

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1824t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		-				1		,			r
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2											
100h ⁽¹⁾	INDF0	Addressing to (not a physic	his location us al register)	es contents of	FSR0H/FSR0	L to address	data memory	/		XXXX XXXX	XXXX XXXX
101h ⁽¹⁾	INDF1	Addressing to (not a physic	his location us al register)	es contents of	FSR1H/FSR1	L to address	data memory	/		XXXX XXXX	xxxx xxxx
102h ⁽¹⁾	PCL	Program Cou	Program Counter (PC) Least Significant Byte							0000 0000	0000 0000
103h ⁽¹⁾	STATUS	_	-	-	TO	PD	Z	DC	С	1 1000	q quuu
104h ⁽¹⁾	FSR0L	Indirect Data	Indirect Data Memory Address 0 Low Pointer								uuuu uuuu
105h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Poi	nter					0000 0000	0000 0000
106h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu
107h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	nter					0000 0000	0000 0000
108h ⁽¹⁾	BSR	_	_	_			BSR<4:0>			0 0000	0 0000
109h ⁽¹⁾	WREG	Working Reg	jister							0000 0000	uuuu uuuu
10Ah ⁽¹⁾	PCLATH	_	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	er			-000 0000	-000 0000
10Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 000x	0000 000u
10Ch	LATA	_	_	LATA5	LATA4	_	LATA2	LATA1	LATA0	xx -xxx	uu -uuu
10Dh	LATB ⁽²⁾	LATB7	LATB6	LATB5	LATB4	_	_	_	_	xxxx	xxxx
10Eh	LATC	LATC7 ⁽²⁾	LATC6 ⁽²⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	uuuu uuuu
10Fh	—	Unimplemen	ted							_	—
110h	—	Unimplemen	ted							_	—
111h	CM1CON0	C10N	C10UT	C10E	C1POL	—	C1SP	C1HYS	C1SYNC	0000 -100	0000 -100
112h	CM1CON1	C1INTP	C1INTN	C1PCF	H<1:0>	—	—	C1NCH1	C1NCH0	00000	00000
113h	CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2SP	C2HYS	C2SYNC	0000 -100	0000 -100
114h	CM2CON1	C2INTP	C2INTN	C2PCH	H<1:0>	—	—	C2NC	H<1:0>	000000	000000
115h	CMOUT	_	—	_	—	—	—	MC2OUT	MC10UT	00	00
116h	BORCON	SBOREN	—	_	—	—	—	—	BORRDY	1q	uu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	0000 00p0	0q00 0000
118h	DACCON0	DACEN	DACLPS	DACOE	—	DACPS	S<1:0>	—	DACNSS	000-00-0	000-00-0
119h	DACCON1	—	—	_			DACR<4:0>			0 0000	0 0000
11Ah	SRCON0	SRLEN		SRCLK<2:0>		SRQEN	SRNQEN	SRPS	SRPR	0000 0000	0000 0000
11Bh	SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	0000 0000	0000 0000
11Ch	—	Unimplemen	ted							—	—
11Dh	APFCON0	RXDTSEL	SDOSEL ⁽³⁾	SSSEL ⁽³⁾	_	T1GSEL	TXCKSEL	_	—	000- 0000	000- 0000
11Eh	APFCON1	_	—	_	—	P1DSEL	P1CSEL	P2BSEL	CCP2SEL	00 0000	00 0000
11Fh	_	Unimplemen	ted							—	_

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $Legend: \quad x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. \\ Shaded locations are unimplemented, read as '0'.$

Note 1: These registers can be addressed from any bank.

2: PIC16(L)F1828 only.

3: PIC16(L)F1824 only.

4: Unimplemented, read as '1'.

© 2010-2015 Microchip Technology Inc.

FIGURE 5-1: SIMPLIFIED PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

5.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.

Internal clock sources are contained internally within the oscillator module. The internal oscillator block has two internal oscillators and a dedicated Phase-Locked Loop (HFPLL) that are used to generate three internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC), 500 kHz (MFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See **Section 5.3 "Clock Switching"** for additional information.

5.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in the Configuration Word 1 to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Timer1 Oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

See Section 5.3 "Clock Switching" for more information.

5.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through Configuration Word 1:

- High power, 4-32 MHz (FOSC = 111)
- Medium power, 0.5-4 MHz (FOSC = 110)
- Low power, 0-0.5 MHz (FOSC = 101)

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 5-2:

EXTERNAL CLOCK (EC) MODE OPERATION

5.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 5-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 5-3 and Figure 5-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

8.5.3 PIE2 REGISTER

The PIE2 register contains the interrupt enable bits, as shown in Register 8-3.

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt.

REGISTER 8-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	—	CCP2IE
bit 7							bit 0

Legend:						
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is unch	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is cleared				
bit 7	OSFIE: Oscil	lator Fail Interrupt Enable bit				
	1 = Enables	the Oscillator Fail interrupt				
	0 = Disables	the Oscillator Fail interrupt				
bit 6	C2IE: Compa	arator C2 Interrupt Enable bit				
	1 = Enables	the Comparator C2 interrupt				
	0 = Disables	the Comparator C2 interrupt				
bit 5	C1IE: Compa	arator C1 Interrupt Enable bit				
	1 = Enables	the Comparator C1 interrupt				
bit 4	EEIE: EEPRO	OM Write Completion Interru	pt Enable bit			
	1 = Enables	the EEPROM Write Complet	ion interrupt			
hit 2		CD Due Cellision Interrunt En				
DIL 3		the MCCD Due Cellision Interrupt En				
	1 = Enables 0 = Disables	the MSSP Bus Collision Inte	rrupt			
bit 2-1	Linimplemented: Read as '0'					
bit 0	CCP2IF: CCI	P2 Interrupt Enable bit				
	1 = Enables	the CCP2 Interrupt				
	0 = Disables	the CCP2 Interrupt				

8.5.5 PIR1 REGISTER

The PIR1 register contains the interrupt flag bits, as shown in Register 8-5.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 8-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	TMR1GIF: Timer1 Gate Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 6	ADIF: A/D Converter Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 5	RCIF: USART Receive Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 4	TXIF: USART Transmit Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 3	SSP1IF: Synchronous Serial Port (MSSP) Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 2	CCP1IF: CCP1 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 1	TMR2IF: Timer2 to PR2 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 0	TMR1IF: Timer1 Overflow Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending

12.3 PORTB Registers (PIC16(L)F1828 only)

PORTB is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 12-10). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-2 shows how to initialize PORTB.

Reading the PORTB register (Register 12-9) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

The TRISB register (Register 12-10) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

The INLVLB register (Register 12-14) controls the input voltage threshold for each of the available PORTB input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTB register and also the level at which an Interrupt-on-Change occurs, if that feature is enabled. See Section 30.4 "DC Characteristics: PIC16(L)F1824/8-I/E" for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

12.3.1 WEAK PULL-UPS

Each of the PORTB pins has an individually configurable internal weak pull-up. Control bits WPUB<7:4> enable or disable each pull-up (see Register 12-13). Each weak pull-up is automatically turned off when the port pin is configured as an output. All pull-ups are disabled on a Power-on Reset by the WPUEN bit of the OPTION_REG register.

12.3.2 ANSELB REGISTER

The ANSELB register (Register 12-12) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no affect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELB register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

EXAMPLE 12-2: INITIALIZING PORTB

BANKSEL	PORTB	i
CLRF	PORTB	;Init PORTB
BANKSEL	LATB	;Data Latch
CLRF	LATB	i
BANKSEL	ANSELB	
CLRF	ANSELB	;Make RB<7:4> digital
BANKSEL	TRISB	i
MOVLW	B'11110000'	;Set RB<7:4> as inputs
MOVWF	TRISB	;

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	U-0
DACEN	DACLPS	DACOE	_	DACPS	SS<1:0>	—	DACNSS
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	DACEN: DAC	C Enable bit					
	1 = DAC is e	nabled					
		Isabled					
bit 6	DACLPS: DA	C Low-Power	Voltage State	Select bit			
	1 = DAC Pos	sitive reference	source select	ed			
6.4 <i>C</i>				leu			
DIT 5	1 = DAC volt	 voltage Outpl age level is als 	ut Enable bit		nin		
	0 = DAC volt	age level is dis	connected fro	m the DACOU	ріп Гріп		
bit 4	Unimplemen	ted: Read as ')'		•		
bit 3-2	DACPSS<1:0)>: DAC Positiv	e Source Sel	ect bits			
	00 = VDD						
01 = VREF+							
	10 = FVR Bu	Iffer2 output					
1.11.4		ea, ao not use	.1				
DIT 1	Unimplemen	ted: Read as 1).				
bit 0	DACNSS: DA	AC Negative Sc	urce Select b	it			
	$\perp = VREF-$ 0 = Vss						
	0 - 400						

REGISTER 17-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0

REGISTER 17-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DACR<4:0>		
bit 7							bit 0

Legend:						
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is unchanged		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is cleared				
bit 7-5	Unimplemented: Read as '0'					
bit 4-0	it 4-0 DACR<4:0>: DAC Voltage Output Select bits					
Vout = ((Vsrc+) - (Vsrc-))*(DACR<4:0>/(2 ⁵)) + Vsrc-						

Note 1: The output select bits are always right justified to ensure that any number of bits can be used without affecting the register layout

FIGURE 21-6:	TIMER1 GATE SINGLE	-PULSE AND TOGGLE COMBINED MODE
TMR1GE		
T1GPOL		
T1GSPM		
T1GTM		
T1GG <u>O/</u> DONE	 Set by software 	Cleared by hardware on falling edge of T1GVAL
T1G_IN	rising edge of T10	
тіскі		
T1GVAL		
Timer1	Ν	<u>N+1</u> <u>N+2</u> <u>N+3</u> <u>N+4</u>
TMR1GIF	 Cleared by software 	Set by hardware on falling edge of T1GVAL —

24.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 24-4.

EQUATION 24-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+I)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

[ADEE 24-3. EXAMINEE I WINTINE QUENCIES AND NESOEUTIONS (1030 - 32 WINZ)]

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 24-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 24-7: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

24.4.2 FULL-BRIDGE MODE

In Full-Bridge mode, all four pins are used as outputs. An example of Full-Bridge application is shown in Figure 24-10.

In the Forward mode, pin CCPx/PxA is driven to its active state, pin PxD is modulated, while PxB and PxC will be driven to their inactive state as shown in Figure 24-11.

In the Reverse mode, PxC is driven to its active state, pin PxB is modulated, while PxA and PxD will be driven to their inactive state as shown Figure 24-11.

PxA, PxB, PxC and PxD outputs are multiplexed with the PORT data latches. The associated TRIS bits must be cleared to configure the PxA, PxB, PxC and PxD pins as outputs.

FIGURE 24-10: EXAMPLE OF FULL-BRIDGE APPLICATION

25.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a chip select known as Slave Select.

The SPI bus specifies four signal connections:

- · Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Slave Select (SS)

Figure 25-1 shows the block diagram of the MSSP1 module when operating in SPI Mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 25-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 25-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register.

During each SPI clock cycle, a full duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on its SDO pin) and the slave device is reading this bit and

saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

25.7.1 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFCON0 and APFCON1. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 12.1 "Alternate Pin Function"** for more information.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-x/x						
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D						
bit 7		L	I	1		<u> </u>	bit 0						
Legend:													
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'									
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets									
'1' = Bit is set		'0' = Bit is clea	ared]						
		D. (E.) I. I.											
bit /	SPEN: Serial	Port Enable bi	[figuros BV/D ⁻	T and TV/CK n	vina an anrial nor	t pipe)							
	1 = Serial po 0 = Serial po	rt disabled (cor	d in Reset)		ons as senai por	t pins)							
bit 6	RX9: 9-bit Re	ceive Enable b	it										
	1 = Selects 9-bit reception												
	0 = Selects 8-bit reception												
bit 5	SREN: Single	SREN: Single Receive Enable bit											
	Asynchronous	<u>s mode</u> :											
	Don't care Synchronous	Don't care Synchronous mode – Master											
	1 = Enables	<u>synchronous mode – master</u> . 1 = Enables single receive											
	0 = Disables	single receive											
	This bit is clea	ared after recep	otion is compl	ete.									
	Don't care	<u> moue – Slave</u>											
bit 4	CREN: Contir	nuous Receive	Enable bit										
2	Asynchronous	s mode:											
	1 = Enables	receiver											
	0 = Disables	receiver											
	Synchronous	<u>mode</u> :	nivo until onol		algorid (CDEN								
	0 = Disables	continuous rec	eive until enar eive		s cleared (CREN	I overnues SRE	IN)						
bit 3	ADDEN: Add	ress Detect En	able bit										
	Asynchronous	<u>s mode 9-bit (F</u>	2 <u>X9 = 1</u>):										
	1 = Enables	address detect	ion, enable in	terrupt and loa	d the receive bu	iffer when RSR	<8> is set						
	0 = Disables	address detec	tion, all bytes $x_0 = 0$	are received a	ind ninth bit can	be used as par	ity bit						
	Don't care		<u> </u>										
bit 2	FFRR: Frami	na Error bit											
	1 = Framing	error (can be u	pdated by rea	iding RCREG	register and rece	eive next valid ł	ovte)						
	0 = No framir	ng error	. ,	0	0		<i>,</i>						
bit 1	OERR: Overr	un Error bit											
	1 = Overrun 0 = No overr	error (can be c un error	eared by clea	aring bit CREN)								
bit 0	RX9D: Ninth	bit of Received	Data										
	This can be a	ddress/data bit	or a parity bit	t and must be	calculated by us	er firmware.							

REGISTER 26-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER⁽¹⁾

	SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_	—	_	_	_	_	_	300	0.16	207	
1200		_	—	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	—	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	—	_	
57.6k	55556	-3.55	8	—	—	—	57.60k	0.00	3	—	—		
115.2k	—	_	_	_	_	_	115.2k	0.00	1	_	_		

TABLE 26-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303	
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575	
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_
57.6k	55556	-3.55	8	_	_	_	57.60k	0.00	3	—	_	_
115.2k	_	_		—	_	_	115.2k	0.00	1	—	_	_

27.5 Timer Resources

To measure the change in frequency of the capacitive sensing oscillator, a fixed time base is required. For the period of the fixed time base, the capacitive sensing oscillator is used to clock either Timer0 or Timer1. The frequency of the capacitive sensing oscillator is equal to the number of counts in the timer divided by the period of the fixed time base.

27.6 Fixed Time Base

To measure the frequency of the capacitive sensing oscillator, a fixed time base is required. Any timer resource or software loop can be used to establish the fixed time base. It is up to the end user to determine the method in which the fixed time base is generated.

Note:	The fixed time base can not be generated
	by the timer resource that the capacitive
	sensing oscillator is clocking.

27.6.1 TIMER0

To select Timer0 as the timer resource for the capacitive sensing module:

- Set the T0XCS bit of the CPSCON0 register
- Clear the TMR0CS bit of the OPTION_REG
 register

When Timer0 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer0. Refer to **Section 20.0** "**Timer0 Module**" for additional information.

27.6.2 TIMER1

To select Timer1 as the timer resource for the capacitive sensing module, set the TMR1CS<1:0> of the T1CON register to '11'. When Timer1 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer1. Because the Timer1 module has a gate control, developing a time base for the frequency measurement can be simplified by using the Timer0 overflow flag.

It is recommend that the Timer0 overflow flag, in conjunction with the Toggle mode of the Timer1 Gate, be used to develop the fixed time base required by the software portion of the capacitive sensing module. Refer to **Section 20.1.2 "8-bit Counter Mode"** for additional information.

TABLE 27-2: TIMER1 ENABLE FUNCTION

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	On
1	1	Count Enabled by input

27.7 Software Control

The software portion of the capacitive sensing module is required to determine the change in frequency of the capacitive sensing oscillator. This is accomplished by the following:

- Setting a fixed time base to acquire counts on Timer0 or Timer1
- Establishing the nominal frequency for the capacitive sensing oscillator
- Establishing the reduced frequency for the capacitive sensing oscillator due to an additional capacitive load
- Set the frequency threshold

27.7.1 NOMINAL FREQUENCY (NO CAPACITIVE LOAD)

To determine the nominal frequency of the capacitive sensing oscillator:

- Remove any extra capacitive load on the selected CPSx pin
- At the start of the fixed time base, clear the timer resource
- At the end of the fixed time base save the value in the timer resource

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator for the given time base. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base.

27.7.2 REDUCED FREQUENCY (ADDITIONAL CAPACITIVE LOAD)

The extra capacitive load will cause the frequency of the capacitive sensing oscillator to decrease. To determine the reduced frequency of the capacitive sensing oscillator:

- Add a typical capacitive load on the selected CPSx pin
- Use the same fixed time base as the nominal frequency measurement
- At the start of the fixed time base, clear the timer resource
- At the end of the fixed time base save the value in the timer resource

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator with an additional capacitive load. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base. This frequency should be less than the value obtained during the nominal frequency measurement.

Mnen	nonic,	Description	Cyclos		14-Bit	Opcode	e	Status	Notos
Oper	ands	Description	Cycles	MSb			LSb	Affected	NOLES
•		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	-	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPER	ATIONS						
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	_	No Operation	1	00	0000	0000	0000		
OPTION	_	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm					kkkk		
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	lnmm	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	kkkk		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk			2

TABLE 29-3: PIC16F/LF1824/1828 ENHANCED INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

CALL	Call Subroutine				
Syntax:	[<i>label</i>] CALL k				
Operands:	$0 \leq k \leq 2047$				
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>				
Status Affected:	None				
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.				

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ \text{0} \rightarrow \text{WDT prescaler,} \\ \text{1} \rightarrow \overline{\text{TO}} \\ \text{1} \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	$\label{eq:CLRWDT} \begin{array}{l} \text{CLRWDT} \text{ instruction resets the Watchdog Timer. It also resets the prescaler of the WDT.} \\ \text{Status bits TO and PD are set.} \end{array}$

CALLW	Subroutine Call With W				
Syntax:	[label] CALLW				
Operands:	None				
Operation:	(PC) +1 → TOS, (W) → PC<7:0>, (PCLATH<6:0>) → PC<14:8>				
Status Affected:	None				
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.				

COMF	Complement f				
Syntax:	[<i>label</i>] COMF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(\overline{f}) \rightarrow (destination)$				
Status Affected:	Z				
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.				

CLRF	Clear f			
Syntax:	[label] CLRF f			
Operands:	$0 \leq f \leq 127$			
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Description:	The contents of register 'f' are cleared and the Z bit is set.			

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in regis- ter 'f'.

TABLE 30-10: COMPARATOR SPECIFICATIONS

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C							
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
CM01	VIOFF ⁽¹⁾	Input Offset Voltage	—	±7.5	±60	mV	High-Power mode, VICM = VDD/2
CM02	VICM	Input Common Mode Voltage	0	_	Vdd	V	
CM03	CMRR	Common Mode Rejection Ratio	—	50	—	dB	
CM04A		Response Time Rising Edge		400	800	ns	High-Power mode
CM04B		Response Time Falling Edge		200	400	ns	High-Power mode
CM04C	TRESPY /	Response Time Rising Edge		1200		ns	Low-Power mode
CM04D		Response Time Falling Edge		550		ns	Low-Power mode
CM05	Тмс2оv	Comparator Mode Change to Output Valid*	_	_	10	μS	
CM06	CHYSTER	Comparator Hysteresis ⁽²⁾	_	45		mV	CxHYS = 1

* These parameters are characterized but not tested.

Note 1: High-Power mode only.

....

2: Comparator Hysteresis is available when the CxHYS bit of the CMxCON0 register is enabled.

TABLE 30-11: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Operating	Conditions	(unless	otherwise stated)	
operating	Contaitions	lainess	otherwise stated)	

Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
DAC01*	Clsb	Step Size		VDD/32	_	V	
DAC02*	CACC	Absolute Accuracy	_	_	± 1/2	LSb	
DAC03*	CR	Unit Resistor Value (R)		5K	_	Ω	
DAC04*	CST	Settling Time ⁽¹⁾			10	μS	

These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '0000' to '1111'.

FIGURE 30-14: **USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING**

20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN] With 0.40 mm Contact Length

	Units	N	IILLIMETER	S
Dimens	MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			2.50
Optional Center Pad Length	T2			2.50
Contact Pad Spacing	C1		3.93	
Contact Pad Spacing	C2		3.93	
Contact Pad Width	X1			0.30

Y1

G

0.20

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

Contact Pad Length

Distance Between Pads

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2126A

0.73