E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1501-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN+/DACOUT1/	RA0	TTL	CMOS	General purpose I/O.
CWG1B ⁽¹⁾ /CLC2IN1/PWM2/	AN0	AN	_	A/D Channel input.
ICSPDAT	C1IN+	AN	_	Comparator positive input.
	DACOUT1		AN	Digital-to-Analog Converter output.
	CWG1B	_	CMOS	CWG complementary output.
	CLC2IN1	ST		Configurable Logic Cell source input.
	PWM2	_	CMOS	Pulse Width Module source output.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RA1/AN1/VREF+/C1IN0-/	RA1	TTL	CMOS	General purpose I/O.
NCO1 ⁽¹⁾ /CLC2IN0/ICSPCLK	AN1	AN	_	A/D Channel input.
	VREF+	AN	_	A/D Positive Voltage Reference input.
	C1IN0-	AN		Comparator negative input.
	NCO1		CMOS	Numerically Controlled Oscillator output.
	CLC2IN0	ST		Configurable Logic Cell source input.
	ICSPCLK	ST		ICSP™ Programming Clock.
RA2/AN2/C1OUT/DACOUT2/	RA2	ST	CMOS	General purpose I/O.
TOCKI/INT/PWM1/CLC1 ⁽¹⁾ /	AN2	AN		A/D Channel input.
CWGTAC //CWGTFET	C10UT		CMOS	Comparator output.
	DACOUT2		AN	Digital-to-Analog Converter output.
	TOCKI	ST		Timer0 clock input.
	INT	ST		External interrupt.
	PWM1	_	CMOS	Pulse Width Module source output.
	CLC1	_	CMOS	Configurable Logic Cell source output.
	CWG1A	_	CMOS	CWG complementary output.
	CWG1FLT	ST		Complementary Waveform Generator Fault input.
RA3/CLC1IN0/VPP/T1G ⁽¹⁾ /MCLR	RA3	TTL		General purpose input.
	CLC1IN0	ST		Configurable Logic Cell source input.
	VPP	HV		Programming voltage.
	T1G	ST	—	Timer1 Gate input.
	MCLR	ST	—	Master Clear with internal pull-up.
RA4/AN3/C1IN1-/CWG1B ⁽¹⁾ /	RA4	TTL	CMOS	General purpose I/O.
CLC1 ⁽¹⁾ /PWM3/CLKOUT/T1G ⁽¹⁾	AN3	AN	—	A/D Channel input.
	C1IN1-	AN	—	Comparator negative input.
	CWG1B	—	CMOS	CWG complementary output.
	CLC1	_	CMOS	Configurable Logic Cell source output.
	PWM3	—	CMOS	Pulse Width Module source output.
	CLKOUT	—	CMOS	Fosc/4 output.
	T1G	ST	—	Timer1 Gate input.
Legend: AN = Analog input or o TTL = TTL compatible in HV = High Voltage	utput CMOS nput ST XTAL	= CMOS = Schmi = Crysta	i compatil tt Trigger I	ble input or output OD = Open Drain input with CMOS levels I ² C [™] = Schmitt Trigger input with I ² C levels

TABLE 1-2. PIC12(L)F1501 PINOUT DESCRIPTION

Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- · Automatic Interrupt Context Saving
- · 16-level Stack with Overflow and Underflow
- · File Select Registers
- Instruction Set

FIGURE 2-1: CORE BLOCK DIAGRAM

TABLE 3-3: PIC12(L)F1501 MEMORY MAP (CONTINUED)

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers (Table 3-2)	C80h	Core Registers (Table 3-2)	D00h	Core Registers (Table 3-2)	D80h	Core Registers (Table 3-2)	E00h	Core Registers (Table 3-2)	E80h	Core Registers (Table 3-2)	F00h	Core Registers (Table 3-2)	F80h	Core Registers (Table 3-2)
C0Bh		C8Bh		D0Bh		D8Bh		E0Bh		E8Bh		F0Bh		F8Bh	
C0Ch	—	C8Ch	_	D0Ch	—	D8Ch	—	E0Ch	—	E8Ch	—	F0Ch		F8Ch	
C0Dh	—	C8Dh	—	D0Dh	—	D8Dh	—	E0Dh	—	E8Dh	—	F0Dh		F8Dh	
C0Eh	_	C8Eh	—	D0Eh	_	D8Eh	_	E0Eh	_	E8Eh	—	F0Eh		F8Eh	
C0Fh	_	C8Fh	_	D0Fh	_	D8Fh	_	E0Fh	—	E8Fh	—	F0Fh		F8Fh	
C10h	_	C90h	—	D10h	_	D90h	_	E10h	_	E90h	—	F10h		F90h	
C11h	_	C91h	_	D11h	_	D91h	_	E11h	—	E91h	—	F11h		F91h	
C12h	_	C92h	_	D12h	_	D92h	_	E12h	—	E92h	—	F12h		F92h	
C13h	_	C93h	_	D13h	_	D93h	_	E13h	—	E93h	—	F13h		F93h	
C14h	_	C94h	_	D14h	_	D94h	_	E14h	—	E94h	—	F14h		F94h	
C15h	_	C95h	—	D15h	_	D95h	_	E15h	_	E95h	—	F15h		F95h	
C16h	_	C96h	_	D16h	_	D96h	_	E16h	—	E96h	—	F16h		F96h	
C17h	_	C97h	_	D17h	_	D97h	_	E17h	—	E97h	—	F17h	Soo Table 3-3 for	F97h	Soo Table 3 3 for
C18h	_	C98h	_	D18h	_	D98h	_	E18h	—	E98h	—	F18h	register mapping	F98h	register mapping
C19h	_	C99h	_	D19h	_	D99h	_	E19h	—	E99h	—	F19h	details	F99h	details
C1Ah	—	C9Ah	—	D1Ah	—	D9Ah	—	E1Ah	—	E9Ah	—	F1Ah		F9Ah	
C1Bh	_	C9Bh	—	D1Bh	_	D9Bh	_	E1Bh	_	E9Bh	—	F1Bh		F9Bh	
C1Ch	_	C9Ch	—	D1Ch	_	D9Ch	_	E1Ch	_	E9Ch	—	F1Ch		F9Ch	
C1Dh	_	C9Dh	_	D1Dh	_	D9Dh	_	E1Dh	—	E9Dh	—	F1Dh		F9Dh	
C1Eh	_	C9Eh	_	D1Eh	_	D9Eh	_	E1Eh	—	E9Eh	—	F1Eh		F9Eh	
C1Fh	_	C9Fh	—	D1Fh	_	D9Fh	—	E1Fh	_	E9Fh	—	F1Fh		F9Fh	
C20h		CA0h		D20h		DA0h		E20h		EA0h		F20h		FA0h	
	Unimplemented Read as '0'														
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h CFFh	Common RAM (Accesses 70h – 7Fh)	CF0h CFFh	Common RAM (Accesses 70h – 7Fh)	D70h D7Fh	Common RAM (Accesses 70h – 7Fh)	DF0h DFFh	Common RAM (Accesses 70h – 7Fh)	E70h E7Fh	Common RAM (Accesses 70h – 7Fh)	EF0h EFFh	Common RAM (Accesses 70h – 7Fh)	F70h F7Fh	Common RAM (Accesses 70h – 7Fh)	FF0h FFFh	Common RAM (Accesses 70h – 7Fh)

Legend: = Unimplemented data memory locations, read as '0'.

3.3.6 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-4 can be addressed from any Bank.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	0-31										
x00h or x80h	INDF0	Addressing (not a phys	dressing this location uses contents of FSR0H/FSR0L to address data memory xxxx xxxx uuuu uuuu							uuuu uuuu	
x01h or x81h	INDF1	Addressing (not a phys	this location	uses conte	nts of FSR1H	/FSR1L to a	ddress data i	memory		xxxx xxxx	uuuu uuuu
x02h or x82h	PCL	Program C	ounter (PC)	Least Signifi	cant Byte					0000 0000	0000 0000
x03h or x83h	STATUS	—	—		TO	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	Indirect Da	Indirect Data Memory Address 0 Low Pointer							0000 0000	uuuu uuuu
x05h or x85h	FSR0H	Indirect Da	ta Memory A	ddress 0 Hig	gh Pointer					0000 0000	0000 0000
x06h or x86h	FSR1L	Indirect Da	ta Memory A	ddress 1 Lo	w Pointer					0000 0000	uuuu uuuu
x07h or x87h	FSR1H	Indirect Da	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000
x08h or x88h	BSR	—	—				BSR<4:0>			0 0000	0 0000
x09h or x89h	WREG	Working Re	Working Register							0000 0000	uuuu uuuu
x0Ahor x8Ah	PCLATH	_	Write Buffer	for the upp	er 7 bits of the	e Program Co	ounter			-000 0000	-000 0000
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

TABLE 3-4: CORE FUNCTION REGISTERS SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

IADEE	<u> </u>										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 1	0		•							•	
50Ch to 51Fh	_	Unimplemen	ted							_	_
Bank 1	1										
58Ch to 59Fh	_	Unimplemen	nimplemented							_	
Bank 1	2										
60Ch to 610h	_	Unimplemen	nimplemented							_	_
611h	PWM1DCL	PWM1D	CL<7:6>	—	—	—	—	—	—	00	00
612h	PWM1DCH				PWM1	DCH<7:0>				xxxx xxxx	uuuu uuuu
613h	PWM1CON0	PWM1EN	PWM10E	PWM10UT	PWM1POL		_			0000	0000
614h	PWM2DCL	PWM2DCL<7:6>					00	00			
615h	PWM2DCH	PWM2DCH<7:0>						xxxx xxxx	uuuu uuuu		
616h	PWM2CON0	PWM2EN	PWM2OE	PWM2OUT	PWM2POL		_			0000	0000
617h	PWM3DCL	PWM3DCL<7:6>					00	00			
618h	PWM3DCH				PWM3	DCH<7:0>				xxxx xxxx	uuuu uuuu
619h	PWM3CON0	PWM3EN	PWM3OE	PWM3OUT	PWM3POL	-	—	—	_	0000	0000
61Ah	PWM4DCL	PWM4D	CL<7:6>	—	—	-	—	—	_	00	00
61Bh	PWM4DCH				PWM4	DCH<7:0>				xxxx xxxx	uuuu uuuu
61Ch	PWM4CON0	PWM4EN	PWM4OE	PWM4OUT	PWM4POL	—	—	—	—	0000	0000
61Dh to 61Fh	_	Unimplemen	Unimplemented — —						-		
Bank 1	3										
68Ch to 690h	_	Unimplemen	ted							_	_
691h	CWG1DBR	_	_			CWG1	DBR<5:0>			00 0000	00 0000
692h	CWG1DBF	—	—			CWG1	DBF<5:0>			xx xxxx	xx xxxx
693h	CWG1CON0	G1EN	G10EB	G10EA	G1POLB	G1POLA	—	—	G1CS0	0000 00	0000 00
694h	CWG1CON1	G1ASD	LB<1:0>	G1ASD	LA<1:0>	_		G1IS<2:0>		0000 -000	0000 -000
695h	CWG1CON2	G1ASE	G1ARSEN	—	—	—	G1ASDSC1	G1ASDSFLT	G1ASDSCLC2	00000	00000
696h to 69Fh	—	Unimplemen	ted							-	-

TABLE 3-5 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. PIC12F1501 only. Unimplemented, read as '1'. Legend: Note 1: 1: 2:

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

6.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON register bits are shown in Register 6-2.

6.14 Register Definitions: Power Control

REGISTER 6-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:						
HC = Bit is cleared by hardw	are	HS = Bit is set by hardware				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition				

bit 7	STKOVF: Stack Overflow Flag bit
	1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or cleared by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or cleared by firmware
bit 5	Unimplemented: Read as '0'
bit 4	RWDT: Watchdog Timer Reset Flag bit
	1 = A Watchdog Timer Reset has not occurred or set by firmware
	0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A $\overline{\text{MCLR}}$ Reset has not occurred or set by firmware
	0 = A MCLR Reset has occurred (cleared by hardware)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or set by firmware
	0 = A RESET instruction has been executed (cleared by hardware)
bit 1	POR: Power-On Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-Out Reset Status bit
	1 = No Brown-out Reset occurred
	 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

15.3 Register Definitions: ADC Control

REGISTER 15-1: ADCON0: ADC CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
_			CHS<4:0>			GO/DONE	ADON		
bit 7							bit 0		
Legend:									
R = Reada	ıble bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'			
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	DR/Value at all o	other Resets			
'1' = Bit is :	set	'0' = Bit is cle	ared						
bit 7	Unimpleme	nted: Read as '	0'						
bit 6-2	CHS<4:0>:	Analog Channel	Select bits						
	00000 = AN	10							
	00001 = AN	N1							
	00010 = AP	N2							
	00011 = Ar	NO Served No cha	nnel connecte	d					
	•			u.					
	•								
	•								
	11100 = Re	eserved. No cha	nnel connecte	d.					
	11101 = Te	mperature Indica	ator ⁽¹⁾	(2)					
	11110 = DA	C (Digital-to-An	alog Converte	r)(3)	2)				
	11111 = FV	R (Fixed Voltage	e Reference) E		_)				
bit 1	GO/DONE:	ADC Conversion	n Status bit						
	1 = ADC col	nversion cycle ir	n progress. Se	tting this bit sta	rts an ADC co	nversion cycle.			
		s automatically	cleared by har	dware when the	e ADC convers	sion has comple	eted.		
		0 = ADC conversion completed/not in progress							
bit 0		Enable bit							
	1 = ADC is c	disabled and cor		erating current					
Note 1.	See Section 14		Indicator Me	dule" for more	information				
1101E 1. 2.	See Section 13	0 "Fixed Voltage	- Reference	(EVR)" for more	information				
2.	Occ Section 13.					a a na infanna atian	_		

3: See Section 16.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information.

REGISTER 15-6:	ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1
----------------	--

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
—	—	—	_	—	—	ADRE	S<9:8>		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unkr	iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-2 **Reserved**: Do not use.

bit 1-0	ADRES<9:8>: ADC Result Register bits
	Upper two bits of 10-bit conversion result

REGISTER 15-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
ADRES<7:0>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight bits of 10-bit conversion result

22.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- Data selection
- Data gating
- · Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

22.1.1 DATA SELECTION

There are 16 signals available as inputs to the configurable logic. Four 8-input multiplexers are used to select the inputs to pass on to the next stage. The 16 inputs to the multiplexers are arranged in groups of four. Each group is available to two of the four multiplexers, in each case, paired with a different group. This arrangement makes possible selection of up to two from a group without precluding a selection from another group.

Data selection is through four multiplexers as indicated on the left side of Figure 22-2. Data inputs in the figure are identified by a generic numbered input name.

Table 22-1 correlates the generic input name to the actual signal for each CLC module. The columns labeled lcxd1 through lcxd4 indicate the MUX output for the selected data input. D1S through D4S are abbreviations for the MUX select input codes: LCxD1S<2:0> through LCxD4S<2:0>, respectively. Selecting a data input in a column excludes all other inputs in that column.

Data inputs are selected with CLCxSEL0 and CLCxSEL1 registers (Register 22-3 and Register 22-5, respectively).

Note: Data selections are undefined at power-up.

Data Input	lcxd1 D1S	lcxd2 D2S	lcxd3 D3S	lcxd4 D4S	CLC 1	CLC 2
LCx_in[0]	000		_	100	CLC1IN0	CLC2IN0
LCx_in[1]	001	_	_	101	CLC1IN1	CLC2IN1
LCx_in[2]	010	_	_	110	C1OUT_sync	C1OUT_sync
LCx_in[3]	011	_	_	111	Reserved	Reserved
LCx_in[4]	100	000	_	—	Fosc	Fosc
LCx_in[5]	101	001	_	—	T0_overflow	T0_overflow
LCx_in[6]	110	010	_	—	T1_overflow	T1_overflow
LCx_in[7]	111	011	_	—	T2_match	T2_match
LCx_in[8]	—	100	000	—	LC1_out	LC1_out
LCx_in[9]	_	101	001	—	LC2_out	LC2_out
LCx_in[10]	—	110	010	—	Reserved	Reserved
LCx_in[11]	—	111	011	—	Reserved	Reserved
LCx_in[12]	_	_	100	000	NCO1_out	LFINTOSC
LCx_in[13]	_	_	101	001	HFINTOSC	FRC
LCx_in[14]	_	_	110	010	PWM3_out	PWM1_out
LCx_in[15]	_	_	111	011	PWM4_out	PWM2_out

TABLE 22-1: CLCx DATA INPUT SELECTION

FIGURE 22-3: PROGRAMMABLE LOGIC FUNCTIONS

	11.0	11.0	11.0				
	0-0	0-0	0-0				
LCXPOL				LCXG4POL	LCXG3POL	LCXG2POL	LCXG1POL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxPOL: LCO	OUT Polarity C	ontrol bit				
	1 = The outp	ut of the loaic o	ell is inverted	ł			
	0 = The outp	ut of the logic of	ell is not inve	erted			
bit 6-4	Unimplemen	ted: Read as '	0'				
bit 3	LCxG4POL:	Gate 4 Output	Polarity Cont	rol bit			
	1 = The outp	ut of gate 4 is i	nverted wher	n applied to the	logic cell		
	0 = The outp	ut of gate 4 is r	not inverted				
bit 2	LCxG3POL:	Gate 3 Output	Polarity Cont	rol bit			
	1 = The outp	ut of gate 3 is i	nverted wher	applied to the	logic cell		
	0 = The outp	ut of gate 3 is r	not inverted				
bit 1	LCxG2POL:	Gate 2 Output	Polarity Cont	rol bit			
	1 = The outp	ut of gate 2 is i	nverted wher	n applied to the	logic cell		
	0 = The outp	ut of gate 2 is r	not inverted				
bit 0	LCxG1POL:	Gate 1 Output	Polarity Cont	rol bit			
	1 = The outp	ut of gate 1 is i	nverted wher	n applied to the	logic cell		
	0 = The outp	ut of gate 1 is r	not inverted				

REGISTER 22-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER

REGISTER 22-9: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0		
—	—	—	_	—	—	MLC2OUT	MLC1OUT		
bit 7	-						bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-2	Unimplement	ed: Read as '0'							

bit 1	MLC2OUI: Mirror co	py of LC2OUT bit

bit 0 MLC1OUT: Mirror copy of LC1OUT bit

REGISTER 23-6: NCOxINCL: NCOx INCREMENT REGISTER – LOW BYTE⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1				
	NCOxINC<7:0>										
bit 7							bit 0				

Legend:

Logonan		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<7:0>: NCOx Increment, Low Byte

Note 1: Write the NCOxINCH register first, then the NCOxINCL register. See 23.1.4 "Increment Registers" for more information.

REGISTER 23-7: NCOxINCH: NCOx INCREMENT REGISTER – HIGH BYTE⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
	NCOxINC<15:8>										
bit 7							bit 0				

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<15:8>: NCOx Increment, High Byte

Note 1: Write the NCOxINCH register first, then the NCOxINCL register. See 23.1.4 "Increment Registers" for more information.

TABLE 23-1:	SUMMARY OF REGISTERS ASSOCIATED WITH NCOX
-------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	CWG1BSEL	CWGA1SEL	_	_	T1GSEL	_	CLC1SEL	NCO1SEL	96
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
NCO1ACCH	NCO1ACC<15:8>								178
NCO1ACCL	NCO1ACC<7:0>							178	
NCO1ACCU	_				NCO1ACC<19:16>				178
NCO1CLK		N1PWS<2:0>		_	_	_	N1CK	177	
NCO1CON	N1EN	N10E	N1OUT	N1POL	-	-	-	N1PFM	177
NCO1INCH				NCO1IN	C<15:8>				179
NCO1INCL				NCO1IN	IC<7:0>				179
PIE2	_	_	C1IE			NCO1IE		_	66
PIR2	_	_	C1IF	_	_	NCO1IF	_	_	69
TRISA	_	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	98

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', g = value depends on condition. Shaded cells are not used for NCOx module.

Note 1: Unimplemented, read as '1'.

TABLE 27-9:	CLKOUT	AND I/O	TIMING	PARAMETERS
-------------	--------	---------	--------	------------

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	—	70	ns	$3.3V \le V\text{DD} \le 5.0V$
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—	—	72	ns	$3.3V \le V\text{DD} \le 5.0V$
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	—	20	ns	
OS14	TioV2ckH	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	_	_	ns	
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	$3.3V \le V\text{DD} \le 5.0V$
OS16	TosH2ioI	Fosc↑ (Q2 cycle) to Port input invalid (I/O in setup time)	50	_	—	ns	$3.3V \le V\text{DD} \le 5.0V$
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	—	—	ns	
OS18*	TioR	Port output rise time	—	40	72	ns	VDD = 1.8V
			_	15	32		$3.3V \le V\text{DD} \le 5.0V$
OS19*	TioF	Port output fall time	—	28	55	ns	VDD = 1.8V
			—	15	30		$3.3V \le V\text{DD} \le 5.0V$
OS20*	Tinp	INT pin input high or low time	25			ns	
OS21*	Tioc	Interrupt-on-change new input level time	25			ns	

* These parameters are characterized but not tested.

 \dagger Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EXTRC mode where CLKOUT output is 4 x Tosc.

FIGURE 27-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

|--|

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High I	Pulse Width	No Prescaler	0.5 Tcy + 20			ns	
				With Prescaler	10	_	_	ns	
41*	TT0L	T0CKI Low F	Pulse Width	No Prescaler	0.5 Tcy + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
42*	Тт0Р	T0CKI Period	1		Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value
45* T⊤1H		T1CKI High	Synchronous, No Prescaler		0.5 TCY + 20			ns	
		Time	Synchronous, with Prescaler		15			ns	
Asyncl		Asynchronous		30	_	_	ns		
46* T⊤1L		T1CKI Low	Synchronous, No Prescaler		0.5 TCY + 20	_	_	ns	
		Time	Synchronous, with Prescaler		15	_	_	ns	
			Asynchronous		30	_		ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value
			Asynchronous		60	—	—	ns	
49*	TCKEZTMR1	Delay from E Increment	External Clock Edge to Timer		2 Tosc	_	7 Tosc	—	Timers in Sync mode

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 28-25: IPD, FIXED VOLTAGE REFERENCE (FVR), PIC12LF1501 ONLY

TABLE 30-1:8-LEAD 2x3 DFN (MC) TOP
MARKING

Part Number	Marking
PIC12F1501-E/MC	BAK
PIC12F1501-I/MC	BAL
PIC12LF1501-E/MC	BAM
PIC12LF1501-I/MC	BAP

TABLE 30-2:8-LEAD 3x3 DFN (MF) TOP
MARKING

Part Number	Marking
PIC12F1501-E/MF	MFA1
PIC12F1501-I/MF	MFB1
PIC12LF1501-E/MF	MFC1
PIC12LF1501-I/MF	MFD1

TABLE 30-3:8-LEAD 2X3 UDFN (MU) TOP
MARKING

Part Number	Marking
PIC12F1501-E/MU	BAR
PIC12F1501-I/MU	BAQ
PIC12LF1501-E/MU	BAT
PIC12LF1501-I/MU	BAS

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N		8				
Pitch	е		1.27 BSC				
Overall Height	Α	-	-	1.75			
Molded Package Thickness	A2	1.25	-	-			
Standoff §	A1	0.10	-	0.25			
Overall Width	Е	6.00 BSC					
Molded Package Width	E1	3.90 BSC					
Overall Length	D	4.90 BSC					
Chamfer (Optional)	h	0.25	-	0.50			
Foot Length	L	0.40	-	1.27			
Footprint L1		1.04 REF					
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.17	-	0.25			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-057C Sheet 2 of 2