

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1824-e-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1824/8

									•						
0/I	14-Pin PDIP/SOIC/TSSOP	16-Pin QFN/UQFN	A/D	Reference	Cap Sense	Comparator	SR Latch	Timers	ECCP	EUSART	dssw	Interrupt	Modulator	Pull-up	Basic
RA0	13	12	AN0	VREF- DACOUT	CPS0	C1IN+	_	—	—	TX ⁽¹⁾ CK ⁽¹⁾		IOC	—	Y	ICSPDAT ICDDAT
RA1	12	11	AN1	VREF+	CPS1	C12IN0-	SRI	—	—	RX ⁽¹⁾ DT ⁽¹⁾	-	IOC	—	Y	ICSPCLK ICDCLK
RA2	11	10	AN2	—	CPS2	C10UT	SRQ	TOCKI	CCP3 FLT0	-	-	INT/ IOC	—	Y	-
RA3	4	3	_	-	-	_	—	T1G ⁽¹⁾	—	—	<u>SS</u> (1)	IOC	—	Y	MCLR VPP
RA4	3	2	AN3	_	CPS3	_	_	T1G ⁽¹⁾ T1OSO	P2B ⁽¹⁾	-	SDO ⁽¹⁾	IOC	_	Y	OSC2 CLKOUT CLKR
RA5	2	1	_	—		—	—	T1CKI T1OSI	CCP2 P2A ⁽¹⁾	—	_	IOC	—	Y	OSC1 CLKIN
RC0	10	9	AN4	-	CPS4	C2IN+	—	—	P1D ⁽¹⁾	-	SCL SCK	-	—	Y	-
RC1	9	8	AN5	—	CPS5	C12IN1-	_	—	CCP4 P1C ⁽¹⁾	—	SDA SDI	-	—	Y	
RC2	8	7	AN6	—	CPS6	C12IN2-	—	—	P1D ⁽¹⁾ P2B ⁽¹⁾	—	SDO ⁽¹⁾		MDCIN1	Y	
RC3	7	6	AN7	_	CPS7	C12IN3-	_	_	CCP2 ⁽¹⁾ P1C ⁽¹⁾ P2A ⁽¹⁾	_	<u>SS</u> (1)		MDMIN	Y	_
RC4	6	5		—	_	C2OUT	SRNQ	—	P1B	TX ⁽¹⁾ CK ⁽¹⁾	_	_	MDOUT	Y	—
RC5	5	4	—	—	_	—	—	—	CCP1 P1A	RX ⁽¹⁾ DT ⁽¹⁾	—	-	MDCIN2	Y	—
VDD	1	16	—	_	—	—	—	_	_	—	—	—	_	—	Vdd
Vss	14	13	_	_	_	_	—	_	_	—	_	—	_	—	Vss

TABLE 1: 14-PIN AND 16-PIN ALLOCATION TABLE (PIC16(L)F1824)

Note 1: Pin function is selectable via the APFCON0 or APFCON1 registers.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 3-4:PIC16F1824/PIC16F1828 MEMORY MAP, BANKS 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	INDF0	080h	INDF0	100h	INDF0	180h	INDF0	200h	INDF0	280h	INDF0	300h	INDF0	380h	INDF0
001h	INDF1	081h	INDF1] 101h	INDF1	181h	INDF1	201h	INDF1	281h	INDF1	301h	INDF1	381h	INDF1
002h	PCL	082h	PCL	102h	PCL	182h	PCL	202h	PCL	282h	PCL	302h	PCL	382h	PCL
003h	STATUS	083h	STATUS	103h	STATUS	183h	STATUS	203h	STATUS	283h	STATUS	303h	STATUS	383h	STATUS
004h	FSR0L	084h	FSR0L	104h	FSR0L	184h	FSR0L	204h	FSR0L	284h	FSR0L	304h	FSR0L	384h	FSR0L
005h	FSR0H	085h	FSR0H	105h	FSR0H	185h	FSR0H	205h	FSR0H	285h	FSR0H	305h	FSR0H	385h	FSR0H
006h	FSR1L	086h	FSR1L	106h	FSR1L	186h	FSR1L	206h	FSR1L	286h	FSR1L	306h	FSR1L	386h	FSR1L
007h	FSR1H	087h	FSR1H	107h	FSR1H	187h	FSR1H	207h	FSR1H	287h	FSR1H	307h	FSR1H	387h	FSR1H
008h	BSR	088h	BSR	108h	BSR	188h	BSR	208h	BSR	288h	BSR	308h	BSR	388h	BSR
0090	WREG	089n	WREG	109n	WREG	189n	WREG	209n	WREG	289n	WREG	309n	WREG	389n	WREG
00An	PCLATH	08An		10An	PCLATH	18An		20An	PCLATH	28An	PCLATH	30An	PCLATH	38An	PCLATH
0080				1080		18BN		20Bh		28BN	INTCON	30Bh	INTCON	38BN	
0000								2000		2000		3001	_	3001	
00Dh	PORTB	08Dh	TRISBUT	10Dh		18Dh	ANSELB	20Dh	WPUBIN	28Dh	—	30Dh	_	38Dh	INLVLB
OUEN	PURIC		TRISC		LAIC	18EN	ANSELC	20En	WPUC			30En	_	38EN	INLVLC
00Fn	_	08Fn		10-1		18FN		20FN		28FN		30FN	_	38FN	_
01011		09011				19011		21011		29011		0146	-	39011	
0110	PIR1	0910	PIE1	11111	CMICONU	1910	EEADRL	2110	SSPIBUE	2910	COPRIL	3110	CCPRJL	3910	IUCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSP1ADD	292h	CCPR1H	312h	ССРКЗН	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	EEDATL	213h	SSP1MSK	293h	CCP1CON	313h	CCP3CON	393h	IOCAF
014h	_	094h	_	114h	CM2CON1	194h	EEDATH	214h	SSP1STAT	294h	PWM1CON	314h	—	394h	IOCBP ⁽¹⁾
015h	TMR0	095h	OPTION	115h	CMOUT	195h	EECON1	215h	SSP1CON	295h	CCP1AS	315h	—	395h	IOCBN ⁽¹⁾
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSP1CON2	296h	PSTR1CON	316h	—	396h	IOCBF ⁽¹⁾
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	—	217h	SSP1CON3	297h	—	317h	-	397h	—
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	_	218h	_	298h	CCPR2L	318h	CCPR4L	398h	_
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	—	299h	CCPR2H	319h	CCPR4H	399h	_
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TXREG	21Ah	_	29Ah	CCP2CON	31Ah	CCP4CON	39Ah	CLKRCON
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh	_	29Bh	PWM2CON	31Bh	_	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	_	19Ch	SPBRGH	21Ch	_	29Ch	CCP2AS	31Ch	_	39Ch	MDCON
01Dh	_	09Dh	ADCON0	111Dh	APFCON0	19Dh	RCSTA	21Dh	_	29Dh	PSTR2CON	31Dh	_	39Dh	MDSRC
01Eh	CPSCON0	09Eh	ADCON1	1 11Eh	APFCON1	19Eh	TXSTA	21Eh	_	29Eh	CCPTMRS0	31Eh	_	39Eh	MDCARL
01Eh	CPSCON1	09Eh		11Eh		19Eh	BAUDCON	21Fh	_	29Eh	_	31Fh	_	39Eh	MDCARH
020h	01000111	040h		120h		140h	BAODCON	220h		231 H		320h		340h	
02011	- ·	07.011	- ·	12011		17 1011		22011		2/1011		02011		0/ 1011	
	General		General		General		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented
	Pulpose		Purpose		Purpose		Read as '0'				Dhimplemented Read as '∩'				Read as '0'
	80 Bytes		80 Bytes		80 Bytes		Redu do 0		iteau as 0		iteau as 0		itedu do 0		iteau as 0
	00 29100		00 29,000		00 29100										
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
	Common RAM		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
			70h — 7⊦h		70h — 7⊦h		/Uh — /⊦h	075	/Uh — /⊦h		/Uh – /⊦h		70h — 7⊢h		/Uh — /⊦h
07Fh		OFFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Available only on PIC16(L)F1828.

PIC16(L)F1824/8

5.6 Oscillator Control Registers

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0		
SPLLEN		IRCF	<3:0>			SCS	<1:0>		
bit 7							bit 0		
							1		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
u = Bit is un	changed	x = Bit is unkı	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets		
'1' = Bit is se	et	'0' = Bit is cle	ared						
bit 7	SPLLEN: So <u>If PLLEN in 0</u> SPLLEN bit <u>If PLLEN in 0</u> 1 = 4xPLL is 0 = 4xPLL is	oftware PLL Ena <u>Configuration W</u> is ignored. 4xPl <u>Configuration W</u> s enabled s disabled	able bit / <u>ord 1 = 1:</u> .L is always er /ord 1 = 0:	nabled (subject	to oscillator rea	quirements)			
bit 6-3	$0 = 4xPLL \text{ is disabled}$ it 6-3 IRCF<3:0>: Internal Oscillator Frequency Select bits $000x = 31 \text{ kHz LF}$ $010 = 31.25 \text{ kHz MF}$ $0011 = 31.25 \text{ kHz HF}^{(1)}$ $0100 = 62.5 \text{ kHz MF}$ $0101 = 125 \text{ kHz MF}$ $0110 = 250 \text{ kHz MF}$ $0111 = 500 \text{ kHz MF} (default upon Reset)$ $1000 = 125 \text{ kHz HF}^{(1)}$ $1001 = 250 \text{ kHz HF}^{(1)}$ $1010 = 500 \text{ kHz HF}^{(1)}$ $1010 = 500 \text{ kHz HF}^{(1)}$ $1011 = 1 \text{ MHz HF}$ $1100 = 2 \text{ MHz HF}$ $1101 = 4 \text{ MHz HF}$ $1110 = 8 \text{ MHz or 32 MHz HF}(see Section 5.2.2.1 "HFINTOSC")$								
bit 2 bit 1-0	Unimpleme SCS<1:0>: \$ 1x = Interna 01 = Timer1 00 = Clock o	Unimplemented: Read as '0' SCS<1:0>: System Clock Select bits 1x = Internal oscillator block 01 = Timer1 oscillator 00 = Clock determined by EOSC<2:0> in Configuration Word 1							
Note 1:	Duplicate frequer	ncy derived from	HFINTOSC.	J					

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

FIGURE 9-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: XT, HS or LP Oscillator mode assumed.

2: CLKOUT is not available in XT, HS, or LP Oscillator modes, but shown here for timing reference.

3: Tost = 1024 Tosc (drawing not to scale). This delay applies only to XT, HS or LP Oscillator modes.

4: GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.

TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	89
IOCAF	_	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	137
IOCAN	_	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	137
IOCAP	_	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	137
IOCBF ⁽¹⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	—	—	—	139
IOCBN ⁽¹⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	—	—	138
IOCBP ⁽¹⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	—	—	—	—	138
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	90
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	—	CCP2IE	91
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	93
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	—	—	CCP2IF	94
STATUS	_	—	—	TO	PD	Z	DC	С	22
WDTCON		_	WDTPS4	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	101

Legend: — = unimplemented, read as '0'. Shaded cells are not used in Power-Down mode.

Note 1: PIC16(L)F1828 only.

After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the write operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2ms, only during the cycle in which the write takes place (i.e., the last word of the block write). This is not Sleep mode, as the clocks and peripherals will

continue to run. The processor does not stall when LWLO = 1, loading the write latches. After the write cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 16-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

REGISTER 16-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADRE | S<1:0> | — | — | — | — | — | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 ADRES<1:0>: ADC Result Register bits Lower 2 bits of 10-bit conversion result bit 5-0 Reserved: Do not use.

© 2010-2015 Microchip Technology Inc.

SRCLK	Divider	Fosc = 32 MHz	Fosc = 20 MHz	Fosc = 16 MHz	Fosc = 4 MHz	Fosc = 1 MHz
111	512	62.5 kHz	39.0 kHz	31.3 kHz	7.81 kHz	1.95 kHz
110	256	125 kHz	78.1 kHz	62.5 kHz	15.6 kHz	3.90 kHz
101	128	250 kHz	156 kHz	125 kHz	31.25 kHz	7.81 kHz
100	64	500 kHz	313 kHz	250 kHz	62.5 kHz	15.6 kHz
011	32	1 MHz	625 kHz	500 kHz	125 kHz	31.3 kHz
010	16	2 MHz	1.25 MHz	1 MHz	250 kHz	62.5 kHz
001	8	4 MHz	2.5 MHz	2 MHz	500 kHz	125 kHz
000	4	8 MHz	5 MHz	4 MHz	1 MHz	250 kHz

TABLE 18-1: SRCLK FREQUENCY TABLE

REGISTER 18-1: SRCON0: SR LATCH CONTROL 0 REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/S-0/0	R/S-0/0
SRLEN		SRCLK<2:0>		SRQEN	SRNQEN	SRPS	SRPR
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	S = Bit is set only

bit 7	SRLEN: SR Latch Enable bit 1 = SR latch is enabled 0 = SR latch is disabled
bit 6-4	SRCLK<2:0>: SR Latch Clock Divider bits 000 = Generates a 1 Fosc wide pulse every 4th Fosc cycle clock 001 = Generates a 1 Fosc wide pulse every 8th Fosc cycle clock 010 = Generates a 1 Fosc wide pulse every 16th Fosc cycle clock 011 = Generates a 1 Fosc wide pulse every 32nd Fosc cycle clock 100 = Generates a 1 Fosc wide pulse every 64th Fosc cycle clock 101 = Generates a 1 Fosc wide pulse every 128th Fosc cycle clock 110 = Generates a 1 Fosc wide pulse every 256th Fosc cycle clock 111 = Generates a 1 Fosc wide pulse every 512th Fosc cycle clock
bit 3	SRQEN: SR Latch Q Output Enable bit <u>If SRLEN = 1</u> : 1 = Q is present on the SRQ pin 0 = External Q output is disabled <u>If SRLEN = 0</u> : SR latch is disabled
bit 2	SRNQEN: SR Latch \overline{Q} Output Enable bit <u>If SRLEN = 1</u> : 1 = \overline{Q} is present on the SRnQ pin 0 = External \overline{Q} output is disabled <u>If SRLEN = 0</u> : SR latch is disabled
bit 1	 SRPS: Pulse Set Input of the SR Latch bit⁽¹⁾ 1 = Pulse set input for 1 Q-clock period 0 = No effect on set input.
bit 0	 SRPR: Pulse Reset Input of the SR Latch bit⁽¹⁾ 1 = Pulse reset input for 1 Q-clock period 0 = No effect on reset input.
Note 1: Set	only, always reads back '0'.

19.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 registers (see Register 19-1) contain Control and Status bits for the following:

- Enable
- Output selection
- Output polarity
- Speed/Power selection
- · Hysteresis enable
- Output synchronization

The CMxCON1 registers (see Register 19-2) contain Control bits for the following:

- Interrupt enable
- Interrupt edge polarity
- · Positive input channel selection
- · Negative input channel selection

19.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

19.2.2 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- · CxON bit of the CMxCON0 register must be set

Note 1:	The CxOE bit of the CMxCON0 register
	overrides the PORT data latch. Setting
	the CxON bit of the CMxCON0 register
	has no impact on the port override.

2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

19.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 19-1 shows the output state versus input conditions, including polarity control.

TABLE 19-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

19.2.4 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the Normal Speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

20.2 Option and Timer0 Control Registers

REGISTER 20-1: OPTION_REG: OPTION REGISTER

R/W-1/1	R/W-1/1	R/W-	-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUEN	INTEDG	TMR	0CS	TMR0SE	PSA		PS<2:0>	
bit 7								bit 0
Legend:								
R = Readable	bit	$W = W_{I}$	ritable b	it	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is uncha	anged	x = Bit	is unkno	own	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bi	t is clea	red				
								
bit 7	WPUEN: We	ak Pull-u	ip Enab	le bit				
	1 = All weak 0 = Weak pu	pull-ups are	are disa e enable	ibled (except d by individu	MCLR, if it is a al WPUx latch	enabled) values		
bit 6	INTEDG: Inte	errupt Ed	lge Sele	ct bit				
	1 = Interrupt	on rising	edge o	f INT pin				
	0 = Interrupt	on falling	g edge c	of INT pin				
bit 5	TMR0CS: Tir	mer0 Clo	ck Sour	ce Select bit				
	1 = Transition	n on TOC	KI pin	alaak (Easa)	•			
L:1 4					+)			
DIT 4		neru Sou	rce Eag	Je Select Dit				
	1 = Increment 0 = Increment	nt on high	-to-high	transition on	TOCKI pin TOCKI pin			
bit 3	PSA: Presca	ler Assig	nment k	oit				
	1 = Prescale	r is not a	ssigned	to the Timer	0 module			
	0 = Prescale	r is assig	ned to t	he Timer0 m	odule			
bit 2-0	PS<2:0>: Pre	escaler R	Rate Sel	ect bits				
	Bit	Value -	Timer0 R	late				
	(000	1:2					
	(001	1:4					
	(010	1:8					
		100	1 . 10					
	-	101	1:64					
		110	1:12	8				
	-	111	1 : 25	6				

23.5 Carrier Source Polarity Select

The signal provided from any selected input source for the carrier high and carrier low signals can be inverted. Inverting the signal for the carrier high source is enabled by setting the MDCHPOL bit of the MDCARH register. Inverting the signal for the carrier low source is enabled by setting the MDCLPOL bit of the MDCARL register.

23.6 Carrier Source Pin Disable

Some peripherals assert control over their corresponding output pin when they are enabled. For example, when the CCP1 module is enabled, the output of CCP1 is connected to the CCP1 pin.

This default connection to a pin can be disabled by setting the MDCHODIS bit in the MDCARH register for the carrier high source and the MDCLODIS bit in the MDCARL register for the carrier low source.

23.7 Programmable Modulator Data

The MDBIT of the MDCON register can be selected as the source for the modulator signal. This gives the user the ability to program the value used for modulation.

23.8 Modulator Source Pin Disable

The modulator source default connection to a pin can be disabled by setting the MDMSODIS bit in the MDSRC register.

23.9 Modulated Output Polarity

The modulated output signal provided on the MDOUT pin can also be inverted. Inverting the modulated output signal is enabled by setting the MDOPOL bit of the MDCON register.

23.10 Slew Rate Control

The slew rate limitation on the output port pin can be disabled. The slew rate limitation can be removed by clearing the MDSLR bit in the MDCON register.

23.11 Operation in Sleep Mode

The DSM module is not affected by Sleep mode. The DSM can still operate during Sleep, if the carrier and modulator input sources are also still operable during Sleep.

23.12 Effects of a Reset

Upon any device Reset, the data signal modulator module is disabled. The user's firmware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

25.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDA from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 25-12 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDA line low before asserting it low. This does not conform to the I²C Specification that states no bus collision can occur on a Start.

25.4.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high.

Note:	At least one SCL low time must appear
	before a Stop is valid, therefore, if the SDA
	line goes low then high again while the SCL
	line stays high, only the Start condition is
	detected.

25.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart

FIGURE 25-12: I²C START AND STOP CONDITIONS

has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/\overline{W} bit set. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/\overline{W} clear in 10-bit mode, a prior match flag is set and maintained. Until a Stop condition, a high address with R/\overline{W} clear, or high address match fails.

25.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSP1CON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

25.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSP1CON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSP1IF interrupt is set.

Figure 25-19 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSP1IF interrupt is generated.
- 4. Slave software clears SSP1IF.
- 5. Slave software reads ACKTIM bit of SSP1CON3 register, and R/\overline{W} and D/\overline{A} of the SSP1STAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSP1BUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets ACKDT bit of the SSP1CON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSP1IF after the ACK if the R/W bit is set.
- 11. Slave software clears SSP1IF.
- 12. Slave loads value to transmit to the master into SSP1BUF setting the BF bit.

Note: <u>SSP1BUF</u> cannot be loaded until after the <u>ACK</u>.

13. Slave sets CKP bit releasing the clock.

- 14. Master clocks out the data from the slave and sends an ACK value on the 9th SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSP1CON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not \overline{ACK} the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

26.3.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence (Figure 26-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 26-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 26-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 26.3.3 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

IADLE 20-0. DRG COUNTER CLOCK RATES	ABLE 26-6:	BRG COUNTER CLOCK RATES
-------------------------------------	------------	-------------------------

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting.

FIGURE 26-6: AUTOMATIC BAUD RATE CALIBRATION

FIGURE 26-10: SYNCHRONOUS TRANSMISSION

TABLE 26-7: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDOSEL ⁽¹⁾	SSSEL ⁽¹⁾	_	T1GSEL	TXCKSEL	_	_	117
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	296
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	89
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	93
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	295
SPBRGL	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	297*
SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	297*
TXREG	EUSART Transmit Data Register								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	294

 — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission.
 Page provides register information.
 PIC16(L)F1824 only.
 Legend:

Note 1:

Mnemonic, Operands		Description	Cycles		14-Bit	Opcode	Status	Notes	
		Description	Cycles	MSb			LSb	Affected	NOLES
•		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	-	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN – Return from Subroutine				00	0000	0000	1000		
		INHERENT OPER	ATIONS						
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	_	No Operation	1	00	0000	0000	0000		
OPTION	_	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm					kkkk		
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	lnmm	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	kkkk		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk			2

TABLE 29-3: PIC16F/LF1824/1828 ENHANCED INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

30.2 DC Characteristics: PIC16(L)F1824/8-I/E (Industrial, Extended)

PIC16LF1824/8			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
PIC16F1824/8			Standard Operating	d Operati g tempera	ng Condit ature -	ti ons (unl 40°C ≤ T₄ 40°C ≤ T₄	ess otherwise stated) A ≤ +85°C for industrial A ≤ +125°C for extended	
Param	Device	Min	Treat	Max	Unito		Conditions	
No.	Characteristics	wiin.	турт	wax.	Units	Vdd	Note	
	Supply Current (IDD) ^{(1,}	2)						
D010		—	5.0	10	μA	1.8	Fosc = 32 kHz	
		_	7.5	12	μA	3.0	LP Oscillator mode, $-40^{\circ}C \le TA \le +85^{\circ}C$	
D010		—	24	50	μA	1.8	Fosc = 32 kHz	
		_	30	55	μA	3.0	LP Oscillator mode, $-40^{\circ}C \le TA \le +85^{\circ}C$	
		_	32	60	μA	5.0	7	
D010A		—	5.0	13	μA	1.8	Fosc = 32 kHz	
			7.5	15	μA	3.0	LP Oscillator mode, -40°C \leq TA \leq +125°C	
D010A			24	55	μA	1.8	Fosc = 32 kHz	
		_	30	60	μA	3.0	LP Oscillator mode, $-40^{\circ}C \le TA \le +125^{\circ}C$	
			32	65	μA	5.0		
D011			88	110	μA	1.8	Fosc = 1 MHz	
		—	133	190	μA	3.0	XI Oscillator mode	
D011		—	110	130	μA	1.8	Fosc = 1 MHz	
			155	220	μA	3.0	XI Oscillator mode	
		—	180	290	μA	5.0		
D012		_	220	290	μA	1.8	Fosc = 4 MHz	
		—	370	480	μA	3.0	XT Oscillator mode	
D012		—	238	300	μΑ	1.8	Fosc = 4 MHz	
		—	390	500	μΑ	3.0	XT Oscillator mode	
		—	447	700	μA	5.0		
D013		_	55	160	μA	1.8	Fosc = 1 MHz	
		—	90	230	μA	3.0	EC Oscillator mode, Medium-Power mode	
D013		—	75	180	μA	1.8	Fosc = 1 MHz	
		—	116	240	μΑ	3.0	EC Oscillator mode	
		—	145	320	μA	5.0		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

- 3: 8 MHz internal oscillator with 4xPLL enabled.
- **4:** 8 MHz crystal oscillator with 4xPLL enabled.

5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

PIC16(L)F1824/8

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	MILLIMETERS			
Dimension	MIN	NOM	MAX		
Contact Pitch	E		1.27 BSC		
Contact Pad Spacing	С		9.40		
Contact Pad Width (X20)	Х			0.60	
Contact Pad Length (X20)	Y			1.95	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.45			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A