

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	·
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1501t-i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC12(L)F1501 PINOUT DESCRIPTION (CONTINUED) **TABLE 1-2:**

Name	Function	Input Type	Output Type	Description
RA5/CLKIN/T1CKI/CWG1A ⁽¹⁾ /	RA5	TTL	CMOS	General purpose I/O.
NCO1 ⁽¹⁾ /NCO1CLK/CLC1IN1/	CLKIN	CMOS	_	External clock input (EC mode).
CLC2/PWM4	T1CKI	ST		Timer1 clock input.
	CWG1A	_	CMOS	CWG complementary output.
	NCO1	ST	_	Numerically Controlled Oscillator output.
	NCO1CLK	ST		Numerically Controlled Oscillator Clock source input.
	CLC1IN1	ST	_	Configurable Logic Cell source input.
	CLC2	_	CMOS	Configurable Logic Cell source output.
	PWM4	_	CMOS	Pulse Width Module source output.
VDD	Vdd	Power		Positive supply.
Vss	Vss	Power	_	Ground reference.

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I²C[™] = Schmitt Trigger input with I²C levels

HV = High Voltage XTAL = Crystal

Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.

TABLE 3-5: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

IABLE	3-5. 3	PECIAL F		N REGIS	IER SUI		CONTIN				T
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 4											
20Ch	WPUA	—	—	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	11 1111	11 1111
20Dh to 21Fh	_	Unimplemen	ted							_	_
Bank 5											•
28Ch to 29Fh	_	Unimplemen	ted							_	_
Bank 6	;										
30Ch to 31Fh	_	Unimplemen	ted							_	_
Bank 7	,										
38Ch to 390h	_	Unimplemen	ted							_	_
391h	IOCAP	—		IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
392h	IOCAN	—		IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
393h	IOCAF	—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
394h to 39Fh	_	Unimplemen	ted							_	_
Bank 8	1										
40Ch to 41Fh	_	Unimplemen	ted							_	_
Bank 9											
48Ch to 497h	_	Unimplemen	Jnimplemented							_	_
498h	NCO1ACCL				NCO1	ACC<7:0>				0000 0000	0000 0000
499h	NCO1ACCH				NCO1A	CC<15:8>				0000 0000	0000 0000
49Ah	NCO1ACCU				NCO1A	CC<19:16>				0000 0000	0000 0000
49Bh	NCO1INCL					INC<7:0>				0000 0001	0000 0001
49Ch	NCO1INCH				NCO1I	NC<15:8>				0000 0000	0000 0000
49Dh	-	Unimplemen			1					-	—
49Eh	NCO1CON	N1EN	N10E	N1OUT	N1POL	—	—	—	N1PFM		00000
49Fh	NCO1CLK		N1PWS<2:0>		—	—	—	N1Ck	(S<1:0>	000000	000000

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC12F1501 only.

 2:
 Unimplemented, read as '1'.

DS40001615C-page 26

4.0 DEVICE CONFIGURATION

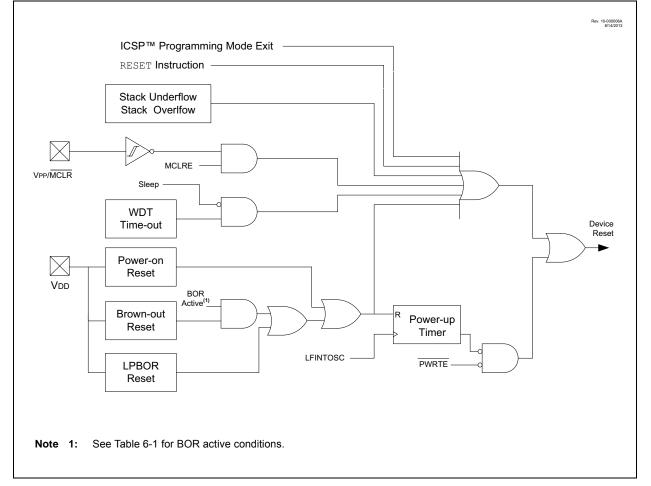
Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

6.0 RESETS


There are multiple ways to reset this device:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Low-Power Brown-out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- Stack Underflow
- Programming mode exit

To allow VDD to stabilize, an optional power-up timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-chip Reset Circuit is shown in Figure 6-1.

Fosc	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	___ Q1 Q2 Q3 Q4		Q1 Q2 Q3 Q4		Q1 Q2 Q3 Q4	NNN
			Interru during	pt Sampled Q1				
Interrupt								
GIE								
PC	PC-1	PC	PC	+1	0004h	0005h		(
Execute	1-Cycle Instr	uction at PC	Inst(PC)	NOP	NOP	Inst(0004h)		
Interrupt								
GIE								
PC	PC-1	PC	PC+1/FSR ADDR	New PC/ PC+1	0004h	0005h		/
Execute-	2-Cycle Instr	uction at PC	Inst(PC)	NOP	NOP	Inst(0004h)		
Interrupt								
GIE								
PC	PC-1	PC	FSR ADDR	PC+1	PC+2	0004h	0005h	
Execute	3-Cycle Instr	ruction at PC	INST(PC)	NOP	NOP	NOP	Inst(0004h)	Inst(0005h)
Interrupt								
GIE								
PC	PC-1	PC	FSR ADDR	PC+1	Р	C+2	0004h	0005h
Execute	3-Cycle Instr	uction at PC	INST(PC)	NOP	NOP	NOP	NOP	Inst(0004h)

11.0	U-0		U-0	11.0		11.0	11.0
U-0	0-0	R/W-0/0	0-0	U-0	R/W-0/0	U-0	U-0
_		C1IF	—		NCO1IF		
bit 7							bit 0
Legend:							
R = Read	abla hit	W = Writable	hit	II – Unimplor	nented bit, read	ac '0'	
				•	,		
u = Bit is i	unchanged	x = Bit is unkn	iown	-n/n = Value a	at POR and BOF	R/Value at all c	ther Resets
'1' = Bit is	set	'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as ')'				
bit 5	C1IF: Compa	rator C1 Interru	pt Flag bit				
	1 = Interrupt i	s pending					
	0 = Interrupt i	s not pending					
bit 4-3	Unimplemen	ted: Read as 'd)'				
bit 2	NCO1IF: Nun	nerically Contro	lled Oscillato	or Flag bit			
	1 = Interrupt i	•		5			
		s not pending					
bit 1-0	Unimplemen	ted: Read as ')'				
Note:	Interrupt flag bits a						
	condition occurs, re						
	its corresponding e Interrupt Enable b						
	register. User soft						
	appropriate interru						
	to enabling an inter						

REGISTER 7-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

19.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 19-1 displays the Timer1 enable selections.

TABLE 19-1:	TIMER1 ENABLE
	SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

19.2 Clock Source Selection

The TMR1CS<1:0> bits of the T1CON register are used to select the clock source for Timer1. Table 19-2 displays the clock source selections.

19.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1 gate
- · C1 or C2 comparator input to Timer1 gate

19.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI. The external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

Note: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:

- · Timer1 enabled after POR
- Write to TMR1H or TMR1L
- · Timer1 is disabled
- Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TABLE 19-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0>	Clock Source
11	LFINTOSC
10	External Clocking on T1CKI Pin
01	System Clock (Fosc)
00	Instruction Clock (Fosc/4)

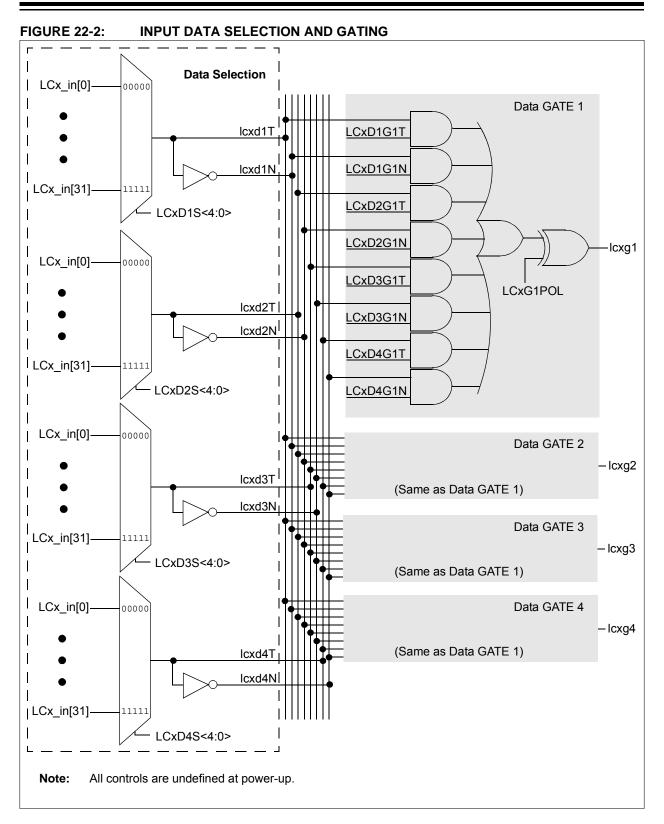

20.0 TIMER2 MODULE

The Timer2 module incorporates the following features:

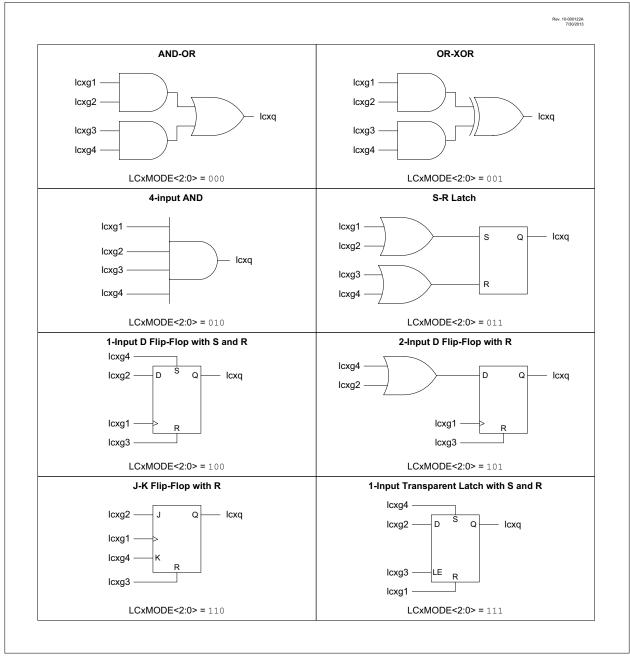
- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match with PR2

See Figure 20-1 for a block diagram of Timer2.

FIGURE 20-1: TIMER2 BLOCK DIAGRAM


FIGURE 20-2: TIMER2 TIMING DIAGRAM

	1	Rev. 10/00020A 7/30/2013
Fosc/4		
Prescale	1:4	
PR2	0x03	
TMR2 0x00 0x01 0x02	0x03	0x00 0x01 0x02
T2_match	Pulse Width ⁽¹⁾	
Note 1: The Pulse Width of T2_match is equal to	b the scaled inpu	it of TMR2.


21.1.9 SETUP FOR PWM OPERATION USING PWMx PINS

The following steps should be taken when configuring the module for PWM operation using the PWMx pins:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- 4. Clear the PWMxDCH register and bits <7:6> of the PWMxDCL register.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output pin and wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See note below.
- 7. Enable the PWMx pin output driver(s) by clearing the associated TRIS bit(s) and setting the PWMxOE bit of the PWMxCON register.
- 8. Configure the PWM module by loading the PWMxCON register with the appropriate values.
 - Note 1: In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then move Step 8 to replace Step 4.
 - **2:** For operation with other peripherals only, disable PWMx pin outputs.

FIGURE 22-3: PROGRAMMABLE LOGIC FUNCTIONS

U-0	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u			
_		LCxD4S<2:0>(1)		—	L	_CxD3S<2:0> ⁽¹⁾)			
bit 7	•			·			bit (
Legend:										
R = Readab	le bit	W = Writable k	bit	U = Unimplei	mented bit, read	d as '0'				
u = Bit is un	changed	x = Bit is unkn	own	-n/n = Value	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is se	et	'0' = Bit is clea	ired							
bit 7	Unimplem	ented: Read as '0)'							
bit 6-4	LCxD4S<2	::0>: Input Data 4	Selection Co	ntrol bits ⁽¹⁾						
	111 = LCx	111 = LCx_in[3] is selected for lcxd4								
		110 = LCx_in[2] is selected for lcxd4								
		_in[1] is selected								
		_in[0] is selected								
		_in[15] is selected								
		010 = LCx_in[14] is selected for lcxd4 001 = LCx in[13] is selected for lcxd4								
		in[12] is selected								
bit 3		ented: Read as '0								
bit 2-0	LCxD3S<2	::0>: Input Data 3	Selection Co	ntrol bits ⁽¹⁾						
	$111 = LCx_in[15]$ is selected for lcxd3									
	$110 = LCx_in[14]$ is selected for lcxd3									
	101 = LCx_in[13] is selected for lcxd3									
	100 = LCx_in[12] is selected for lcxd3									
	011 = LCx_in[11] is selected for lcxd3									
		_in[10] is selected								
		_in[9] is selected i								
	000 = LCx	_in[8] is selected								

REGISTER 22-4: CLCxSEL1: MULTIPLEXER DATA 3 AND 4 SELECT REGISTER

Note 1: See Table 22-1 for signal names associated with inputs.

FIGURE 26-1: GENERAL FORMAT FOR INSTRUCTIONS

13	3 8 7 6 0 OPCODE d f (FILE #) 1
	d = 0 for destination W
	d = 1 for destination f f = 7-bit file register address
Bit- 0	oriented file register operations 3 10 9 7 6 0
Γ	OPCODE b (BIT #) f (FILE #)
	b = 3-bit bit address f = 7-bit file register address
Lite	ral and control operations
	leral
13	
	OPCODE k (literal)
	k = 8-bit immediate value
CAL	L and GOTO instructions only
13	
	OPCODE k (literal)
	k = 11-bit immediate value
MOV	LP instruction only
13	
	OPCODE k (literal)
	k = 7-bit immediate value
MOV	LB instruction only
13	3 5 4 0
	OPCODE k (literal)
	k = 5-bit immediate value
BRA	instruction only
1:	<u>3 98</u> 0
	OPCODE k (literal)
	k = 9-bit immediate value
FSR	Offset instructions
13	3 7 6 5 0
	OPCODE n k (literal)
	n = appropriate FSR k = 6-bit immediate value
FSR 13	Increment instructions 3 3 2 1 0
	OPCODE n m (mode
	n = appropriate FSR m = 2-bit mode value
OP(13	CODE only 3 0

Mnen	nonic,	Description	Cycles		14-Bit	Opcode)	Status	Notes
Oper	Description		Cycles	MSb			LSb	Affected	Notes
		CONTROL OPER	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	-	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	_	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
			TIONS						
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	_	No Operation	1	00	0000	0000	0000		
OPTION	_	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	_	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm					kkkk		
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	1nmm	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	kkkk		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk			2

TABLE 26-3: ENHANCED MID-RANGE INSTRUCTION SET (CONTINUED)

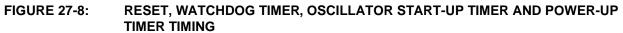
Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

PIC12LF1501 PIC12F1501		Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode Low-Power Sleep Mode, VREGPM = 1							
No.	Vdd	Note							
D026		—	0.11	1.5	9.0	μA	1.8	ADC Current (Note 3),	
		_	0.12	2.7	12	μA	3.0	No conversion in progress	
D026		_	0.30	4.0	11	μA	2.3	ADC Current (Note 3),	
			0.35	5.0	13	μA	3.0	No conversion in progress	
			0.45	8.0	16	μA	5.0		
D026A*			250	_	_	μA	1.8	ADC Current (Note 3),	
			250	—	—	μA	3.0	Conversion in progress	
D026A*			280			μA	2.3	ADC Current (Note 3),	
			280	—	—	μA	3.0	Conversion in progress	
			280			μA	5.0		
D027		_	7	22	25	μA	1.8	Comparator,	
		_	8	23	27	μA	3.0	CxSP = 0	
D027			17	35	37	μA	2.3	Comparator,	
			18	37	38	μA	3.0	CxSP = 0	
			19	38	40	μA	5.0		

TABLE 27-3: POWER-DOWN CURRENTS (IPD)^(1,2) (CONTINUED)


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral ∆ current can be determined by subtracting the base IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.

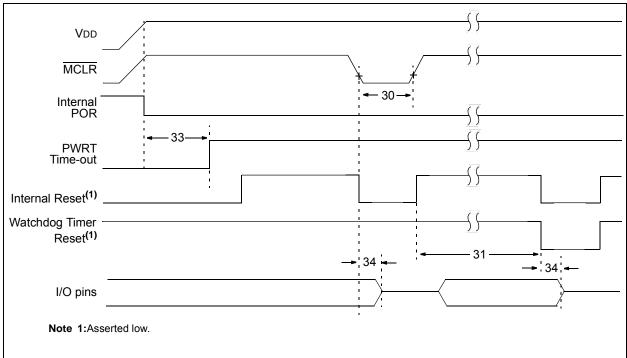


FIGURE 28-3: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, Fosc = 500 kHz, PIC12LF1501 ONLY

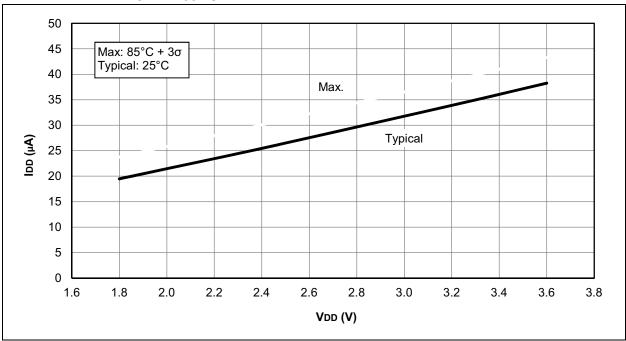
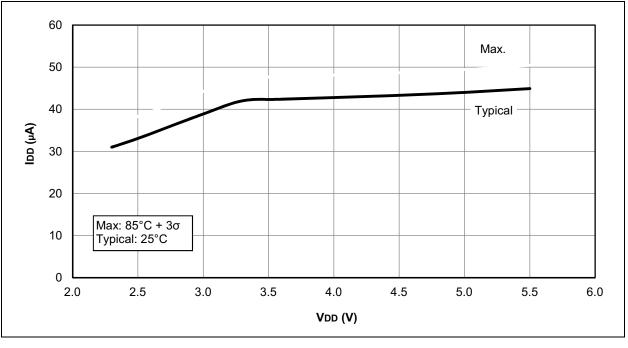
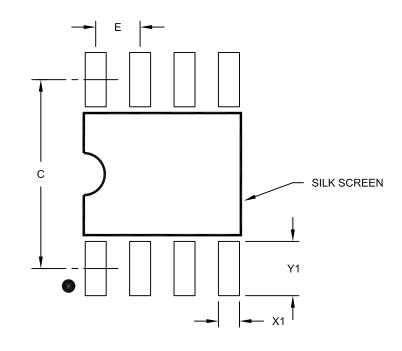




FIGURE 28-4: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, Fosc = 500 kHz, PIC12F1501 ONLY

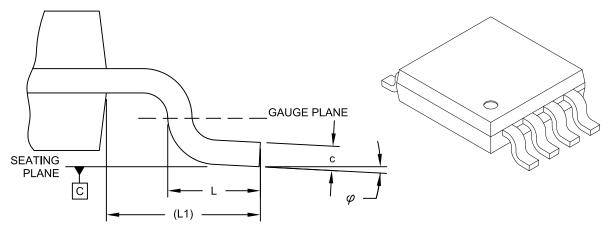
8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		5.40		
Contact Pad Width (X8)	X1			0.60	
Contact Pad Length (X8)	Y1			1.55	

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL C

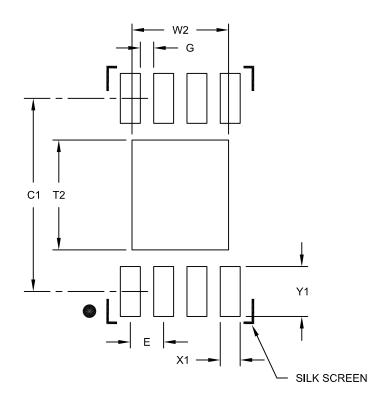
	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N		8		
Pitch	е		0.65 BSC		
Overall Height	A	-	-	1.10	
Molded Package Thickness	A2	0.75	0.85	0.95	
Standoff	A1	0.00	-	0.15	
Overall Width	E	E 4.90 BSC			
Molded Package Width	E1	3.00 BSC			
Overall Length	D	3.00 BSC			
Foot Length	L	0.40	0.60	0.80	
Footprint	L1	0.95 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.08	-	0.23	
Lead Width	b	0.22	-	0.40	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or

protrusions shall not exceed 0.15mm per side. 3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111C Sheet 2 of 2

8-Lead Plastic Dual Flat, No Lead Package (MC) - 2x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			MILLIMETERS			
Dimension Limits		MIN	NOM	MAX			
Contact Pitch	E		0.50 BSC				
Optional Center Pad Width	W2			1.45			
Optional Center Pad Length	T2			1.75			
Contact Pad Spacing	C1		2.90				
Contact Pad Width (X8)	X1			0.30			
Contact Pad Length (X8)	Y1			0.75			
Distance Between Pads	G	0.20					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2123B