Microchip Technology - PIC16F1828-E/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1828-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

0/1	20-Pin DIP/SOIC/SSOP	20-Pin QFN/UQFN	٩/D	Reference	Cap Sense	Comparator	SR Latch	Timers	ССР	EUSART	dss	Interrupt	Modulator	dn-IInd	Basic
RA0	19	16	AN0	VREF- DACOUT	CPS0	C1IN+	—	_	_	-	_	IOC	—	Y	ICSPDAT/ ICDDAT
RA1	18	15	AN1	VREF+	CPS1	C12IN0-	SRI	—	—	-	—	IOC	—	Y	ICSPCLK/ ICDCLK
RA2	17	14	AN2	-	CPS2	C1OUT	SRQ	TOCKI	CCP3 FLT0	-	—	INT/ IOC	-	Y	-
RA3	4	1		—	—	—	—	T1G ⁽¹⁾	_	-	—	IOC	—	Y ⁽⁴⁾	MCLR VPP
RA4	3	20	AN3	_	CPS3	—	_	T1G ⁽¹⁾ T1OSO	P2B ⁽¹⁾	—	—	IOC	_	Y	OSC2 CLKOUT CLKR
RA5	2	19		—	—	—	_	T1CKI T1OSI	CCP2 ⁽¹⁾ P2A ⁽¹⁾	-	—	IOC	—	Y	OSC1 CLKIN
RB4	13	10	AN10	—	CPS10	—		_	_	-	SDA1 SDI1	IOC	—	Y	—
RB5	12	9	AN11	—	CPS11				_	RX ⁽¹⁾ DT ⁽¹⁾	_	IOC	_	Y	_
RB6	11	8		—	_	—		_	—	—	SCL1 SCK1	IOC	_	Y	—
RB7	10	7	I	—	_				_	TX ⁽¹⁾ CK ⁽¹⁾	_	IOC	_	Y	_
RC0	16	13	AN4	_	CPS4	C2IN+	—	—	P1D ⁽¹⁾	—	_	—	—	Y	—
RC1	15	12	AN5	_	CPS5	C12IN1-	—	_	P1C ⁽¹⁾	—	_	—	_	Y	_
RC2	14	11	AN6	—	CPS6	C12IN2-	—	_	P1D ⁽¹⁾ P2B ⁽¹⁾	-	—	—	MDCIN1	Y	—
RC3	7	4	AN7	_	CPS7	C12IN3-	_	_	P1C ⁽¹⁾ CCP2 ⁽¹⁾ P2A ⁽¹⁾	—	—	—	MDMIN	Y	—
RC4	6	3	—	—	—	C2OUT	SRNQ	-	P1B	TX ⁽¹⁾ CK ⁽¹⁾	-	—	MDOUT	Y	-
RC5	5	2	—	—	—	—	—	—	CCP1 P1A	RX ⁽¹⁾ DT ⁽¹⁾	—	—	MDCIN2	Y	—
RC6	8	5	AN8	—	CPS8	—	—	—	CCP4	—	SS	—	—	Y	—
RC7	9	6	AN9	—	CPS9	_	—	_	_	—	SDO	—	—	Y	_
VDD	1	18	_	—	—	—		—		_	—	—	—	—	Vdd
Vss	20	17	_	_	_	_	_	_	_	_	_	—	_	_	Vss

TABLE 2: 20-PIN ALLOCATION TABLE (PIC16(L)F1828)

Note 1: Pin function is selectable via the APFCON0 or APFCON1 registers.

7.0 RESETS

There are multiple ways to reset this device:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- · Stack Underflow
- Programming mode exit

To allow VDD to stabilize, an optional Power-up Timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 7-1.

FIGURE 7-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

7.3 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Word 1 and the LVP bit of Configuration Word 2 (Table 7-2).

TABLE 7-2:	MCLR	CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

7.3.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the MCLR pin lo	W.
---	----

7.3.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 12.2 "PORTA Registers"** for more information.

7.4 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See **Section 10.0** "**Watchdog Timer**" for more information.

7.5 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 7-4 for default conditions after a RESET instruction has occurred.

7.6 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Word 2. See **Section 3.4.2** "**Overflow/Underflow Reset**" for more information.

7.7 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

7.8 Power-up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overrightarrow{\text{PWRTE}}$ bit of Configuration Word 1.

7.9 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See Section 5.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. Upon bringing MCLR high, the device will begin execution immediately (see Figure 7-4). This is useful for testing purposes or to synchronize more than one device operating in parallel.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	89
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	176
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	90
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	_	CCP2IE	91
PIE3	_	_	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	_	92
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	93
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	—	—	CCP2IF	94
PIR3	—	—	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	_	95

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented locations, read as '0'. Shaded cells are not used by interrupts.

REGISTER 12-12: ANSELB: PORTB ANALOG SELECT REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0		
—	_	ANSB5	ANSB4	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable bi	t	W = Writable bi	it	U = Unimplemented bit, read as '0'					
u = Bit is unchan	iged	x = Bit is unkno	own	-n/n = Value at	POR and BOR/	/alue at all other	Resets		
'1' = Bit is set		'0' = Bit is clear	ed						
u = Bit is unchangedx = Bit is unknown'1' = Bit is set'0' = Bit is cleared				-n/n = Value at	POR and BOR/\	/alue at all other	Resets		

DIL 7-0	Unimplemented: Read as 0
bit 5-4	 ANSB<5:4>: Analog Select between Analog or Digital Function on pins RB<5:4>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
bit 3-0	Unimplemented: Read as '0'

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 12-13: WPUB: WEAK PULL-UP PORTB REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 WPUB<7:4>: Weak Pull-up Register bits^(1,2) 1 = Pull-up enabled 0 = Pull-up disabled bit 3-0 Unimplemented: Read as '0'

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 12-14: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	INLVLB<7:4>: PORTB Input Level Select bits
	For RB<7:4> pins, respectively
	 1 = ST input used for PORT reads and interrupt-on-change 0 = TTL input used for PORT reads and interrupt-on-change
bit 3-0	Unimplemented: Read as '0

20.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A software programmable prescaler is available for exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION_REG register.

Note:	The Watchdog Timer (WDT) uses its own
	independent prescaler.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register.

The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler.

20.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is
	frozen during Sleep.

20.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in **Section 30.0 "Electrical Specifications"**.

20.1.6 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	89
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	90
PIE3	—		CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	—	92
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	93
PIR3	—		CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	—	95
PR2	Timer2 Module Period Register								
PR4	Timer4 Module Period Register								
PR6	Timer6 Mo	dule Period	Register						189*
T2CON	—		TOUTP	'S<3:0>		TMR2ON	T2CKPS1	T2CKPS0	191
T4CON	—		T4OUTI	PS<3:0>		TMR4ON	T4CKPS1	T4CKPS0	191
T6CON	—		T6OUTI	PS<3:0>		TMR6ON	T6CKPS1	T6CKPS0	191
TMR2	Holding Re	gister for the	e 8-bit TMR2	2 Register					189*
TMR4	Holding Re	gister for the	e 8-bit TMR4	4 Register ⁽¹⁾					189*
TMR6	Holding Re	gister for the	e 8-bit TMR	6 Register ⁽¹⁾					189*

TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

23.0 DATA SIGNAL MODULATOR

The Data Signal Modulator (DSM) is a peripheral which allows the user to mix a data stream, also known as a modulator signal, with a carrier signal to produce a modulated output.

Both the carrier and the modulator signals are supplied to the DSM module either internally, from the output of a peripheral, or externally through an input pin.

The modulated output signal is generated by performing a logical "AND" operation of both the carrier and modulator signals and then provided to the MDOUT pin.

The carrier signal is comprised of two distinct and separate signals. A carrier high (CARH) signal and a carrier low (CARL) signal. During the time in which the modulator (MOD) signal is in a logic high state, the DSM mixes the carrier high signal with the modulator signal. When the modulator signal is in a logic low state, the DSM mixes the carrier low signal with the modulator signal. Using this method, the DSM can generate the following types of key modulation schemes:

- Frequency-Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Additionally, the following features are provided within the DSM module:

- Carrier Synchronization
- · Carrier Source Polarity Select
- Carrier Source Pin Disable
- Programmable Modulator Data
- · Modulator Source Pin Disable
- Modulated Output Polarity Select
- Slew Rate Control

Figure 23-1 shows a Simplified Block Diagram of the Data Signal Modulator peripheral.

FIGURE 25-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

25.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 25-33).
- b) SCL is sampled low before SDA is asserted low (Figure 25-34).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted,
- the BCL1IF flag is set and
- the MSSP1 module is reset to its Idle state (Figure 25-33).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 25-35). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

26.3 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCON register selects 16-bit mode.

The SPBRGH, SPBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCON register. In Synchronous mode, the BRGH bit is ignored.

Table 26-3 contains the formulas for determining the baud rate. Example 26-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 26-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is Idle before changing the system clock.

EXAMPLE 26-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

Desired Baud Rate = $\frac{FOSC}{64([SPBRGH:SPBRGL] + 1)}$

Solving for SPBRGH:SPBRGL:

C

$X = \frac{Fosc}{\frac{Desired Baud Rate}{64} - 1}$
$=\frac{\frac{16000000}{9600}}{64}-1$
= [25.042] = 25
alculated Baud Rate = $\frac{1}{64(25+1)}$ = 9615
Error = Calc. Baud Rate – Desired Baud Rate Desired Baud Rate
$= \frac{(9615 - 9600)}{9600} = 0.16\%$

	SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_			_	_	—	_	_	300	0.16	207
1200		_	_	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	—	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	—	_
57.6k	55556	-3.55	8	—	—	—	57.60k	0.00	3	—	—	—
115.2k	_	_		_	_	_	115.2k	0.00	1	—	_	

TABLE 26-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Foso	:= 18.43	2 MHz	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k		_	_	_	_	_	115.2k	0.00	1	_	_	_

30.4 DC Characteristics: PIC16(L)F1824/8-I/E

	DC C	HARACTERISTICS	Standard O Operating te	perating C mperature	$\begin{array}{l} \textbf{Conditions} \\ -40^{\circ}\text{C} \leq \text{Ta} \\ -40^{\circ}\text{C} \leq \text{Ta} \end{array}$	(unless ≤ +85°C ≤ +125°	otherwise stated) for industrial C for extended
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O PORT:					
D030		with TTL buffer	—	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D030A			—	—	0.15 VDD	V	$1.8V \leq V\text{DD} \leq 4.5V$
D031		with Schmitt Trigger buffer	—		0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$
		with I ² C™ levels	—		0.3 VDD	V	
		with SMBus levels	—		0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$
D032		MCLR, OSC1 (RC mode)	—		0.2 Vdd	V	(Note 1)
D033		OSC1 (HS mode)		_	0.3 VDD	V	
	VIH	Input High Voltage			•		
		I/O PORT:					
D040		with TTL buffer	2.0		—	V	$4.5V \leq V\text{DD} \leq 5.5V$
D040A			0.25 VDD+ 0.8	_	—	V	$1.8V \leq V\text{DD} \leq 4.5V$
D041		with Schmitt Trigger buffer	0.8 VDD	_	_	V	$2.0V \leq V\text{DD} \leq 5.5V$
		with I ² C™ levels	0.7 VDD	_	_	V	
		with SMBus levels	2.1	_	_	V	$2.7V \leq V\text{DD} \leq 5.5V$
D042		MCLR	0.8 VDD	_	—	V	
D043A		OSC1 (HS mode)	0.7 VDD			V	
D043B		OSC1 (RC mode)	0.9 Vdd	_	_	V	VDD > 2.0V (Note 1)
	lı∟	Input Leakage Current ⁽²⁾					
D060		I/O ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high- impedance at 85°C
D 004				± 5	± 1000	nA	125°C
D061	1		—	± 50	± 200	nA	$VSS \leq VPIN \leq VDD$ at 85 °C
D.070+	IPUR	Weak Pull-up Current	0.5	400	000	1	
D070^			25 25	100	200		VDD = 3.3V, VPIN = VSS VDD = 5.0V, VDIN = VSS
	Voi	Output Low Voltage ⁽⁴⁾	25	140	300	μΑ	VDD - 3.00, VI III - V33
080	VOL					r	101 = 8 m A $100 = 51/$
DUUU				_	0.6	V	IOL = 6 mA, VDD = 3.3 V
							IOL = 1.8 mA, VDD = 1.8V
	Voh	Output High Voltage ⁽⁴⁾					
D090		I/O ports	Vpp - 0.7			V	IOH = 3.5 mA, VDD = 5V
			VDD - 0.7			v	IOH = 1 mA, VDD = 3.3 V IOH = 1 mA, VDD = 1.8 V
		Capacitive Loading Specs on	Output Pins				- , -
D101*	COSC2	OSC2 pin	-	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101A*	Cio	All I/O pins	_	_	50	pF	
*	These	l '	mat ta ata d				l

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are † not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

30.8 AC Characteristics: PIC16(L)F1824/8-I/E

FIGURE 30-6: CLOCK TIMING

TABLE 30-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

Standard Operating	d Operati g tempera	ng Conditions (unless otherwise ature $-40^{\circ}C \le TA \le +125^{\circ}C$	stated)				
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	0.5	MHz	EC Oscillator mode (low)
			DC	—	4	MHz	EC Oscillator mode (medium)
			DC	—	32	MHz	EC Oscillator mode (high)
		Oscillator Frequency ⁽¹⁾	_	32.768	_	kHz	LP Oscillator mode
			0.1	—	4	MHz	XT Oscillator mode
			1	—	4	MHz	HS Oscillator mode, VDD $\leq 2.7V$
			1	—	20	MHz	HS Oscillator mode, VDD > 2.7V
			DC	—	4	MHz	RC Oscillator mode
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	—	8	μS	LP Oscillator mode
			250	—	∞	ns	XT Oscillator mode
			50	—	∞	ns	HS Oscillator mode
			50	—	×	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	_	30.5		μS	LP Oscillator mode
			250	—	10,000	ns	XT Oscillator mode
			50	—	1,000	ns	HS Oscillator mode
			250	—	_	ns	RC Oscillator mode
OS03	TCY	Instruction Cycle Time ⁽¹⁾	200	_	DC	ns	Tcy = Fosc/4
OS04*	TosH,	External CLKIN High,	2	—		μS	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	_	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0	_	×	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	∞	ns	XT oscillator
			0	—	∞	ns	HS oscillator

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 30-18: SPI SLAVE MODE TIMING (CKE = 0)

Param No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	SSx↓ to SCKx↓ or SCKx↑ input		2.25 TCY		—	ns	
SP71*	TscH	SCKx input high time (Slave mod	de)	Tcy + 20	_		ns	
SP72*	TscL	SCKx input low time (Slave mod	e)	Tcy + 20	_		ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDIx data input to	100	_	—	ns		
SP74*	TscH2DIL, TscL2DIL	Hold time of SDIx data input to S	e of SDIx data input to SCKx edge			_	ns	
SP75*	TDOR	SDO data output rise time	3.0-5.5V	—	10	25	ns	
			1.8-5.5V	—	25	50	ns	
SP76*	TdoF	SDOx data output fall time		—	10	25	ns	
SP77*	TssH2doZ	SSx↑ to SDOx output high-imped	dance	10		50	ns	
SP78*	TscR	SCKx output rise time	3.0-5.5V	_	10	25	ns	
		(Master mode)	1.8-5.5V	_	25	50	ns	
SP79*	TscF	SCKx output fall time (Master mo	ode)	—	10	25	ns	
SP80*	TscH2doV,	SDOx data output valid after	3.0-5.5V	—		50	ns	
	TscL2doV	SCKx edge	1.8-5.5V	-		145	ns	
SP81*	TDOV2scH, TDOV2scL	SDOx data output setup to SCK	k edge	Тсу	_	—	ns	
SP82*	TssL2doV	SDOx data output valid after SS	↓ edge	_	_	50	ns	
SP83*	TscH2ssH, TscL2ssH	SSx ↑ after SCKx edge		1.5Tcy + 40	_		ns	
SP79* SP80* SP81* SP82* SP83*	TSCR TSCF TSCH2DOV, TSCL2DOV TDOV2SCH, TDOV2SCL TSSL2DOV TSCH2SSH, TSCL2SSH	(Master mode) SCKx output fall time (Master mode) SDOx data output valid after SCKx edge SDOx data output setup to SCKx SDOx data output valid after SS SSX ↑ after SCKx edge	3.0-5.5V 1.8-5.5V 0de) 3.0-5.5V 1.8-5.5V < edge ↓ edge	— — — — — — 1.5TCY + 40	10 25 10 — — — — — —	23 50 25 50 145 50 	ns ns ns ns ns ns ns	

TABLE 30-14: SPI MODE REQUIREMENTS

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

FIGURE 31-57: COMPARATOR RESPONSE TIME OVER TEMPERATURE, NORMAL-POWER MODE (CxSP = 1)

32.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

32.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- · Built-in support for Bugzilla issue tracker

32.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- · Flexible macro language
- MPLAB X IDE compatibility

32.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

32.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

32.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch	E	0.65 BSC				
Contact Pad Spacing	С		7.20			
Contact Pad Width (X20)	X1			0.45		
Contact Pad Length (X20)	Y1			1.75		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN] With 0.40 mm Contact Length

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			2.50
Optional Center Pad Length	T2			2.50
Contact Pad Spacing	C1		3.93	
Contact Pad Spacing	C2		3.93	
Contact Pad Width	X1			0.30

Y1

G

0.20

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

Contact Pad Length

Distance Between Pads

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2126A

0.73