

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UQFN Exposed Pad
Supplier Device Package	16-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1824-e-jq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC16(L)F1828 PINOUT DESCRIPTION

Name	Function	Input	Output	Description
Naille	Tunction	Туре	Туре	Description
RA0/AN0/CPS0/C1IN+/VREF-/	RA0	TTL	CMOS	General purpose I/O.
DACOUT/ICSPDAT/ICDDAT	AN0	AN	_	A/D Channel 0 input.
	CPS0	AN		Capacitive sensing input 0.
	C1IN+	AN	—	Comparator C1 positive input.
	VREF-	AN	_	A/D and DAC Negative Voltage Reference input.
	DACOUT		AN	Digital-to-Analog Converter output.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
	ICDDAT	ST	CMOS	In-Circuit Data I/O.
RA1/AN1/CPS1/C12IN0-/VREF+/	RA1	TTL	CMOS	General purpose I/O.
SRI/ICSPCLK/ICDCLK	AN1	AN		A/D Channel 1 input.
	CPS1	AN		Capacitive sensing input 1.
	C12IN0-	AN		Comparator C1 or C2 negative input.
	VREF+	AN		A/D and DAC Positive Voltage Reference input.
	SRI	ST		SR latch input.
	ICSPCLK	ST		Serial Programming Clock.
	ICDCLK	ST		In-Circuit Debug Clock.
RA2/AN2/CPS2/T0CKI/INT/	RA2	ST	CMOS	General purpose I/O.
C1OUT/SRQ/CCP3/FLT0	AN2	AN		A/D Channel 2 input.
	CPS2	AN		Capacitive sensing input 2.
	TOCKI	ST		Timer0 clock input.
	INT	ST		External interrupt.
	C10UT	_	CMOS	Comparator C1 output.
	SRQ	_	CMOS	SR latch non-inverting output.
	CCP3	ST	CMOS	Capture/Compare/PWM3.
	FLT0	ST		ECCP Auto-Shutdown Fault input.
RA3/T1G ⁽¹⁾ /VPP/MCLR	RA3	TTL		General purpose input.
	T1G	ST		Timer1 Gate input.
	VPP	ΗV		Programming voltage.
	MCLR	ST		Master Clear with internal pull-up.
RA4/AN3/CPS3/OSC2/	RA4	TTL	CMOS	General purpose I/O.
CLKOUT/T1OSO/CLKR/P2B ⁽¹⁾ / T1G ^(1,2)	AN3	AN	_	A/D Channel 3 input.
116(.,-)	CPS3	AN		Capacitive sensing input 3.
	OSC2	_	CMOS	Comparator C2 output.
	CLKOUT	_	CMOS	Fosc/4 output.
	T10S0	XTAL	XTAL	Timer1 oscillator connection.
	CLKR	—	CMOS	Clock Reference output.
	P2B	—	CMOS	PWM output.
	T1G	ST	—	Timer1 Gate input.

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain

TTL = TTL compatible inputST= Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C HV = High VoltageXTAL = Crystallevels

Note 1: Pin functions can be moved using the APFCONO and APFCON1 registers (Register 12-1 and Register 12-2).
2: Default function location.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3	3										
180h ⁽¹⁾	INDF0	Addressing th (not a physic		es contents of	FSR0H/FSR0	L to address	data memory	1		XXXX XXXX	XXXX XXXX
181h ⁽¹⁾	INDF1	Addressing the (not a physic)		es contents of	FSR1H/FSR1	L to address	data memory	1		XXXX XXXX	XXXX XXXX
182h ⁽¹⁾	PCL	Program Cou	inter (PC) Lea	st Significant E	Byte					0000 0000	0000 0000
183h ⁽¹⁾	STATUS	_	—	—	TO	PD	Z	DC	С	1 1000	q quuu
184h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poir	nter					0000 0000	uuuu uuuu
185h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Poi	inter					0000 0000	0000 0000
186h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu
187h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	inter					0000 0000	0000 0000
188h ⁽¹⁾	BSR	_	—	—			BSR<4:0>			0 0000	0 0000
189h ⁽¹⁾	WREG	Working Reg	ister							0000 0000	uuuu uuuu
18Ah ⁽¹⁾	PCLATH	_	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	r			-000 0000	-000 0000
18Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 000x	0000 000u
18Ch	ANSELA	_	_	_	ANSA4	_	ANSA2	ANSA1	ANSA0	1 -111	1 -111
18Dh	ANSELB ⁽²⁾	_	_	ANSB5	ANSB4	_	_	—	_	11	11
18Eh	ANSELC	ANSC7 ⁽²⁾	ANSC6 ⁽²⁾	_	_	ANSC3	ANSC2	ANSC1	ANSC0	11 1111	11 1111
18Fh	—	Unimplement	Unimplemented							_	_
190h	—	Unimplement	ed							_	_
191h	EEADRL	EEPROM/Pro	ogram Memor	y Address Reg	ister Low Byte	e				0000 0000	0000 0000
192h	EEADRH	(4)	EEPROM/Pro	ogram Memory	Address Reg	jister High By	te			1000 0000	1000 0000
193h	EEDATL	EEPROM / P	rogram Memo	ry Read Data	Register Low	Byte				XXXX XXXX	uuuu uuuu
194h	EEDATH	_	—	EEPROM / PI	rogram Memo	ry Read Data	Register Hig	h Byte		xx xxxx	uu uuuu
195h	EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	0000 x000	0000 q000
196h	EECON2	EEPROM co	EEPROM control register 2							0000 0000	0000 0000
197h	—	Unimplement	Unimplemented							—	_
198h	—	Unimplement	Unimplemented							_	_
199h	RCREG	USART Receive Data Register							0000 0000	0000 0000	
19Ah	TXREG	USART Transmit Data Register							0000 0000	0000 0000	
19Bh	SPBRGL	Baud Rate Generator Data Register Low							0000 0000	0000 0000	
19Ch	SPBRGH	Baud Rate G	Baud Rate Generator Data Register High							0000 0000	0000 0000
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16		WUE	ABDEN	01-0 0-00	01-0 0-00

TABLE 3-9 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

PIC16(L)F1828 only.
 PIC16(L)F1824 only.

4: Unimplemented, read as '1'.

5.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT, or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

OSCILLATOR SWITCHING DELAYS

Switch From Switch To Frequency **Oscillator Delay** LFINTOSC⁽¹⁾ 31 kHz MFINTOSC⁽¹⁾ 31.25 kHz-500 kHz Sleep/POR Oscillator Warm-up Delay (TWARM) HFINTOSC⁽¹⁾ 31.25 kHz-16 MHz EC. RC⁽¹⁾ Sleep/POR DC - 32 MHz 2 cycles EC. RC⁽¹⁾ LFINTOSC DC - 32 MHz 1 cycle of each Timer1 Oscillator Sleep/POR 32 kHz-20 MHz 1024 Clock Cycles (OST) LP, XT, HS⁽¹⁾ MFINTOSC⁽¹⁾ 31.25 kHz-500 kHz Any clock source 2 µs (approx.) HFINTOSC⁽¹⁾ 31.25 kHz-16 MHz LFINTOSC⁽¹⁾ Any clock source 31 kHz 1 cycle of each Any clock source Timer1 Oscillator 32 kHz 1024 Clock Cycles (OST) PLL inactive PLL active 16-32 MHz 2 ms (approx.)

Note 1: PLL inactive.

TABLE 5-1:

TWO-SPEED START-UP MODE 5.4.1 CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Word 1) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Word 1 configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- · Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- · Wake-up from Sleep.

When FSCM is enabled, Two-Speed Note: Start-up will automatically be enabled.

8.5.2 PIE1 REGISTER

The PIE1 register contains the interrupt enable bits, as shown in Register 8-2.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 8-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TMR1GIE | ADIE | RCIE | TXIE | SSP1IE | CCP1IE | TMR2IE | TMR1IE |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'		
u = Bit is u	nchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets		
'1' = Bit is set '0' = Bit is cleared					
bit 7		Timer1 Gate Interrupt Enab			
	0 = Disable	es the Timer1 Gate Acquisiti	on interrupt		
bit 6	ADIE: A/D	Converter (ADC) Interrupt E	nable bit		
		es the ADC interrupt es the ADC interrupt			
bit 5		ART Receive Interrupt Enabl			
 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt 					
bit 4	1 = Enable	RT Transmit Interrupt Enables the USART transmit interrest the USART transmit interrest the USART transmit intervention transmit int	upt		
bit 3	SSP1IE: S	ynchronous Serial Port (MS	SP) Interrupt Enable bit		
		es the MSSP interrupt es the MSSP interrupt			
bit 2	CCP1IE: C	CP1 Interrupt Enable bit			
		es the CCP1 interrupt es the CCP1 interrupt			
bit 1 TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the Timer2 to PR2 match interrupt 0 = Disables the Timer2 to PR2 match interrupt					
bit 0	 0 = Disables the Timer2 to PR2 match interrupt TMR1IE: Timer1 Overflow Interrupt Enable bit 1 = Enables the Timer1 overflow interrupt 0 = Disables the Timer1 overflow interrupt 				

8.5.7 PIR3 REGISTER

The PIR3 register contains the interrupt flag bits, as shown in Register 8-7.

Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 8-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0
	—	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	—
bit 7							bit 0

Legend:						
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is u	nchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is	set	'0' = Bit is cleared				
bit 7-6	Unimplem	ented: Read as '0'				
bit 5	-	CP4 Interrupt Flag bit				
1 = Interrupt is pending 0 = Interrupt is not pending						
bit 4	CCP3IF: CCP3 Interrupt Flag bit					
		ot is pending ot is not pending				
bit 3	TMR6IF: ⊤	MR6 to PR6 Match Interrup	ot Flag bit			
		ot is pending ot is not pending				
bit 2	Unimplem	ented: Read as '0'				
bit 1	TMR4IF: ⊤	MR4 to PR4 Match Interrup	ot Flag bit			
		ot is pending ot is not pending				
bit 0	Unimplemented: Read as '0'					

EXAMPLE 11-5: WRITING TO FLASH PROGRAM MEMORY

; This	write rout	ine assumes the f	following:
; 1. Tł	ne 16 bytes	of data are load	led, starting at the address in DATA_ADDR
; 2. Ea	ach word of	data to be writt	en is made up of two adjacent bytes in DATA_ADDR,
; st	tored in li	ttle endian forma	at
; 3. A	valid star	ting address (the	e least significant bits = 000) is loaded in ADDRH:ADDRL
			in shared data memory 0x70 - 0x7F
;			-
	BCF	INTCON,GIE	; Disable ints so required sequences will execute properly
	BANKSEL	EEADRH	; Bank 3
	MOVF	ADDRH,W	; Load initial address
	MOVWF	EEADRH	;
	MOVF	ADDRL,W	;
	MOVWF	EEADRL	;
	MOVLW		; Load initial data address
	MOVWF	FSROL	;
	MOVLW		; Load initial data address
	MOVWF	FSROH	;
	BSF	EECON1, EEPGD	; Point to program memory
	BCF		; Not configuration space
	BSF	EECON1, WREN	; Enable writes
	BSF	EECON1,LWLO	; Only Load Write Latches
LOOP			
	MOVIW	FSR0++	; Load first data byte into lower
	MOVWF	EEDATL	;
	MOVIW	FSR0++	; Load second data byte into upper
	MOVWF	EEDATH	;
	MOVF	EEADRL,W	; Check if lower bits of address are '000'
	XORLW	0x07	; Check if we're on the last of 8 addresses
	ANDLW	0x07	;
	BTFSC	STATUS, Z	; Exit if last of eight words,
	GOTO	START_WRITE	;
		~	
	MOVLW	55h	; Start of required write sequence:
	MOVWF	EECON2	; Write 55h
_ n	MOVLW	0AAh	;
Required Sequence	MOVWF	EECON2	; Write AAh
qui	BSF	EECON1,WR	; Set WR bit to begin write
sec de	NOP		; Any instructions here are ignored as processor
- 07			; halts to begin write sequence
	NOP		; Processor will stop here and wait for write to complete.
			; After write processor continues with 3rd instruction.
	INCF	EEADRL, F	; Still loading latches Increment address
	GOTO	LOOP	; Write next latches
START_V	WRITE		
	BCF	EECON1,LWLO	; No more loading latches - Actually start Flash program
			; memory write
	MOVLW	55h	; Start of required write sequence:
	MOVWF	EECON2	; Write 55h
Se Sd	MOVLW	0AAh	;
uire	MOVWF	EECON2	; Write AAh
Required Sequence	BSF	EECON1,WR	; Set WR bit to begin write
ъÑ	NOP		; Any instructions here are ignored as processor
			; halts to begin write sequence
	NOP		; Processor will stop here and wait for write complete.
L			
			; after write processor continues with 3rd instruction
	BCF	EECON1, WREN	; Disable writes
	BSF	INTCON,GIE	; Enable interrupts

REGISTER 11-1: EEDATL: EEPROM DATA REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			EEDA	T<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as	ʻ0'	
u = Bit is unchange	ed	x = Bit is unknowr	า	-n/n = Value at	POR and BOR/V	alue at all other Rese	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

EEDAT<7:0>: Read/write value for EEPROM data byte or Least Significant bits of program memory

REGISTER 11-2: EEDATH: EEPROM DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—		EEDAT<13:8>					
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 EEDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 11-3: EEADRL: EEPROM ADDRESS REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | EEADI | R<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 EEADR<7:0>: Specifies the Least Significant bits for program memory address or EEPROM address

REGISTER 11-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_(1)				EEADR<14:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 EEADR<14:8>: Specifies the Most Significant bits for program memory address or EEPROM address

Note 1: Unimplemented, read as '1'.

TABLE 12-1:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTA
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—		—	ANSA4		ANSA2	ANSA1	ANSA0	122
APFCON0 ⁽¹⁾	RXDTSEL	SDOSEL	SSSEL	_	T1GSEL	TXCKSEL	_	—	117
APFCON1	—	_	—	_	P1DSEL	P1CSEL	P2BSEL	CCP2SEL	118
INLVLA	—	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	123
LATA	—	_	LATA5	LATA4	_	LATA2	LATA1	LATA0	122
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		176
PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	121
TRISA	—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	121
WPUA	_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	123

Legend: x = unknown, u = unchanged, - = unimplemented locations, read as '0'. Shaded cells are not used by PORTA.

Note 1: Unshaded cells apply to PIC16(L)F1824 only.

TABLE 12-2: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		—	FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD	40
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		> FOSC<2:0>			48

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

REGISTER 12-15: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is > VIH 0 = Port pin is < VIL

Note 1: RC<7:6> available on PIC16(L)F1828 only. Otherwise, they are unimplemented and read as '0'.

REGISTER 12-16: TRISC: PORTC TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TRISC<7:0>:** PORTC Tri-State Control bits⁽¹⁾ 1 = PORTC pin configured as an input (tri-stated) 0 = PORTC pin configured as an output

Note 1: TRISC<7:6> available on PIC16(L)F1828 only. Otherwise, they are unimplemented and read as '0'.

REGISTER 12-17: LATC: PORTC DATA LATCH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATC7 ⁽¹⁾	LATC6 ⁽¹⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0
bit 7							bit 0

Legend:	
R = Readable bit W = Writable bit U = Unimplem	nented bit, read as '0'
u = Bit is unchanged x = Bit is unknown -n/n = Value at	t POR and BOR/Value at all other Resets
'1' = Bit is set '0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits^(1, 2)

- **Note 1:** Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.
 - 2: LATC<7:6> available on PIC16(L)F1828 only. Otherwise, they are unimplemented and read as '0'.

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
FVREN	FVREN FVRRDY ⁽¹⁾ TSEN T			CDAF\	/R<1:0>	ADFVR<1:0>		
bit 7							bit	
Legend:								
R = Readable		W = Writable		•	nented bit, reac			
u = Bit is unc	•	x = Bit is unki			at POR and BO		other Resets	
'1' = Bit is set	t	'0' = Bit is cle	ared	q = Value dep	ends on condit	ion		
bit 7	0 = Fixed Vo	d Voltage Refe Itage Referenc Itage Referenc	e is disabled	bit				
bit 6	0 = Fixed Vo	ed Voltage Re Itage Referenc Itage Referenc	e output is no	t ready or not e	nabled			
bit 5	0 = Tempera	erature Indicato ture Indicator is ture Indicator is	s disabled))				
bit 4	0 = VOUT = V	iperature Indica /DD - 2V⊤ (Low /DD - 4V⊤ (High	Range)	election bit ⁽³⁾				
bit 3-2	 1 = VOUT = VDD - 4VT (High Range) CDAFVR<1:0>: Comparator and DAC Fixed Voltage Reference Selection bits 00 = Comparator and DAC Fixed Voltage Reference Peripheral output is off. 01 = Comparator and DAC Fixed Voltage Reference Peripheral output is 1x (1.024V) 10 = Comparator and DAC Fixed Voltage Reference Peripheral output is 2x (2.048V)⁽²⁾ 11 = Comparator and DAC Fixed Voltage Reference Peripheral output is 4x (4.096V)⁽²⁾ 							
bit 1-0								
	/RRDY is always			•	/8).			

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

2: Fixed Voltage Reference output cannot exceed VDD.

TABLE 14-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		:0> ADFVR<1:0>		

Legend: Shaded cells are unused by the Fixed Voltage Reference module.

^{3:} See Section 15.0 "Temperature Indicator Module" for additional information.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0			
CxINTP	INTP CXINTN CxPCH<1:0>		_	_ CxNCH<		H<1:0>				
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'				
u = Bit is unc	hanged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all	other Resets			
'1' = Bit is set	t	'0' = Bit is clea	ared							
bit 7	CxINTP: Con	nparator Interru	pt on Positive	Going Edge E	nable bits					
					ng edge of the					
	0 = No interr	upt flag will be	set on a positi	ve going edge	of the CxOUT b	bit				
bit 6	CxINTN: Con	nparator Interru	pt on Negative	e Going Edge I	Enable bits					
					oing edge of the					
	0 = No interr	upt flag will be	set on a negat	tive going edge	of the CxOUT	bit				
bit 5-4	CxPCH<1:0>	: Comparator F	Positive Input (Channel Select	bits					
	00 = CxVP connects to CxIN+ pin									
	01 = CxVP connects to DAC Voltage Reference									
	10 = CxVP connects to FVR Voltage Reference 11 = CxVP connects to Vss									
bit 3-2		Unimplemented: Read as '0'								
bit 1-0	CxNCH<1:0>: Comparator Negative Input Channel Select bits									
bit i o	00 = CxVN connects to C12IN0- pin									
		onnects to C12								
		onnects to C12								
	11 = CxVN c	onnects to C12	IN3- pin							

REGISTER 19-2: CMxCON1: COMPARATOR CX CONTROL REGISTER 1

REGISTER 19-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
_	_	_	—	_	_	MC2OUT	MC1OUT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2	Unimplemented: Read as '0'
---------	----------------------------

- bit 1 MC2OUT: Mirror Copy of C2OUT bit
- bit 0 MC10UT: Mirror Copy of C10UT bit

20.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (independent of Watchdog Timer)
- · Programmable internal or external clock source
- Programmable external clock edge selection
- · Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 20-1 is a block diagram of the Timer0 module.

20.1 Timer0 Operation

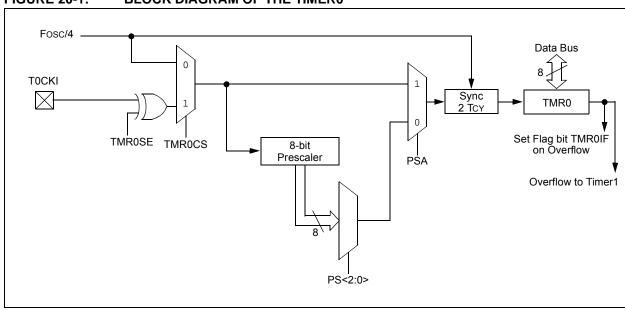
The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

20.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION_REG register.

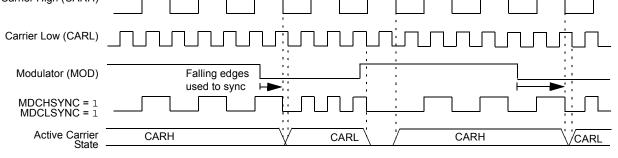
When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.


20.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin or the Capacitive Sensing Oscillator (CPSCLK) signal.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1' and resetting the T0XCS bit in the CPSCON0 register to '0'.


8-Bit Counter mode using the Capacitive Sensing Oscillator (CPSCLK) signal is selected by setting the TMR0CS bit in the OPTION_REG register to '1' and setting the T0XCS bit in the CPSCON0 register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

FIGURE 20-1: BLOCK DIAGRAM OF THE TIMER0

FIGURE 23-4:	CARRIER LOW SYNCHRONIZATION (MDSHSYNC = 0, MDCLSYNC = 1)
Carrier High (CARH)	
Carrier Low (CARL)	
Modulator (MOD)	
MDCHSYNC = 0 MDCLSYNC = 1	
Active Carrier State -	
FIGURE 23-5:	FULL SYNCHRONIZATION (MDSHSYNC = 1, MDCLSYNC = 1)
Carrier High (CARH)	

24.4.2.1 Direction Change in Full-Bridge Mode

In the Full-Bridge mode, the PxM1 bit in the CCPxCON register allows users to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will change to the new direction on the next PWM cycle.

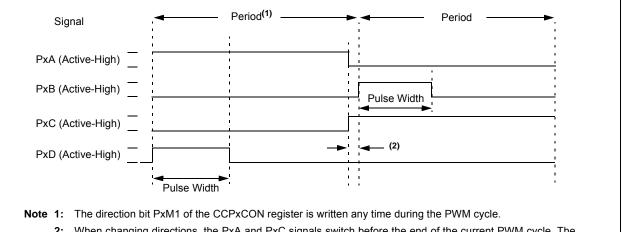
A direction change is initiated in software by changing the PxM1 bit of the CCPxCON register. The following sequence occurs four Timer cycles prior to the end of the current PWM period:

- The modulated outputs (PxB and PxD) are placed in their inactive state.
- The associated unmodulated outputs (PxA and PxC) are switched to drive in the opposite direction.
- PWM modulation resumes at the beginning of the next period.

See Figure 24-12 for an illustration of this sequence.

The Full-Bridge mode does not provide dead-band delay. As one output is modulated at a time, dead-band delay is generally not required. There is a situation where dead-band delay is required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn off time of the power switch, including the power device and driver circuit, is greater than the turn on time.


Figure 24-13 shows an example of the PWM direction changing from forward to reverse, at a near 100% duty cycle. In this example, at time t1, the output PxA and PxD become inactive, while output PxC becomes active. Since the turn off time of the power devices is longer than the turn on time, a shoot-through current will flow through power devices QC and QD (see Figure 24-10) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce PWM duty cycle for one PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

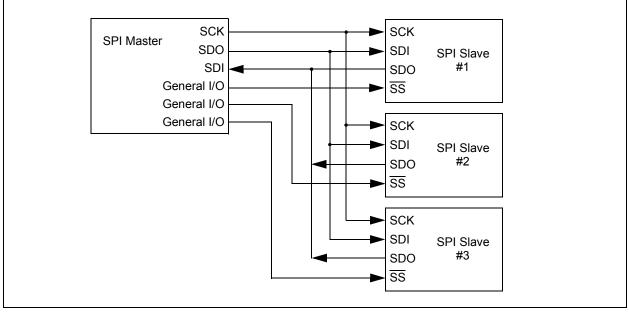

Other options to prevent shoot-through current may exist.

FIGURE 24-12: EXAMPLE OF PWM DIRECTION CHANGE

2: When changing directions, the PxA and PxC signals switch before the end of the current PWM cycle. The modulated PxB and PxD signals are inactive at this time. The length of this time is four Timer counts.

FIGURE 25-4: SPI MASTER AND MULTIPLE SLAVE CONNECTION

25.2.1 SPI MODE REGISTERS

The MSSP1 module has five registers for SPI mode operation. These are:

- MSSP1 STATUS Register (SSP1STAT)
- MSSP1 Control Register 1 (SSP1CON1)
- MSSP1 Control Register 3 (SSP1CON3)
- MSSP1 Data Buffer Register (SSP1BUF)
- MSSP1 Address Register (SSP1ADD)
- MSSP1 Shift Register (SSP1SR) (Not directly accessible)

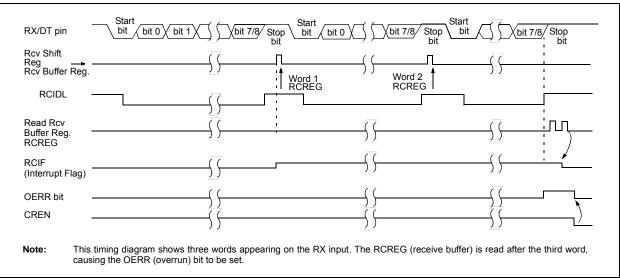
SSP1CON1 and SSP1STAT are the control and STATUS registers in SPI mode operation. The SSP1CON1 register is readable and writable. The lower six bits of the SSP1STAT are read-only. The upper two bits of the SSP1STAT are read/write.

In SPI master mode, SSP1ADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 25.7 "Baud Rate Generator"**.

SSP1SR is the shift register used for shifting data in and out. SSP1BUF provides indirect access to the SSP1SR register. SSP1BUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSP1SR and SSP1BUF together create a buffered receiver. When SSP1SR receives a complete byte, it is transferred to SSP1BUF and the SSP1IF interrupt is set.

During transmission, the SSP1BUF is not buffered. A write to SSP1BUF will write to both SSP1BUF and SSP1SR.


26.1.2.8 Asynchronous Reception Setup:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 26.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

26.1.2.9 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 26.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 26-5: ASYNCHRONOUS RECEPTION

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym.	Characteristic	Min. Typ†		Max.	Units	Conditions	
		Program Memory High Voltage Programming Specifications						
D110	Vінн	Voltage on MCLR/VPP/RA5 pin	8.0	_	9.0	V	(Note 3, 4)	
D111	IDDVPP	Programming/Erase Current on VPP, High Voltage Programming	_	—	10	mA		
D112	VBE	VDD for Bulk Erase	2.7	_	VDDMAX	V		
D113	VPEW	VDD for Write or Row Erase	VDDMIN	—	VDDMAX	V		
D114	IPPPGM	Programming/Erase Current on VPP, Low Voltage Programming	—	1.0	_	mA		
D115	IDDPGM	Programming/Erase Current on VDD, High or Low Voltage Programming	_	5.0	_	mA		
		Data EEPROM Memory						
D116	ED	Byte Endurance	100K	—	—	E/W	-40°C to +85°C	
D117	Vdrw	VDD for Read/Write	VDDMIN	—	VDDMAX	V		
D118	TDEW	Erase/Write Cycle Time	—	4.0	5.0	ms		
D119	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated	
D120	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C	
		Program Flash Memory						
D121	Eр	Cell Endurance	10K	—	—	E/W	-40°C to +85°C (Note 1)	
D122	VPRW	VDD for Read/Write	VDDMIN	—	VDDMAX	V		
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms		
D124	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated	

30.5 Memory Programming Requirements

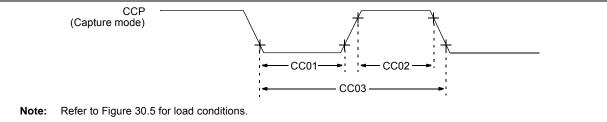
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Refer to Section 11.2 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB[®] ICD 2 does not support variable VPP output. Circuitry to limit the ICD 2 VPP voltage must be placed between the ICD 2 and target system when programming or debugging with the ICD 2.


TABLE 30-6: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

	ng Temperatur	re -40°C ≤ IA∶ I	≤ +125°C		Γ			l	
Param No.	Sym.		Characteristic		Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High F	T0CKI High Pulse Width No Prescaler			_		ns	
				With Prescaler	10			ns	
41*	T⊤0L	T0CKI Low P	ulse Width	No Prescaler	0.5 Tcy + 20	—	_	ns	
				With Prescaler	10	—	_	ns	
42*	TT0P	T0CKI Period	l		Greater of: 20 or <u>Tcy + 40</u> N		—	ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High	Synchronous, No Prescaler		0.5 Tcy + 20			ns	
		Time	Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30	_		ns	
46*	T⊤1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20			ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30	_		ns	
47*	TT1P	T1CKI Input Period	-		Greater of: 30 or <u>Tcy + 40</u> N		_	ns	N = prescale value (1, 2, 4, 8)
					60	_		ns	
48	FT1		ator Input Frequency Range abled by setting bit T1OSCEN)		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock E	dge to Timer	2 Tosc	_	7 Tosc	—	Timers in Sync mode

These parameters are characterized but not tested.
 Data in "Typ" column is at 3.0V, 25°C unless otherwi

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

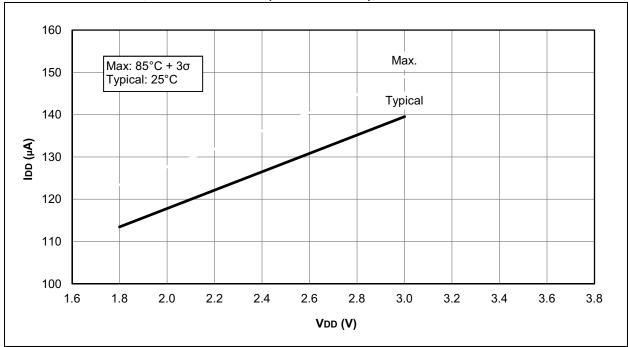


TABLE 30-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param No.	Sym.	Characteris	Min.	Тур†	Max.	Units	Conditions				
CC01*	TccL	CCP Input Low Time	No Prescaler	0.5Tcy + 20			ns				
			With Prescaler	20			ns				
CC02*	TccH	CCP Input High Time	No Prescaler	0.5Tcy + 20			ns				
			With Prescaler	20			ns				
CC03*	TccP	CCP Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

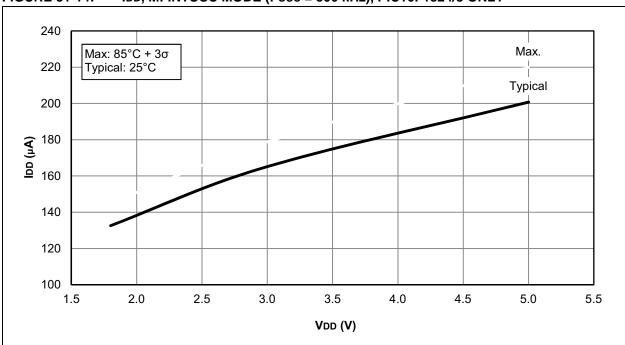


FIGURE 31-14: IDD, MFINTOSC MODE (Fosc = 500 kHz), PIC16F1824/8 ONLY

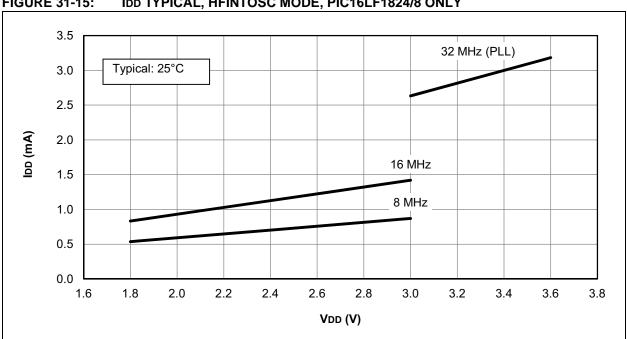
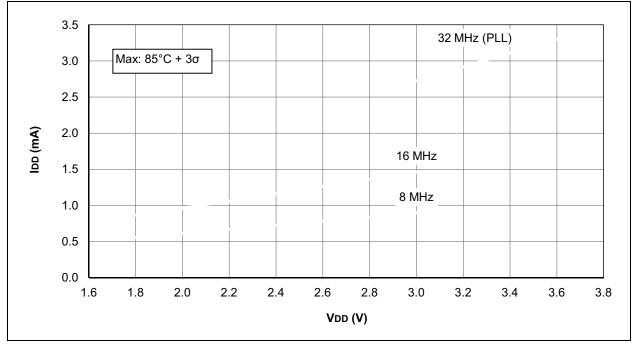



FIGURE 31-15: IDD TYPICAL, HFINTOSC MODE, PIC16LF1824/8 ONLY

