

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1828-i-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

									•						
0/I	14-Pin PDIP/SOIC/TSSOP	16-Pin QFN/UQFN	A/D	Reference	Cap Sense	Comparator	SR Latch	Timers	ECCP	EUSART	dssw	Interrupt	Modulator	Pull-up	Basic
RA0	13	12	AN0	VREF- DACOUT	CPS0	C1IN+	_	—	—	TX ⁽¹⁾ CK ⁽¹⁾		IOC	—	Y	ICSPDAT ICDDAT
RA1	12	11	AN1	VREF+	CPS1	C12IN0-	SRI	—	—	RX ⁽¹⁾ DT ⁽¹⁾	-	IOC	—	Y	ICSPCLK ICDCLK
RA2	11	10	AN2	—	CPS2	C10UT	SRQ	TOCKI	CCP3 FLT0	-	-	INT/ IOC	—	Y	-
RA3	4	3	_	-	-	_	—	T1G ⁽¹⁾	—	—	<u>SS</u> (1)	IOC	—	Y	MCLR VPP
RA4	3	2	AN3	_	CPS3	_	_	T1G ⁽¹⁾ T1OSO	P2B ⁽¹⁾	-	SDO ⁽¹⁾	IOC	_	Y	OSC2 CLKOUT CLKR
RA5	2	1	_	—		—	—	T1CKI T1OSI	CCP2 P2A ⁽¹⁾	—	_	IOC	—	Y	OSC1 CLKIN
RC0	10	9	AN4	-	CPS4	C2IN+	—	—	P1D ⁽¹⁾	-	SCL SCK	-	—	Y	-
RC1	9	8	AN5	—	CPS5	C12IN1-	_	—	CCP4 P1C ⁽¹⁾	_	SDA SDI	-	—	Y	
RC2	8	7	AN6	—	CPS6	C12IN2-	—	—	P1D ⁽¹⁾ P2B ⁽¹⁾	—	SDO ⁽¹⁾		MDCIN1	Y	
RC3	7	6	AN7	_	CPS7	C12IN3-	_	_	CCP2 ⁽¹⁾ P1C ⁽¹⁾ P2A ⁽¹⁾	_	<u>SS</u> (1)		MDMIN	Y	_
RC4	6	5		—	_	C2OUT	SRNQ	—	P1B	TX ⁽¹⁾ CK ⁽¹⁾	_	_	MDOUT	Y	—
RC5	5	4	—	—	_	—	—	—	CCP1 P1A	RX ⁽¹⁾ DT ⁽¹⁾	—	-	MDCIN2	Y	—
VDD	1	16	—	_	—	—	—	_	_	—	—	—	_	—	Vdd
Vss	14	13	_	_	_	_	-	_	_	—	_	—	_	—	Vss

TABLE 1: 14-PIN AND 16-PIN ALLOCATION TABLE (PIC16(L)F1824)

Note 1: Pin function is selectable via the APFCON0 or APFCON1 registers.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			TUN	<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemer	nted: Read as '	0'				
bit 5-0	TUN<4:0>: F	- requency Tunir	ng bits				
	011111 = M	laximum freque	ncy				
	011110 =						
	•						
	•						
	000001 =						
	000000 = O	scillator module	e is running at	the factory-cali	prated frequen	cy.	
	111111 =		-	-	-	-	
	•						
	•						
	• $100000 = M$	linimum frequer					
	T00000 - IV	minium nequei	icy				

REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON	SPLLEN		IRCI	=<3:0>		—	SCS	<1:0>	68	
OSCSTAT	T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	69	
OSCTUNE	—	_		TUN<5:0>						
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	—	CCP2IE	91	
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	—	—	CCP2IF	94	
T1CON	TMR1C	S<1:0>	T1CKPS<1:0> T1OSCE			T1SYNC	_	TMR10N	186	

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 5-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
0015104	13:8	—	—	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		CPD	40
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE<1:0>			FOSC<2:0>		48

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

7.10 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 7-3 and Table 7-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	0	x	1	1	Power-on Reset
0	0	1	1	0	x	0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	0	1	1	0	x	x	0	Illegal, PD is set on POR
0	0	1	1	u	0	1	1	Brown-out Reset
u	u	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 7-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 7-4: RESET CONDITION FOR SPECIAL REGISTERS⁽²⁾

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

2: If a Status bit is not implemented, that bit will be read as '0'.

8.5.6 PIR2 REGISTER

The PIR2 register contains the interrupt flag bits, as shown in Register 8-6.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 8-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

OSFIF C2IF C1IF EEIF BCL1IF — Description Description Description Description Description Description Description — — — — — — — — — — — — — — — … Description Description <thdescri< th=""><th>-0/0</th><th>U-0 U-0</th><th>)</th></thdescri<>	-0/0	U-0 U-0)
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other '1' = Bit is set '0' = Bit is cleared bit 7 OSFIF: Oscillator Fail Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 6 C2IF: Comparator C2 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit	FIF	— CCP2	2IF
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other '1' = Bit is set '0' = Bit is cleared bit 7 OSFIF: Oscillator Fail Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is pending 0 = Interrupt is not pending 0 = Interrupt is not pending bit 6 C2IF: Comparator C2 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is not pending 0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit			bit 0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other '1' = Bit is set '0' = Bit is cleared bit 7 OSFIF: Oscillator Fail Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 6 C2IF: Comparator C2 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is not pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other '1' = Bit is set '0' = Bit is cleared bit 7 OSFIF: Oscillator Fail Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 6 C2IF: Comparator C2 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is pending 0 = Interrupt is pending 0 = Interrupt is pending 0 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit	d:		
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other '1' = Bit is set '0' = Bit is cleared bit 7 OSFIF: Oscillator Fail Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 6 C2IF: Comparator C2 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is not pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit	adable bit	0'	
'1' = Bit is set '0' = Bit is cleared bit 7 OSFIF: Oscillator Fail Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 6 C2IF: Comparator C2 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit	is unchan	lue at all other Res	ets
bit 7 OSFIF: Oscillator Fail Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 6 C2IF: Comparator C2 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is not pending 0 = Interrupt is not pending bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is not pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit 1 = Interrupt is pending 1 = Interrupt is not pending	is set		
bit 7 OSFIF: Oscillator Fail Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 6 C2IF: Comparator C2 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is not pending 0 = Interrupt is not pending bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit 1 = Interrupt is pending 1 = Interrupt is pending			
1 = Interrupt is pending 0 = Interrupt is not pending bit 6 C2IF: Comparator C2 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit 1 = Interrupt is pending	C		
bit 6 C2IF: Comparator C2 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending 0 = Interrupt is not pending 0 = Interrupt is pending 0 = Interrupt is pending 0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit 1 = Interrupt is pending	1		
bit 6 C2IF: Comparator C2 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is pending 0 = Interrupt is not pending 0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending 0 = Interrupt is not pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is not pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit 1 = Interrupt is pending 1 = Interrupt Flag bit	0		
bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending 0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit 1 = Interrupt is pending	1		
bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is pending 0 = Interrupt is not pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit 1 = Interrupt is pending	1		
1 = Interrupt is pending 0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit 1 = Interrupt is pending	c		
0 = Interrupt is not pending bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit 1 = Interrupt is pending	1		
bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit 1 = Interrupt is pending	0		
1 = Interrupt is pending 0 = Interrupt is not pending bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit 1 = Interrupt is pending	E		
bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit 1 = Interrupt is pending	1		
bit 3 BCLTIF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit 1 = Interrupt is pending			
bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit	1		
bit 2-1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit	1		
bit 0 CCP2IF: CCP2 Interrupt Flag bit	Ľ		
1 - Interrupt is ponding	C		
	1		
0 = Interrupt is not pending	0		

16.2 ADC Operation

16.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 16.2.6 "A/D Conver-
	sion Procedure".

16.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

16.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

16.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

16.2.5 SPECIAL EVENT TRIGGER

The Special Event Trigger of the CCPx/ECCPX module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

TABLE 16-2: SPECIAL EVENT TRIGGER

Device	CCPx/ECCPx
PIC16(L)F1824/8	CCP4

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to **Section 24.0** "Capture/Compare/PWM **Modules**" for more information.

19.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Independent comparator control
- Programmable input selection
- · Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- Wake-up from Sleep
- Programmable Speed/Power optimization
- · PWM shutdown
- · Programmable and Fixed Voltage Reference

19.1 Comparator Overview

A single comparator is shown in Figure 19-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

FIGURE 19-2: COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM CxNCH<1:0> CxON⁽¹⁾ ່າ CXINT Interrupt det C12IN0-0 Set CxIF C12IN1 Interrupt CXINTN MUX C12IN2 2 (1) det 4 CXPOL C12IN3 CxVN CXOUT To Data Bus Q D Cx⁽²⁾ MCXOUT CxVP Q1 ΕN CXIN+ **CxHYS** MUX DAC_output 1 (1) CxSP async_CxOUT To ECCP PWM Logic 2 **FVR Buffer2** 3 CXSYNC CXOE CxON⁽¹⁾ TRIS bit CXOUT CxPCH<1:0> 0 Q D (from Timer1) T1CLK To Timer1, sync_CxOUT SR Latch Note 1: When CxON = 0, all multiplexer inputs are disconnected and the Comparator will produce a '0' at the output. Output of comparator can be frozen during debugging. 2:

DS40001419F-page 166

bit 0
read as '0'
d BOR/Value at all other Resets
ted TRIS bit be cleared to actually
hanges on Timer1 clock source.

REGISTER 19-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

21.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- · Programmable internal or external clock source
- 2-bit prescaler
- Dedicated 32 kHz oscillator circuit
- · Optionally synchronized comparator out
- Multiple Timer1 gate (count enable) sources
- Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- · Time base for the Capture/Compare function
- Special Event Trigger (with CCP/ECCP)
- · Selectable Gate Source Polarity

- Gate Toggle Mode
- · Gate Single-pulse Mode
- · Gate Value Status
- Gate Event Interrupt

Figure 21-1 is a block diagram of the Timer1 module.

FIGURE 21-1: TIMER1 BLOCK DIAGRAM

24.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains two Enhanced Capture/ Compare/PWM modules (ECCP1 and ECCP2) and two standard Capture/Compare/PWM modules (CCP3 and CCP4).

The capture and compare functions are identical for all four CCP modules (ECCP1, ECCP2, CCP3, and CCP4). The only differences between CCP modules are in the Pulse-Width Modulation (PWM) function. The standard PWM function is identical in modules, CCP3 and CCP4. In CCP modules ECCP1 and ECCP2, the Enhanced PWM function has slight variations from one another. Full-Bridge ECCP modules have four available I/O pins while Half-Bridge ECCP modules only have two available I/O pins. See Table 24-1 for more information.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to ECCP1, ECCP2, CCP3 and CCP4. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

Device Name	ECCP1	ECCP2	CCP3	CCP4
PIC16(L)F1824/8	Enhanced PWM Full-Bridge	Enhanced PWM Half-Bridge	Standard PWM	Standard PWM

25.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 25-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSP1BUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSP1SR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSP1BUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSP1CON1 register and the CKE bit of the SSP1STAT register. This then, would give waveforms for SPI communication as shown in Figure 25-6, Figure 25-9 and Figure 25-10, where the MSb is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSP1ADD + 1))

Figure 25-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSP1BUF is loaded with the received data is shown.

FIGURE 25-6: SPI MODE WAVEFORM (MASTER MODE)

3 80K (CBCP = 6 CBCE = 6) * Shift register SSP ISR gand bit countiare reset 83P18UF to ø 832188 386 0.461* *** 读出 7 10 14. 2000 14 49 Ą. 痰 -* 137 *

FIGURE 25-8: SLAVE SELECT SYNCHRONOUS WAVEFORM

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0		
ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN		
bit 7							bit 0		
							J		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'			
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	'0' = Bit is cleared						
bit 7	ABDOVF: Au	to-Baud Detec	t Overflow bit						
	Asynchronous	<u>s mode</u> :	1						
	1 = Auto-bauc	timer overflov	ved overflow						
	Synchronous	mode:							
	Don't care								
bit 6	RCIDL: Recei	ive Idle Flag bit	t						
	Asynchronous	<u>s mode</u> :							
	1 = Receiver	IS IDIE as been receiv	ed and the re	ceiver is receiv	vina				
	Synchronous	mode:			ing				
	Don't care								
bit 5	Unimplement	ted: Read as '	כי						
bit 4	SCKP: Synch	ronous Clock F	Polarity Select	t bit					
	Asynchronous	<u>s mode</u> :							
	1 = Transmit i 0 = Transmit r	nverted data to non-inverted da	o the TX/CK p ata to the TX/	in CK pin					
	Synchronous	mode:							
	1 = Data is clo 0 = Data is clo	ocked on rising	edge of the of the of the	clock clock					
bit 3	BRG16: 16-bi	it Baud Rate G	enerator bit						
	1 = 16-bit Bau	ud Rate Gener	ator is used						
	0 = 8-bit Bau	d Rate Genera	tor is used						
bit 2	Unimplement	ted: Read as '	כ'						
bit 1	WUE: Wake-u	up Enable bit							
	Asynchronous	<u>s mode</u> :	<i>.</i>						
	1 = Receiver	is waiting for a	falling edge.	No character	will be received,	byte RCIF will	be set. WUE		
	0 = Receiver i	is operating no	rmally						
	Synchronous	mode:	5						
	Don't care								
bit 0	ABDEN: Auto	-Baud Detect	Enable bit						
	Asynchronous	s mode:							
	1 = Auto-Bau	Id Detect mode	is enabled (lears when au	to-baud is comp	lete)			
	U = Auto-Bau Synchronous	iu Delect mode mode:	is disabled						
	Don't care	<u></u>							

REGISTER 26-3: BAUDCON: BAUD RATE CONTROL REGISTER

FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-c	oriented file	regi 8	ister o 7	ope 6	erat	ions		0
(PCODE	-	d	Ē		f (FII	_E #)	
c c f	= 0 for des = 1 for des = 7-bit file r	tinati tinati egist	on W on f er ado	dre	ss			
Bit-ori	ented file r	egist 10	ter op 9	era 7	atio	ns		0
	OPCODE		b (Bl	T #	#)	f (F	ILE #)	
b f	e = 3-bit bit a = 7-bit file r	addre egist	ess er ado	dre	SS			
Litera	and contro	ol op	eratio	ons	5			
Gener	al							
13			8	7				0
	OPCODE					k (lit	eral)	
k	= 8-bit imm	edia	te val	ue				
CALL a	and Goto in	struc	tions	onl	у			
13	11	10						0
(PCODE			k	k (lit	eral)		
MOVLP	instruction	only		7	6			0
15	OPCODE			<u>/</u>		k (lite	eral)	0
k	= 7-bit imm	edia	te val	ue	<u> </u>			
MOVLE	instruction	only			5	4		0
	OPCODE					k	(literal))
k	= 5-bit imm	ediat	te valı	ue				
BRA in	struction on	ly	0 0	,				0
15	OPCODE		3 0	,		k (lit	eral)	0
Lk	x = 9-bit imm	nedia	te val	ue			,	
FSR C	Offset instruc	ctions	6					
13	000005		7	6	5		/!·/ I)	0
	OPCODE			n		K	(literal)	
r F	n = appropri k = 6-bit imn	ate F nedia	'SR I te va l	ue				
fsr In 13	crement ins	tructi	ions			32	1	0
	OPCODE					n	m (m	ode)
r r	n = appropri n = 2-bit mo	ate F de v	'SR alue					
OPCO	DE only							0
13		~			-			0
		C		יטכ	-			

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC<10:0>, \\ (PCLATH<4:3>) \rightarrow PC<12:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ \text{0} \rightarrow \text{WDT prescaler,} \\ \text{1} \rightarrow \overline{\text{TO}} \\ \text{1} \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	$\label{eq:CLRWDT} \begin{array}{l} \text{CLRWDT} \text{ instruction resets the Watchdog Timer. It also resets the prescaler of the WDT.} \\ \text{Status bits TO and PD are set.} \end{array}$

CALLW	Subroutine Call With W
Syntax:	[label] CALLW
Operands:	None
Operation:	(PC) +1 → TOS, (W) → PC<7:0>, (PCLATH<6:0>) → PC<14:8>
Status Affected:	None
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in regis- ter 'f'.

TABLE 30-4: C	LKOUT	and I/O	TIMING	PARAM	ETERS
---------------	-------	---------	--------	-------	-------

Standa Operati	rd Operating	g Conditions (unless otherwise stated) ure -40°C \leq TA \leq +125°C					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾			70	ns	VDD = 3.0-5.0V
OS12	TosH2ckH	Fosc↑ to CLKOUT ^{↑(1)}			72	ns	VDD = 3.0-5.0V
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾			20	ns	
OS14	TioV2ckH	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns	_	_	ns	
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.0-5.0V
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	_	_	ns	VDD = 3.0-5.0V
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	_	_	ns	
OS18*	TioR	Port output rise time	—	40	72	ns	VDD = 1.8V
			_	15	32		VDD = 3.0-5.0V
OS19*	TioF	Port output fall time	_	28	55	ns	VDD = 1.8V
			—	15	30		VDD = 3.0-5.0V
OS20*	Tinp	INT pin input high or low time	25	_	_	ns	
OS21*	Tioc	Interrupt-on-change new input level time	25	—	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

TABLE 30-6: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.		Characteristic		Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High I	Pulse Width	No Prescaler	0.5 Tcy + 20	—	—	ns	
				With Prescaler	10	_	_	ns	
41*	TT0L	T0CKI Low Pulse Width No Presca		No Prescaler	0.5 Tcy + 20	_		ns	
				With Prescaler	10	_		ns	
42*	Тт0Р	T0CKI Period	J		Greater of: 20 or <u>Tcy + 40</u> N	_		ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns	
			Synchronous, with Prescaler		15	—	—	ns	
			Asynchronous		30	—	_	ns	
46*	TT1L	T1CKI Low	Synchronous, No Prescaler		0.5 Tcy + 20	_		ns	
		Time	Synchronous, with Prescaler Asynchronous		15	—		ns	
					30	—	_	ns	
47* TT1P T1CKI Input Synchronous Period			Greater of: 30 or <u>Tcy + 40</u> N	_	—	ns	N = prescale value (1, 2, 4, 8)		
			Asynchronous		60	-	_	ns	
48	F⊤1	Timer1 Oscil (oscillator en	lator Input Frequency Range abled by setting bit T1OSCEN)		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Edge to Timer		2 Tosc	—	7 Tosc	—	Timers in Sync mode

These parameters are characterized but not tested.
 Data in "Typ" column is at 3.0V, 25°C unless otherwi

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 30-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions		
CC01*	TccL	CCP Input Low Time	No Prescaler	0.5Tcy + 20	_		ns			
			With Prescaler	20	_	-	ns			
CC02*	TccH	CCP Input High Time	No Prescaler	0.5Tcy + 20	_	-	ns			
			With Prescaler	20	1	_	ns			
CC03*	TccP	CCP Input Period		<u>3Tcy + 40</u> N	_	—	ns	N = prescale value		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 30-10: COMPARATOR SPECIFICATIONS

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments		
CM01	VIOFF ⁽¹⁾	Input Offset Voltage		±7.5	±60	mV	High-Power mode, VICM = VDD/2		
CM02	VICM	Input Common Mode Voltage	0		VDD	V			
CM03	CMRR	Common Mode Rejection Ratio	_	50		dB			
CM04A		Response Time Rising Edge	—	400	800	ns	High-Power mode		
CM04B		Response Time Falling Edge	—	200	400	ns	High-Power mode		
CM04C	IKESPY /	Response Time Rising Edge	_	1200		ns	Low-Power mode		
CM04D		Response Time Falling Edge	—	550		ns	Low-Power mode		
CM05	Тмс2оv	Comparator Mode Change to Output Valid*	_	_	10	μS			
CM06	CHYSTER	Comparator Hysteresis ⁽²⁾	—	45		mV	CxHYS = 1		

* These parameters are characterized but not tested.

Note 1: High-Power mode only.

....

2: Comparator Hysteresis is available when the CxHYS bit of the CMxCON0 register is enabled.

TABLE 30-11: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Operating	Conditions	(unless	otherwise stated)	
operating	Contaitions	unicaa	otherwise stated	

Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
DAC01*	Clsb	Step Size		VDD/32		V		
DAC02*	CACC	Absolute Accuracy	_	_	± 1/2	LSb		
DAC03*	CR	Unit Resistor Value (R)	_	5K	_	Ω		
DAC04*	CST	Settling Time ⁽¹⁾			10	μS		

These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '0000' to '1111'.

FIGURE 30-14: **USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING**

FIGURE 31-15: IDD TYPICAL, HFINTOSC MODE, PIC16LF1824/8 ONLY

FIGURE 31-38: IPD, COMPARATOR, LOW-POWER MODE (CxSP = 0), PIC16F1824/8 ONLY

POR REARM VOLTAGE, PIC16F1824/8 ONLY

