Microchip Technology - PIC16F1824-I/P Datasheet

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1824-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/AN0/CPS0/C1IN+/VREF-/	RA0	TTL	CMOS	General purpose I/O.
	AN0	AN	_	A/D Channel 0 input.
ICSPDAT/ICDDAT	CPS0	AN	_	Capacitive sensing input 0.
	C1IN+	AN	—	Comparator C1 positive input.
	VREF-	AN	—	A/D and DAC Negative Voltage Reference input.
	DACOUT	_	AN	Digital-to-Analog Converter output.
	ТΧ	—	CMOS	USART asynchronous transmit.
	СК	ST	CMOS	USART synchronous clock.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
	ICDDAT	ST	CMOS	In-Circuit Data I/O.
RA1/AN1/CPS1/C12IN0-/VREF+/	RA1	TTL	CMOS	General purpose I/O.
SRI/RX ⁽¹⁾ /DT ⁽¹⁾ /ICSPCLK/	AN1	AN	—	A/D Channel 1 input.
ICDCLK	CPS1	AN	—	Capacitive sensing input 1.
	C12IN0-	AN	—	Comparator C1 or C2 negative input.
	VREF+	AN	—	A/D and DAC Positive Voltage Reference input.
	SRI	ST	—	SR latch input.
	RX	ST	—	USART asynchronous input.
	DT	ST	CMOS	USART synchronous data.
	ICSPCLK	ST	—	Serial Programming Clock.
	ICDCLK	ST	—	In-Circuit Debug Clock.
RA2/AN2/CPS2/T0CKI/INT/	RA2	ST	CMOS	General purpose I/O.
C1OUT/SRQ/CCP3/FLT0	AN2	AN	—	A/D Channel 2 input.
	CPS2	AN	—	Capacitive sensing input 2.
	TOCKI	ST	—	Timer0 clock input.
	INT	ST	—	External interrupt.
	C10UT	_	CMOS	Comparator C1 output.
	SRQ	—	CMOS	SR latch non-inverting output.
	CCP3	ST	CMOS	Capture/Compare/PWM3.
	FLT0	ST	—	ECCP Auto-Shutdown Fault input.
RA3/SS ⁽¹⁾ /T1G ⁽¹⁾ /VPP/MCLR	RA3	TTL	—	General purpose input.
	SS	ST	_	Slave Select input.
	T1G	ST	—	Timer1 Gate input.
	Vpp	HV	_	Programming voltage.
	MCLR	ST		Master Clear with internal pull-up.

TABLE 1-2: PIC16(L)F1824 PINOUT DESCRIPTION

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I²C[™] = Schmitt Trigger input with I²C HV = High Voltage XTAL = Crystal levels

Note 1: Pin functions can be moved using the APFCONO and APFCON1 registers (Register 12-1 and Register 12-2). 2: Default function location.

TABLE 3-4:PIC16F1824/PIC16F1828 MEMORY MAP, BANKS 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	INDF0	080h	INDF0	100h	INDF0	180h	INDF0	200h	INDF0	280h	INDF0	300h	INDF0	380h	INDF0
001h	INDF1	081h	INDF1] 101h	INDF1	181h	INDF1	201h	INDF1	281h	INDF1	301h	INDF1	381h	INDF1
002h	PCL	082h	PCL	102h	PCL	182h	PCL	202h	PCL	282h	PCL	302h	PCL	382h	PCL
003h	STATUS	083h	STATUS	103h	STATUS	183h	STATUS	203h	STATUS	283h	STATUS	303h	STATUS	383h	STATUS
004h	FSR0L	084h	FSR0L	104h	FSR0L	184h	FSR0L	204h	FSR0L	284h	FSR0L	304h	FSR0L	384h	FSR0L
005h	FSR0H	085h	FSR0H	105h	FSR0H	185h	FSR0H	205h	FSR0H	285h	FSR0H	305h	FSR0H	385h	FSR0H
006h	FSR1L	086h	FSR1L	106h	FSR1L	186h	FSR1L	206h	FSR1L	286h	FSR1L	306h	FSR1L	386h	FSR1L
007h	FSR1H	087h	FSR1H	107h	FSR1H	187h	FSR1H	207h	FSR1H	287h	FSR1H	307h	FSR1H	387h	FSR1H
008h	BSR	088h	BSR	108h	BSR	188h	BSR	208h	BSR	288h	BSR	308h	BSR	388h	BSR
0090	WREG	089n	WREG	109n	WREG	189n	WREG	209n	WREG	289n	WREG	309n	WREG	389n	WREG
00An	PCLATH	08An		10An	PCLATH	18An	PCLATH	20An	PCLATH	28An	PCLATH	30An	PCLATH	38An	
0080				1080		18BN		20Bh		28BN	INTCON	30Bh	INTCON	38BN	
0000								2000		2000		3001	_	3001	
00Dh	PORTB	08Dh	TRISBUT	10Dh		18Dh	ANSELB	20Dh	WPUBIN	28Dh	—	30Dh	_	38Dh	INLVLB
OUEN	PURIC		TRISC		LAIC	18EN	ANSELC	20En	WPUC			30En	_	38EN	INLVLC
00Fn	_	08Fn		10-1		18FN		20FN		28FN		30FN	_	38FN	_
01011		09011				19011		21011		29011		0146	-	39011	
0111	PIR1	0910	PIE1	11111	CMICONU	1910	EEADRL	2110	SSPIBUE	2910	COPRIL	3110	CCPRJL	3910	IUCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSP1ADD	292h	CCPR1H	312h	ССРКЗН	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	EEDATL	213h	SSP1MSK	293h	CCP1CON	313h	CCP3CON	393h	IOCAF
014h	_	094h	_	114h	CM2CON1	194h	EEDATH	214h	SSP1STAT	294h	PWM1CON	314h	—	394h	IOCBP ⁽¹⁾
015h	TMR0	095h	OPTION	115h	CMOUT	195h	EECON1	215h	SSP1CON	295h	CCP1AS	315h	—	395h	IOCBN ⁽¹⁾
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSP1CON2	296h	PSTR1CON	316h	—	396h	IOCBF ⁽¹⁾
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	—	217h	SSP1CON3	297h	—	317h	-	397h	—
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	_	218h	_	298h	CCPR2L	318h	CCPR4L	398h	_
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	—	299h	CCPR2H	319h	CCPR4H	399h	_
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TXREG	21Ah	_	29Ah	CCP2CON	31Ah	CCP4CON	39Ah	CLKRCON
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh	_	29Bh	PWM2CON	31Bh	_	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	_	19Ch	SPBRGH	21Ch	_	29Ch	CCP2AS	31Ch	_	39Ch	MDCON
01Dh	_	09Dh	ADCON0	111Dh	APFCON0	19Dh	RCSTA	21Dh	_	29Dh	PSTR2CON	31Dh	_	39Dh	MDSRC
01Eh	CPSCON0	09Eh	ADCON1	1 11Eh	APFCON1	19Eh	TXSTA	21Eh	_	29Eh	CCPTMRS0	31Eh	_	39Eh	MDCARL
01Eh	CPSCON1	09Eh		11Eh		19Eh	BAUDCON	21Fh	_	29Eh	_	31Fh	_	39Eh	MDCARH
020h	01000111	040h		120h		140h	BAODCON	220h		231 H		320h		340h	
02011	- ·	07.011	- ·	12011		17 1011		22011		2/1011		02011		0/ 1011	
	General		General		General		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented
	Pulpose		Purpose		Purpose		Read as '0'				Dhimplemented				Read as '0'
	80 Bytes		80 Bytes		80 Bytes		Redu do 0		iteau as 0		iteau as 0		itedu do 0		iteau as 0
	00 29100		00 29,000		00 29100										
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
	Common RAM		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
			70h — 7⊦h		70h — 7⊦h		/Uh — /⊦h	075	/Uh — /⊦h		/Uh – /⊦h		70h — 7⊢h		/Uh — /⊦h
07Fh		OFFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Available only on PIC16(L)F1828.

3.5.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

7.1 Power-on Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

7.1.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a nominal 64 ms timeout on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Word 1.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"* (DS00607).

7.2 Brown-Out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Word 1. The four operating modes are:

- BOR is always on
- BOR is off when in Sleep
- · BOR is controlled by software
- · BOR is always off

Refer to Table 7-3 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Word 2.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 7-3 for more information.

BOREN Config bits	SBOREN	Device Mode	BOR Mode	Device Operation upon release of POR	Device Operation upon wake-up from Sleep
BOR_ON (11)	х	Х	Active	Waits for B	OR ready ⁽¹⁾
BOR_NSLEEP (10)	х	Awake	Active	Moite for	
BOR_NSLEEP (10)	х	Sleep	Disabled		BOR ready
BOR_SBOREN (01)	1	х	Active	Begins in	nmediately
BOR_SBOREN (01)	0	х	Disabled	Begins in	nmediately
BOR_OFF (00)	Х	Х	Disabled	Begins in	nmediately

TABLE 7-1: BOR OPERATING MODES

Note 1: In these specific cases, "Release of POR" and the "Wake-up from Sleep", there is no delay in start-up. The BOR Ready flag (BORRDY = 1) will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

7.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Word 1 are set to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

7.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Word 1 are set to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold. BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

7.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Word 1 are set to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

EXAN	/IPLE 11-4:	ERASING ON	E ROW OF PROGRAM MEMORY
; Thi	s row erase	routine assumes	the following:
; 1.	A valid addr	ess within the	erase block is loaded in ADDRH:ADDRL
; 2.	ADDRH and AI	DRL are located	in shared data memory 0x70 - 0x7F
	BCF BANKSEL MOVF MOVF MOVF BSF	INTCON,GIE EEADRL ADDRL,W EEADRL ADDRH,W EEADRH EECON1,EEPGD	<pre>; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Point to program memory</pre>
	BCF	EECON1,CFGS	; Not configuration space
	BSF	EECON1, FREE	; Specify an erase operation
Required	MOVLW MOVWF 80 MOVLW BSF NOP NOP	55h EECON2 0AAh EECON2 EECON1,WR	<pre>; Shable writes ; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; Any instructions here are ignored as processor ; halts to begin erase sequence ; Processor will stop here and wait for erase complete. ; after erase processor continues with 3rd instruction</pre>
	BCF BSF	EECON1,WREN INTCON,GIE	; Disable writes ; Enable interrupts

TABLE 12-1:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTA
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—		—	ANSA4		ANSA2	ANSA1	ANSA0	122
APFCON0 ⁽¹⁾	RXDTSEL	SDOSEL	SSSEL	_	T1GSEL	TXCKSEL		_	117
APFCON1	_		—	_	P1DSEL	P1CSEL	P2BSEL	CCP2SEL	118
INLVLA	—	-	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	123
LATA	—	-	LATA5	LATA4	-	LATA2	LATA1	LATA0	122
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		176
PORTA	—	-	RA5	RA4	RA3	RA2	RA1	RA0	121
TRISA	—	-	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	121
WPUA	—	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	123

Legend: x = unknown, u = unchanged, - = unimplemented locations, read as '0'. Shaded cells are not used by PORTA.

Note 1: Unshaded cells apply to PIC16(L)F1824 only.

TABLE 12-2: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		—	FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD	40
CONFIGT	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>		FOSC<2:0>		48

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

12.4.3 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each PORTC pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the lowest number in the following lists.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in the priority list.

<u>RC0</u>

- 1. SCL (MSSP) (PIC16(L)F1824 only)
- 2. SCK (MSSP) (PIC16(L)F1824 only)
- 3. P1D

<u>RC1</u>

- 1. SDA (MSSP) (PIC16(L)F1824 only)
- 2. P1C
- 3. CCP4 (PIC16(L)F1828 only)

<u>RC2</u>

- 1. SDO (MSSP) (PIC16(L)F1824 only)
- 2. P1D
- 3. P2B

<u>RC3</u>

- 1. SS (MSSP) (PIC16(L)F1824 only)
- 2. CCP2
- 3. P1C
- 4. P2A

<u>RC4</u>

- 1. MDOUT
- 2. SRNQ
- 3. C2OUT
- 4. TX/CK
- 5. P1B

<u>RC5</u>

- 1. RX/DT
- 2. CCP1/P1A

RC6 (PIC16(L)F1828 only)

- 1. SS (MSSP)
- 2. CCP4

RC7 (PIC16(L)F1828 only)

1. SDO (MSSP)

22.5 Timer2 Control Register

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
		TxOUTI	PS<3:0>		TMRxON	TxCKP	S<1:0>
bit 7						L	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-3	TxOUTPS<3	3:0>: Timerx Ou	tput Postscale	er Select bits			
	1111 = 1:16	Postscaler					
	1110 = 1:15	Postscaler					
	1101 = 1:14	Postscaler					
	1100 = 1.13	Postscaler					
	1011 = 1.12 1010 = 1.12	Postscaler					
	1010 = 1.11 1001 = 1.10	Postscaler					
	1000 = 1:9 F	Postscaler					
	0111 = 1 :8 F	Postscaler					
	0110 = 1:7 F	Postscaler					
	0101 = 1:6 F	Postscaler					
	0100 = 1:5 F	Postscaler					
	0011 = 1 :4 F	Postscaler					
	0010 = 1:3 F	Postscaler					
	0001 = 1:2F						
hit 0							
DIL 2	1 = Timory i						
	0 = Timerx i	is off					
bit 1-0	TxCKPS<1:	0>: Timer2-tvpe	Clock Presca	ale Select bits			
	11 = Presca	ler is 64					
	10 =Prescal	er is 16					
	01 =Prescal	er is 4					
	00 =Prescal	er is 1					

REGISTER 22-1: TXCON: TIMER2/TIMER4/TIMER6 CONTROL REGISTER

23.0 DATA SIGNAL MODULATOR

The Data Signal Modulator (DSM) is a peripheral which allows the user to mix a data stream, also known as a modulator signal, with a carrier signal to produce a modulated output.

Both the carrier and the modulator signals are supplied to the DSM module either internally, from the output of a peripheral, or externally through an input pin.

The modulated output signal is generated by performing a logical "AND" operation of both the carrier and modulator signals and then provided to the MDOUT pin.

The carrier signal is comprised of two distinct and separate signals. A carrier high (CARH) signal and a carrier low (CARL) signal. During the time in which the modulator (MOD) signal is in a logic high state, the DSM mixes the carrier high signal with the modulator signal. When the modulator signal is in a logic low state, the DSM mixes the carrier low signal with the modulator signal. Using this method, the DSM can generate the following types of key modulation schemes:

- Frequency-Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Additionally, the following features are provided within the DSM module:

- Carrier Synchronization
- · Carrier Source Polarity Select
- Carrier Source Pin Disable
- Programmable Modulator Data
- · Modulator Source Pin Disable
- Modulated Output Polarity Select
- Slew Rate Control

Figure 23-1 shows a Simplified Block Diagram of the Data Signal Modulator peripheral.

24.2 Compare Mode

The Compare mode function described in this section is available and identical for CCP modules ECCP1, ECCP2, CCP3 and CCP4.

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur:

- Toggle the CCPx output
- Set the CCPx output
- · Clear the CCPx output
- Generate a Special Event Trigger
- · Generate a Software Interrupt

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 24-2 shows a simplified diagram of the Compare operation.

FIGURE 24-2: COMPARE MODE OPERATION BLOCK DIAGRAM

24.2.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Also, the CCPx pin function can be moved to alternative pins using the APFCON1 register. Refer to **Section 12.1 "Alternate Pin Function"** for more details.

Note:	Clearing the CCPxCON register will force
	the CCPx compare output latch to the
	default low level. This is not the PORT I/O
	data latch.

24.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See Section 21.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, TImer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

24.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPx module does not assert control of the CCPx pin (see the CCPxCON register).

24.2.4 SPECIAL EVENT TRIGGER

When Special Event Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

- Resets Timer1
- Starts an ADC conversion if ADC is enabled

The CCPx module does not assert control of the CCPx pin in this mode.

The Special Event Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. The Special Event Trigger output starts an A/D conversion (if the A/D module is enabled). This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

TABLE 24-3: SPECIAL EVENT TRIGGER

Device	CCPx/ECCPx
PIC16(L)F1824/8	CCP4

Refer to **Section 16.2.5 "Special Event Trigger**" for more information.

Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMR1IF of the PIR1 register.
2: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.

				Period	
00	(Single Output)	PxA Modulated			
		PxA Modulated		Delav	
10	(Half-Bridge)	PxB Modulated			
		PxA Active	- :		<u> </u>
01	(Full-Bridge,	PxB Inactive		I	<u> </u>
	i olinaia)	PxC Inactive			
		PxD Modulated		I	
		PxA Inactive	 	1 1 1	<u> </u>
11	(Full-Bridge,	PxB Modulated			I
	Keverse)	PxC Active	- ; - ;		
		PxD Inactive	_ :	I	

EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE) **FIGURE 24-7:**

Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
 Delay = 4 * Tosc * (PWMxCON<6:0>)

FIGURE 25-5: SPI MASTER/SLAVE CONNECTION

26.4.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 26.4.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- · SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 26.4.2.4 Synchronous Slave Reception Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

TABLE 26-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDOSEL ⁽¹⁾	SSSEL ⁽¹⁾	_	T1GSEL	TXCKSEL	_	_	117
BAUDCON	ABDOVF	RCIDL	-	SCKP	BRG16	—	WUE	ABDEN	296
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	89
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	93
RCREG	EUSART Receive Data Register							290*	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	295
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	294

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave reception.

* Page provides register information.

Note 1: PIC16(L)F1824 only.

TABLE 30-4: C	LKOUT	and I/O	TIMING	PARAM	ETERS
---------------	-------	---------	--------	-------	-------

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	_		70	ns	VDD = 3.0-5.0V		
OS12	TosH2ckH	Fosc↑ to CLKOUT ^{↑(1)}	_		72	ns	VDD = 3.0-5.0V		
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	_		20	ns			
OS14	TioV2ckH	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns	_	_	ns			
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.0-5.0V		
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	_	_	ns	VDD = 3.0-5.0V		
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	_	_	ns			
OS18*	TioR	Port output rise time	—	40	72	ns	VDD = 1.8V		
			_	15	32		VDD = 3.0-5.0V		
OS19*	TioF	Port output fall time	_	28	55	ns	VDD = 1.8V		
			—	15	30		VDD = 3.0-5.0V		
OS20*	Tinp	INT pin input high or low time	25		_	ns			
OS21*	Tioc	Interrupt-on-change new input level time	25	—	—	ns			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

TABLE 30-5: **RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER** AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C \leq TA \leq +125°C							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
30	ТмсL	MCLR Pulse Width (low)	2			μS	
31	TWDTLP	Watchdog Timer Time-out Period (No Prescaler)	12	16	20	ms	Vdd = 3.3V-5V
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾		1024		Tosc	
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	65	140	ms	
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset	_	—	2.0	μS	
35	VBOR	Brown-out Reset Voltage ⁽²⁾	2.55 1.80	2.70 1.9	2.85 2.05	V V	BORV = 0 BORV = 1
36*	VHYST	Brown-out Reset Hysteresis	20	35	75	mV	-40°C to +85°C
37*	TBORDC	Brown-out Reset DC Response Time	0	1	35	μS	$V \text{DD} \leq V \text{BOR}$
* These perspectors are observatorized but not tested							

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: By design, the Oscillator Start-up (OST) counts the first 1.024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

FIGURE 30-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

FIGURE 30-18: SPI SLAVE MODE TIMING (CKE = 0)

FIGURE 31-40: IPD, COMPARATOR, NORMAL-POWER MODE (CxSP = 1), PIC16F1824/8 ONLY

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087C Sheet 1 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

01/27/15