

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1828-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-7:PIC16(L)F1824/8 MEMORY MAP, BANKS 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	INDF0	C80h	INDF0	D00h	INDF0	D80h	INDF0	E00h	INDF0	E80h	INDF0	F00h	INDF0	F80h	INDF0
C01h	INDF1	C81h	INDF1	D01h	INDF1	D81h	INDF1	E01h	INDF1	E81h	INDF1	F01h	INDF1	F81h	INDF1
C02h	PCL	C82h	PCL	D02h	PCL	D82h	PCL	E02h	PCL	E82h	PCL	F02h	PCL	F82h	PCL
C03h	STATUS	C83h	STATUS	D03h	STATUS	D83h	STATUS	E03h	STATUS	E83h	STATUS	F03h	STATUS	F83h	STATUS
C04h	FSR0L	C84h	FSR0L	D04h	FSR0L	D84h	FSR0L	E04h	FSR0L	E84h	FSR0L	F04h	FSR0L	F84h	FSR0L
C05h	FSR0H	C85h	FSR0H	D05h	FSR0H	D85h	FSR0H	E05h	FSR0H	E85h	FSR0H	F05h	FSR0H	F85h	FSR0H
C06h	FSR1L	C86h	FSR1L	D06h	FSR1L	D86h	FSR1L	E06h	FSR1L	E86h	FSR1L	F06h	FSR1L	F86h	FSR1L
C07h	FSR1H	C87h	FSR1H	D07h	FSR1H	D87h	FSR1H	E07h	FSR1H	E87h	FSR1H	F07h	FSR1H	F87h	FSR1H
C08h	BSR	C88h	BSR	D08h	BSR	D88h	BSR	E08h	BSR	E88h	BSR	F08h	BSR	F88h	BSR
C09h	WREG	C89h	WREG	D09h	WREG	D89h	WREG	E09h	WREG	E89h	WREG	F09h	WREG	F89h	WREG
C0Ah	PCLATH	C8Ah	PCLATH	D0Ah	PCLATH	D8Ah	PCLATH	E0Ah	PCLATH	E8Ah	PCLATH	F0Ah	PCLATH	F8Ah	PCLATH
C0Bh	INTCON	C8Bh	INTCON	D0Bh	INTCON	D8Bh	INTCON	E0Bh	INTCON	E8Bh	INTCON	F0Bh	INTCON	F8Bh	INTCON
C0Ch	_	C8Ch	_	D0Ch	_	D8Ch	—	E0Ch	—	E8Ch	_	F0Ch	-	F8Ch	
C0Dh	_	C8Dh	—	D0Dh	—	D8Dh	_	E0Dh	_	E8Dh	_	F0Dh	_	F8Dh	
C0Eh	-	C8Eh	—	D0Eh	—	D8Eh	_	E0Eh	_	E8Eh	_	F0Eh	-	F8Eh	
C0Fh	-	C8Fh	—	D0Fh	—	D8Fh	—	E0Fh	—	E8Fh	—	F0Fh	_	F8Fh	
C10h	-	C90h	—	D10h	—	D90h	—	E10h	—	E90h	—	F10h	_	F90h	
C11h	-	C91h	—	D11h	—	D91h	—	E11h	—	E91h	—	F11h	_	F91h	
C12h	_	C92h	_	D12h	_	D92h	—	E12h	—	E92h	_	F12h	-	F92h	
C13h	_	C93h	_	D13h	_	D93h	—	E13h	—	E93h	_	F13h	-	F93h	
C14h	_	C94h	—	D14h	—	D94h		E14h		E94h		F14h	_	F94h	
C15h	-	C95h	—	D15h	—	D95h	_	E15h	_	E95h	_	F15h	-	F95h	
C16h	—	C96h	—	D16h	—	D96h		E16h		E96h		F16h	—	F96h	
C17h	—	C97h	—	D17h	—	D97h		E17h		E97h		F17h	—	F97h	Soo Toblo 2 9 for
C18h	_	C98h	_	D18h	—	D98h	_	E18h	_	E98h	—	F18h	_	F98h	register mapping
C19h	—	C99h	—	D19h	—	D99h	—	E19h	_	E99h	—	F19h	—	F99h	details
C1Ah	—	C9Ah	_	D1Ah	—	D9Ah	_	E1Ah	_	E9Ah	—	F1Ah	_	F9Ah	
C1Bh	_	C9Bh		D1Bh	_	D9Bh	_	E1Bh	—	E9Bh	—	F1Bh	_	F9Bh	
C1Ch	_	C9Ch	_	D1Ch	—	D9Ch	_	E1Ch	_	E9Ch	—	F1Ch	_	F9Ch	
C1Dh	_	C9Dh		D1Dh	—	D9Dh	_	E1Dh	_	E9Dh	—	F1Dh	_	F9Dh	
C1Eh	_	C9Eh		D1Eh	—	D9Eh	_	E1Eh	_	E9Eh	—	F1Eh	_	F9Eh	
C1Fh	_	C9Fh		D1Fh	_	D9Fh	_	E1Fh	_	E9Fh	—	F1Fh	—	F9Fh	
C20h		CA0h		D20h		DA0h		E20h		EA0h		F20h		FA0h	
C6Fh	Unimplemented Read as '0'	CEEh	Unimplemented Read as '0'	D6Fh	Unimplemented Read as '0'	DEEh	Unimplemented Read as '0'	F6Fh	Unimplemented Read as '0'	FFFh	Unimplemented Read as '0'	F6Fh	Unimplemented Read as '0'	FFFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
	Accesses		Accesses												
	70h – 7Fh		70h – 7Fh												
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	

Legend: = Unimplemented data memory locations, read as '0'.

PIC16(L)F1824/8

FIGURE 5-1: SIMPLIFIED PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH REFERENCE CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CLKRCON	CLKREN	CLKROE	CLKRSLR	CLKRI	DC<1:0>	C	LKRDIV<2:0>	>	72
Leave de la contracte de la chiera consider (2). Observations actives des services des services de la conserva									

Legend: — = unimplemented locations, read as '0'. Shaded cells are not used by reference clock sources.

TABLE 6-2: SUMMARY OF CONFIGURATION WORD WITH REFERENCE CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		CPD	40
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE<1:0> FOSC<2:0>			48		

Legend: — = unimplemented locations, read as '0'. Shaded cells are not used by reference clock sources.

11.3 Flash Program Memory Overview

It is important to understand the Flash program memory structure for erase and programming operations. Flash program memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum block size that can be erased by user software.

Flash program memory may only be written or erased if the destination address is in a segment of memory that is not write-protected, as defined in bits WRT<1:0> of Configuration Word 2.

After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the EEDATH:EEDATL register pair.

Note:	If the user wants to modify only a portion
	of a previously programmed row, then the
	contents of the entire row must be read
	and saved in RAM prior to the erase.

The number of data write latches is not equivalent to the number of row locations. During programming, user software will need to fill the set of write latches and initiate a programming operation multiple times in order to fully reprogram an erased row. For example, a device with a row size of 32 words and eight write latches will need to load the write latches with data and initiate a programming operation four times.

The size of a program memory row and the number of program memory write latches may vary by device. See Table 11-1 for details.

TABLE 11-1:FLASH MEMORY
ORGANIZATION BY DEVICE

Device	Erase Block (Row) Size/ Boundary	Number of Write Latches/ Boundary
PIC16(L)F1824	32 words,	32 words,
PIC16(L)F1828	EEADRL<4:0>	EEADRL<4:0>
	= 00000	= 00000

11.3.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the Least and Most Significant address bits to the EEADRH:EEADRL register pair.
- 2. Clear the CFGS bit of the EECON1 register.
- 3. Set the EEPGD control bit of the EECON1 register.
- 4. Then, set control bit RD of the EECON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle, in the EEDATH:EEDATL register pair; therefore, it can be read as two bytes in the following instructions.

EEDATH:EEDATL register pair will hold this value until another read or until it is written to by the user.

- Note 1: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a two-cycle instruction on the next instruction after the RD bit is set.
 - 2: Flash program memory can be read regardless of the setting of the CP bit.

PIC16(L)F1824/8

EXAN	/IPLE 11-4:	ERASING ON	E ROW OF PROGRAM MEMORY
; Thi	s row erase	routine assumes	the following:
; 1.	A valid addr	ess within the	erase block is loaded in ADDRH:ADDRL
; 2.	ADDRH and AI	DRL are located	in shared data memory 0x70 - 0x7F
	BCF BANKSEL MOVF MOVF MOVF BSF	INTCON,GIE EEADRL ADDRL,W EEADRL ADDRH,W EEADRH EECON1,EEPGD	<pre>; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Point to program memory</pre>
	BCF	EECON1,CFGS	; Not configuration space
	BSF	EECON1, FREE	; Specify an erase operation
Required	MOVLW MOVWF 80 MOVLW BSF NOP NOP	55h EECON2 0AAh EECON2 EECON1,WR	<pre>; Shable writes ; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; Any instructions here are ignored as processor ; halts to begin erase sequence ; Processor will stop here and wait for erase complete. ; after erase processor continues with 3rd instruction</pre>
	BCF BSF	EECON1,WREN INTCON,GIE	; Disable writes ; Enable interrupts

12.2 PORTA Registers

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 12-4). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input only and its TRIS bit will always read as '1'. Example 12-1 shows how to initialize PORTA.

Reading the PORTA register (Register 12-3) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

The TRISA register (Register 12-4) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

The INLVLA register (Register 12-8) controls the input voltage threshold for each of the available PORTA input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTA register and also the level at which an Interrupt-on-Change occurs, if that feature is enabled. See Section 30.4 "DC Characteristics: PIC16(L)F1824/8-I/E" for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

12.2.1 WEAK PULL-UPS

Each of the PORTA pins has an individually configurable internal weak pull-up. Control bits WPUA<5:0> enable or disable each pull-up (see Register 12-7). Each weak pull-up is automatically turned off when the port pin is configured as an output. All pull-ups are disabled on a Power-on Reset by the WPUEN bit of the OPTION_REG register.

12.2.2 ANSELA REGISTER

The ANSELA register (Register 12-6) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA register must be initialized
	to configure an analog channel as a digital
	input. Pins configured as analog inputs
	will read '0'.

EXAMPLE 12-1: INITIALIZING PORTA

BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF	ANSELA	;digital I/O
BANKSEL	TRISA	;
MOVLW	B'00111000'	;Set RA<5:3> as inputs
MOVWF	TRISA	;and set RA<2:0> as
		;outputs

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN	TSRNG	CDAF\	/R<1:0>	ADFVF	२<1:0>
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value dep	ends on condit	ion	
bit 7	FVREN: Fixed 0 = Fixed Vol 1 = Fixed Vol	d Voltage Refe Itage Referenc Itage Referenc	rence Enable e is disabled e is enabled	bit			
bit 6	bit 6 FVRRDY: Fixed Voltage Reference Ready Flag bit ⁽¹⁾ 0 = Fixed Voltage Reference output is not ready or not enabled 1 = Fixed Voltage Reference output is ready for use						
bit 5	TSEN: Tempera 0 = Tempera 1 = Tempera	erature Indicato ture Indicator is ture Indicator is	or Enable bit ⁽³ s disabled s enabled)			
bit 4	TSRNG: Tem 0 = Vout = V 1 = Vout = V	perature Indica ′DD - 2VT (Low ′DD - 4VT (High	ator Range Se Range) Range)	election bit ⁽³⁾			
bit 3-2	CDAFVR<1:0 00 = Compar 01 = Compar 10 = Compar 11 = Compar	D>: Comparato ator and DAC I ator and DAC I ator and DAC I ator and DAC I	and DAC Fix Fixed Voltage Fixed Voltage Fixed Voltage Fixed Voltage	ted Voltage Ref Reference Per Reference Per Reference Per Reference Per	erence Selection ipheral output is ipheral output is ipheral output is ipheral output is	on bits s off. s 1x (1.024V) s 2x (2.048V) ⁽²⁾ s 4x (4.096V) ⁽²⁾)
bit 1-0	ADFVR<1:0> 00 = ADC Fix 01 = ADC Fix 10 = ADC Fix 11 = ADC Fix	: ADC Fixed V red Voltage Re red Voltage Re red Voltage Re red Voltage Re	oltage Refere ference Peripl ference Peripl ference Peripl ference Peripl	nce Selection b heral output is o heral output is 2 heral output is 2 heral output is 2	nits off. 1x (1.024V) 2x (2.048V) ⁽²⁾ 4x (4.096V) ⁽²⁾		
Note 1: F	VRRDY is always	s '1' on devices	with the LDC) (PIC16F1824/	/8).		

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

2: Fixed Voltage Reference output cannot exceed VDD.

TABLE 14-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFV	२<1:0>	141

Legend: Shaded cells are unused by the Fixed Voltage Reference module.

^{3:} See Section 15.0 "Temperature Indicator Module" for additional information.

16.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

Please refer to **Section 16.1.5 "Interrupts"** for more information.

FIGURE 16-3: 10-BIT A/D CONVERSION RESULT FORMAT

16.1.6 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 16-3 shows the two output formats.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CM1CON0	C10N	C1OUT	C10E	C1POL		C1SP	C1HYS C1SYNC		171
CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2SP	C2HYS	C2HYS C2SYNC	
CM1CON1	C1NTP	C1INTN	C1PCI	H<1:0>	—	—	C1NCI	H<1:0>	172
CM2CON1	C2NTP	C2INTN	C2PCI	H<1:0>	—	— — C2NCH<1:0>		C2NCH<1:0>	
CMOUT	_	_	—	_	—	—	MC2OUT	MC2OUT MC1OUT	
DACCON0	DACEN	DACLPS	DACOE	_	DACPS	S<1:0>	— DACNSS		159
DACCON1	—	—	—		DACR<4:0>				159
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	141
INLVLA	_	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA1 INLVLA0	
INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC1 INLVLC0	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	89
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	_	_	— CCP2IE	
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	—	– CCP2IF		94
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	121
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	132

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PIC16(L)F1828 only.

22.5 Timer2 Control Register

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
		TxOUT	PS<3:0>		TMRxON	TxCKP	S<1:0>		
bit 7						L	bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets		
'1' = Bit is se	et	'0' = Bit is clea	ared						
bit 7	Unimpleme	nted: Read as '	0'						
bit 6-3	TxOUTPS<3	3:0>: Timerx Ou	tput Postscale	er Select bits					
	1111 = 1:16	Postscaler							
	1110 = 1:15	Postscaler							
	1101 = 1:14	Postscaler							
	1100 = 1.13	Postscaler							
	1011 = 1.12	Postscaler							
	1010 = 1.11 1001 = 1.10	Postscaler							
	1000 = 1:9 F	Postscaler							
	0111 = 1 :8 F	Postscaler							
	0110 = 1:7 F	Postscaler							
	0101 = 1:6 F	Postscaler							
	0100 = 1:5 F	Postscaler							
	0011 = 1 :4 F	Postscaler							
	0010 = 1:3 F	Postscaler							
	0001 = 1:2F								
hit 0									
DIL 2	1 = Timory i								
	0 = Timerx i	is off							
bit 1-0	TxCKPS<1:	0>: Timer2-tvpe	Clock Presca	ale Select bits					
	11 = Presca	ler is 64							
	10 =Prescal	er is 16							
	01 =Prescal	er is 4							
	00 =Prescal	er is 1							

REGISTER 22-1: TXCON: TIMER2/TIMER4/TIMER6 CONTROL REGISTER

24.1 Capture Mode

The Capture mode function described in this section is available and identical for CCP modules ECCP1, ECCP2, CCP3 and CCP4.

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the CCPx pin, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- · Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Figure 24-1 shows a simplified diagram of the Capture operation.

24.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Also, the CCPx pin function can be moved to alternative pins using the APFCON1 register. Refer to **Section 12.1 "Alternate Pin Function**" for more details.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 24-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

24.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 21.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

24.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in Operating mode.

Note:	Clocking Timer1 from the system clock
	(Fosc) should not be used in Capture
	mode. In order for Capture mode to
	recognize the trigger event on the CCPx
	pin, Timer1 must be clocked from the
	instruction clock (FOSC/4) or from an
	external clock source.

24.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler. Example 24-1 demonstrates the code to perform this function.

EXAMPLE 24-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEL	CCPxCON	;Set Bank bits to point
		;to CCPxCON
CLRF	CCPxCON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		;the new prescaler
		;move value and CCP ON
MOVWF	CCPxCON	;Load CCPxCON with this
		;value

25.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSP1ADD and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 25-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 25-39).

FIGURE 25-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 25-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

PIC16(L)F1824/8

FIGURE 26-2: EUSART RECEIVE BLOCK DIAGRAM

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These registers are detailed in Register 26-1, Register 26-2 and Register 26-3, respectively.

When the receiver or transmitter section is not enabled then the corresponding RX or TX pin may be used for general purpose input and output.

26.3.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence (Figure 26-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 26-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 26-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 26.3.3 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

IADLE 20-0. DRG COUNTER CLOCK RATES	ABLE 26-6:	BRG COUNTER CLOCK RATES
-------------------------------------	------------	-------------------------

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1 1		Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting.

FIGURE 26-6: AUTOMATIC BAUD RATE CALIBRATION

27.0 CAPACITIVE SENSING (CPS) MODULE

The Capacitive Sensing (CPS) module allows for an interaction with an end user without a mechanical interface. In a typical application, the CPS module is attached to a pad on a Printed Circuit Board (PCB), which is electrically isolated from the end user. When the end user places their finger over the PCB pad, a capacitive load is added, causing a frequency shift in the capacitive sensing module. The CPS module requires software and at least one timer resource to determine the change in frequency. Key features of this module include:

- · Analog MUX for monitoring multiple inputs
- · Capacitive sensing oscillator
- · Multiple current ranges
- Multiple voltage reference modes
- Multiple timer resources
- Software control
- · Operation during Sleep

30.7 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

T			
F	Frequency	т	Time
Lowerc	case letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDIx	sc	SCKx
do	SDO	ss	SS
dt	Data in	tO	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	case letters and their meanings:	·	
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 30-5: LOAD CONDITIONS

TABLE 30-12: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions			
US120	TCKH2DTV	SYNC XMIT (Master and Slave)	3.0-5.5V	—	80	ns			
	Clock high to data-out valid	1.8-5.5V	—	100	ns				
US121	TCKRF	Clock out rise time and fall time	3.0-5.5V	—	45	ns			
	(Master mode)	1.8-5.5V	—	50	ns				
US122	TDTRF	Data-out rise time and fall time	3.0-5.5V		45	ns			
			1.8-5.5V		50	ns			

FIGURE 30-15: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 30-13: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standar Operatir	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param. No.SymbolCharacteristicMin.Max.UnitsConditions										
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-hold before $CK \downarrow$ (DT hold time)	10		ns					
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns					

Param No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
SP70* -	TssL2scH, TssL2scL	$\overline{SSx}\downarrow$ to SCKx \downarrow or SCKx \uparrow input		2.25 TCY		—	ns	
SP71*	TscH	SCKx input high time (Slave mod	de)	TCY + 20	_		ns	
SP72*	TscL	SCKx input low time (Slave mod	e)	TCY + 20	_		ns	
SP73* -	TDIV2scH, TDIV2scL	Setup time of SDIx data input to	SCKx edge	100		—	ns	
SP74* -	TscH2diL, TscL2diL	Hold time of SDIx data input to SCKx edge		100		_	ns	
SP75*	TDOR	SDO data output rise time	3.0-5.5V	—	10	25	ns	
			1.8-5.5V	—	25	50	ns	
SP76* -	TdoF	SDOx data output fall time		—	10	25	ns	
SP77* -	TssH2doZ	SSx↑ to SDOx output high-impedance		10		50	ns	
SP78*	TscR	SCKx output rise time	3.0-5.5V	_	10	25	ns	
		(Master mode)	1.8-5.5V	—	25	50	ns	
SP79*	TscF	SCKx output fall time (Master mo	ode)	—	10	25	ns	
SP80*	TscH2doV,	SDOx data output valid after	3.0-5.5V	—		50	ns	
	TscL2doV	SCKx edge	1.8-5.5V	_		145	ns	
SP81* -	TDOV2scH, TDOV2scL	SDOx data output setup to SCKx edge		Тсу		—	ns	
SP82*	TssL2doV	SDOx data output valid after SS	↓ edge	_	_	50	ns	
SP83* -	TscH2ssH, TscL2ssH	SSx ↑ after SCKx edge		1.5Tcy + 40	_		ns	
SP78* SP79* SP80* SP81* SP82* SP83*	ISCR TSCF TSCH2DOV, TSCL2DOV TDOV2SCL, TSSL2DOV TSCH2SSH, TSCL2SSH These par	SCKx output rise time (Master mode) SCKx output fall time (Master mo SDOx data output valid after SCKx edge SDOx data output setup to SCKx SDOx data output valid after SS SSX ↑ after SCKx edge	3.0-5.5V 1.8-5.5V ode) 3.0-5.5V 1.8-5.5V < edge ↓ edge	— — — — — — — 1.5TCY + 40	10 25 10 — — — —	25 50 25 50 145 50 	ns ns ns ns ns ns ns	

TABLE 30-14: SPI MODE REQUIREMENTS

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

31.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for design guidance and are not tested.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "MAXIMUM", "Max.", "MINIMUM" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.