
10.0	Flash Program Memory Control	79
11.0	I/O Ports	95
12.0	Interrupt-On-Change	101
13.0	Fixed Voltage Reference (FVR)	105
14.0	Temperature Indicator Module	108
15.0	Analog-to-Digital Converter (ADC) Module	110
16.0	5-Bit Digital-to-Analog Converter (DAC) Module	124
17.0	Comparator Module	127
18.0	Timer0 Module	134
19.0	Timer1 Module with Gate Control	137
20.0	Timer2 Module	148
21.0	Pulse-Width Modulation (PWM) Module	151
22.0	Configurable Logic Cell (CLC)	157
23.0	Numerically Controlled Oscillator (NCO) Module	173
24.0	Complementary Waveform Generator (CWG) Module	180
25.0	In-Circuit Serial Programming™ (ICSP™)	192
26.0	Instruction Set Summary	194
27.0	Electrical Specifications	209
28.0	DC and AC Characteristics Graphs and Charts	232
29.0	Development Support	267
30.0	Packaging Information	271
Appe	ndix A: Data Sheet Revision History	288
The N	Aicrochip Website	289
Custo	omer Change Notification Service	289
Custo	omer Support	289
Produ	uct Identification System	290

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 7.5 "Automatic Context Saving"**, for more information.

2.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See **Section 3.5 "Stack"** for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.6 "Indirect Addressing"** for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 26.0 "Instruction Set Summary**" for more details.

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH operator will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2:	ACCESSING PROGRAM
	MEMORY VIA FSR

constants		
DW DATA	0	;First constant
DW DATA	1	;Second constant
DW DATA	2	
DW DATA	3	
my_function	on	
; LOTS	OF CODE	
MOVLW	DATA_INDEX	
ADDLW	LOW constants	
MOVWF	FSR1L	
MOVLW	HIGH constant:	s;MSb sets
		automatically
MOVWF	FSR1H	
BTFSC	STATUS, C	;carry from ADDLW?
INCF	FSR1h, f	;yes
MOVIW	0[FSR1]	
;THE PROGE	RAM MEMORY IS	IN W

6.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON register bits are shown in Register 6-2.

6.14 Register Definitions: Power Control

REGISTER 6-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:		
HC = Bit is cleared by hardw	are	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	STKOVF: Stack Overflow Flag bit
	1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or cleared by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or cleared by firmware
bit 5	Unimplemented: Read as '0'
bit 4	RWDT: Watchdog Timer Reset Flag bit
	1 = A Watchdog Timer Reset has not occurred or set by firmware
	0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A $\overline{\text{MCLR}}$ Reset has not occurred or set by firmware
	0 = A MCLR Reset has occurred (cleared by hardware)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or set by firmware
	0 = A RESET instruction has been executed (cleared by hardware)
bit 1	POR: Power-On Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-Out Reset Status bit
	1 = No Brown-out Reset occurred
	 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
TMR1GIF	ADIF	_	—	—	—	TMR2IF	TMR1IF
bit 7	•	•					bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged		x = Bit is unkn	iown	-n/n = Value a	at POR and BOI	R/Value at all c	ther Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7	TMR1GIF: Tir 1 = Interrupt i 0 = Interrupt i	mer1 Gate Inter s pending s not pending	rrupt Flag bit				
bit 6	ADIF: ADC Ir 1 = Interrupt i 0 = Interrupt i	nterrupt Flag bit s pending s not pending					
bit 5-2	Unimplemen	ted: Read as ')'				
bit 1	TMR2IF: Time	er2 to PR2 Inte	rrupt Flag bit				
	1 = Interrupt is pending0 = Interrupt is not pending						
bit 0 TMR1IF: Timer1 Overflow Interrupt Flag b				it			
	1 = Interrupt i 0 = Interrupt i	s pending s not pending					
Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.							

REGISTER 7-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>		136	
PIE1	TMR1GIE	ADIE	_	_	_	_	TMR2IE	TMR1IE	65
PIE2	_	_	C1IE	_	_	NCO1IE	_	_	66
PIE3	_	_	_	_	_	_	CLC2IE	CLC1IE	67
PIR1	TMR1GIF	ADIF	_	_	_	_	TMR2IF	TMR1IF	68
PIR2	_	_	C1IF	_	_	NCO1IF	_	_	68
PIR3	_	_		_	_		CLC2IF	CLC1IF	70

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

8.3 Register Definitions: Voltage Regulator Control

REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1
—	—	—	—	—	—	VREGPM	Reserved
bit 7 bit 0							
L a manuali							

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

0'
(

bit 1	VREGPM: Voltage Regulator Power Mode Selection bit
	$1 \rightarrow 1$

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾ Draws lowest current in Sleep, slower wake-up
- 0 = Normal Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up
- bit 0 **Reserved:** Read as '1'. Maintain this bit set.

Note 1: PIC12F1501 only.

2: See Section 27.0 "Electrical Specifications".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
IOCAF	—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	103
IOCAN	—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	103
IOCAP	—	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	103
PIE1	TMR1GIE	ADIE	—	—	_	_	TMR2IE	TMR1IE	65
PIE2	—	—	C1IE	—	_	NCO1IE	—	—	66
PIE3	—	_	—	—	—	—	CLC2IE	CLC1IE	67
PIR1	TMR1GIF	ADIF	—	—	_	_	TMR2IF	TMR1IF	68
PIR2	—	—	C1IF	—	_	NCO1IF	—	—	67
PIR3	—	_	—	—	_	—	CLC2IF CLC1I		70
STATUS	—	—	—	TO	PD	Z	DC	С	17
WDTCON	—	_		V	SWDTEN	77			

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in Power-Down mode.

11.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. The APFCON register is shown in Register 11-1. For this device family, the following functions can be moved between different pins.

- T1G
- CLC1
- NCO1
- CWG1A
- CWG1B

11.2 Register Definitions: Alternate Pin Function Control

REGISTER 11-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER

R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
CWG1BSEL	CWG1ASEL	—	—	T1GSEL	_	CLC1SEL	NCO1SEL
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	CWG1BSEL: Pin Selection bit 1 = CWG1B function is on RA4 0 = CWG1B function is on RA0
bit 6	CWG1ASEL: Pin Selection bit 1 = CWG1A function is on RA5 0 = CWG1A function is on RA2
bit 5-4	Unimplemented: Read as '0'
bit 3	T1GSEL: Pin Selection bit1 = T1G function is on RA30 = T1G function is on RA4
bit 2	Unimplemented: Read as '0'
bit 1	CLC1SEL: Pin Selection bit 1 = CLC1 function is on RA4 0 = CLC1 function is on RA2
bit 0	NCO1SEL: Pin Selection bit 1 = NCO1 function is on RA5 0 = NCO1 function is on RA1

These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected.

15.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive

FIGURE 15-1: ADC BLOCK DIAGRAM

approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 15-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

17.4 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See **Section 27.0 "Electrical Specifications"** for more information.

17.5 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 19.5 "Timer1 Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

17.5.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from the Cx comparator can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 17-2) and the Timer1 Block Diagram (Figure 19-2) for more information.

17.6 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- CxON, CxPOL and CxSP bits of the CMxCON0
 register
- CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

Note:	Although a comparator is disabled, an
	interrupt can be generated by changing
	the output polarity with the CxPOL bit of
	the CMxCON0 register, or by switching
	the comparator on or off with the CxON bit
	of the CMxCON0 register.

17.7 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 27.0 "Electrical Specifications"** for more details.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	99	
CM1CON0	C10N	C1OUT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	131	
CM1CON1	C1NTP	C1INTN	C1PCI	H<1:0>	_		C1NCH<2:0>	•	132	
CMOUT	_	—	_	_	_	_	-	MC10UT	132	
DAC1CON0	DACEN	—	DACOE1	DACOE2	_	DACPSS	_	—	126	
DAC1CON1	_	—	_		DACR<4:0>					
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	CDAFVR<1:0> ADFVR<1:0>				
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64	
PIE2	_	—	C1IE	—		NCO1IE		_	66	
PIR2	_	—	C1IF	—	-	NCO1IF	-	_	69	
PORTA	_	—	RA5	RA4	RA3	RA2	RA1	RA0	98	
LATA	_	—	LATA5	LATA4	_	LATA2	LATA1	LATA0	99	
TRISA	_	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	98	

TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

Note 1: Unimplemented, read as '1'.

20.0 TIMER2 MODULE

The Timer2 module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match with PR2

See Figure 20-1 for a block diagram of Timer2.

FIGURE 20-1: TIMER2 BLOCK DIAGRAM

FIGURE 20-2: TIMER2 TIMING DIAGRAM

	1	Rev. 10/00020A 7/30/2013
Fosc/4		
Prescale	1:4	
PR2	0x03	
TMR2 0x00 0x01 0x02	0x03	0x00 0x01 0x02
T2_match	Pulse Width ⁽¹⁾	
Note 1: The Pulse Width of T2_match is equal to	b the scaled inpu	it of TMR2.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7			•			•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG4D4T: (Gate 4 Data 4 1	rue (non-inve	rted) bit			
	1 = lcxd4T is	gated into loxo	j4 Jova4				
hit G	0 = 100041 is	Thot gated into	ICXY4	rtad) bit			
DILO	LCXG4D4N:	Gale 4 Dala 4	negaleu (inve	ned) bli			
	0 = lcxd4N is	not gated into icx	lcxq4				
bit 5	LCxG4D3T: (Gate 4 Data 3 1	rue (non-inve	rted) bit			
	1 = Icxd3T is	gated into lcxg	j4	,			
	0 = Icxd3T is	not gated into	lcxg4				
bit 4	LCxG4D3N:	Gate 4 Data 3 I	Negated (inve	rted) bit			
	1 = Icxd3N is	gated into Icxe	94				
	0 = 1 cxd3N is	not gated into	Icxg4				
bit 3	LCxG4D21: (Jate 4 Data 2 I	rue (non-inve	rted) bit			
	$\perp = 10x021$ is 0 = 10x02T is	not gated into icxe	j4 Icxa4				
bit 2	LCxG4D2N:	Gate 4 Data 2	Negated (inve	rted) bit			
	1 = lcxd2N is	aated into Icxo	14				
	0 = lcxd2N is	not gated into	lcxg4				
bit 1	LCxG4D1T: (Gate 4 Data 1 1	rue (non-inve	rted) bit			
	1 = Icxd1T is	gated into lcxg	j 4				
	0 = Icxd1T is	not gated into	lcxg4				
bit 0	LCxG4D1N:	Gate 4 Data 1 I	Negated (inve	rted) bit			
	1 = lcxd1N is	gated into lcx	j4 Jova4				
	$\sigma = 1000 \text{ mm}$ is	not gated into	юху4				

REGISTER 22-8: CLCxGLS3: GATE 4 LOGIC SELECT REGISTER

NOTES:

27.3 DC Characteristics

TABLE 27-1: SUPPLY VOLTAGE

PIC12LF1501				Standard Operating Conditions (unless otherwise stated)					
PIC12F1	501								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
D001	Vdd	Supply Voltage							
			VDDMIN 1.8 2.5		VDDMAX 3.6 3.6	V V	Fosc ≤ 16 MHz Fosc ≤ 20 MHz		
D001			2.3 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz Fosc ≤ 20 MHz		
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾							
			1.5	_	—	V	Device in Sleep mode		
D002*			1.7	—	—	V	Device in Sleep mode		
D002A*	VPOR	Power-on Reset Release Voltage	2)						
			—	1.6	—	V			
D002A*				1.6	—	V			
D002B*	VPORR*	Power-on Reset Rearm Voltage ⁽²⁾)						
			_	0.8	—	V			
D002B*			_	1.5	—	V			
D003 VFVR Fixed Voltage Reference Voltage									
		1x gain (1.024V nominal) 2x gain (2.048V nominal) 4x gain (4.096V nominal)	-11	_	+7	%	$ \begin{array}{l} \mbox{VdD} \geq 2.5 \mbox{V}, \ -40^{\circ} \mbox{C} \leq \mbox{Ta} \leq +85^{\circ} \mbox{C} \\ \mbox{VdD} \geq 2.5 \mbox{V}, \ -40^{\circ} \mbox{C} \leq \mbox{Ta} \leq +85^{\circ} \mbox{C} \\ \mbox{VdD} \geq 4.75 \mbox{V}, \ -40^{\circ} \mbox{C} \leq \mbox{Ta} \leq +85^{\circ} \mbox{C} \\ \end{array} $		
D004*	SVDD	VDD Rise Rate ⁽²⁾	0.05	—	_	V/ms	Ensures that the Power-on Reset signal is released properly.		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 27-3, POR and POR REARM with Slow Rising VDD.

FIGURE 27-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

|--|

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.		Characteristi	c	Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High I	Pulse Width	No Prescaler	0.5 Tcy + 20		—	ns	
				With Prescaler	10	_	—	ns	
41*	TT0L	T0CKI Low F	Pulse Width	No Prescaler	0.5 Tcy + 20	_	—	ns	
				With Prescaler	10	_	—	ns	
42*	Тт0Р	T0CKI Period	đ		Greater of: 20 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value
45*	* T⊤1H T1CKI High Synchronous, No Prescal		No Prescaler	0.5 TCY + 20		—	ns		
		Time	Synchronous, with Prescaler		15		—	ns	
			Asynchronous		30	—	—	ns	
46*	T⊤1L	T1CKI Low	Synchronous, N	No Prescaler	0.5 TCY + 20	_	_	ns	
		Time	Synchronous, v	Synchronous, with Prescaler		_	_	ns	
			Asynchronous		30	_	_	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value
			Asynchronous	_	60	—	—	ns	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ec	ge to Timer	2 Tosc	—	7 Tosc	—	Timers in Sync mode

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL C

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		8	
Pitch	е	0.65 BSC		
Overall Height	A	-	-	1.10
Molded Package Thickness	A2	0.75	0.85	0.95
Standoff	A1	0.00	-	0.15
Overall Width	E	4.90 BSC		
Molded Package Width	E1	3.00 BSC		
Overall Length	D	3.00 BSC		
Foot Length	L	0.40	0.60	0.80
Footprint	L1	0.95 REF		
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.08	-	0.23
Lead Width	b	0.22	-	0.40

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or

protrusions shall not exceed 0.15mm per side. 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111C Sheet 2 of 2

8-Lead Plastic Dual Flat, No Lead Package (MC) - 2x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			1.45
Optional Center Pad Length	T2			1.75
Contact Pad Spacing	C1		2.90	
Contact Pad Width (X8)	X1			0.30
Contact Pad Length (X8)	Y1			0.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2123B