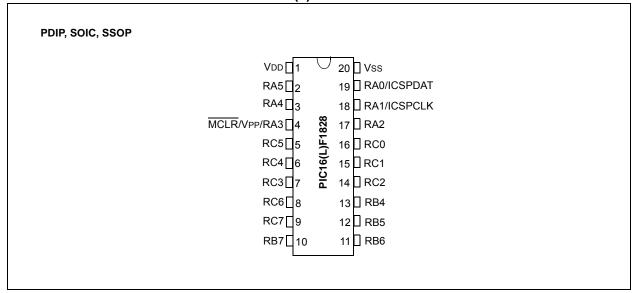


Welcome to E-XFL.COM

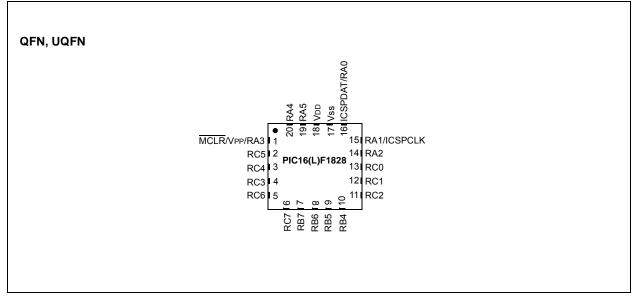
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1828-e-ml


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3: 20-PIN DIAGRAM FOR PIC16(L)F1828

TABLE 3-6: PIC16(L)F1824/8 MEMORY MAP, BANKS 16-23

	BANK 16	•	BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h	INDF0	880h	INDF0	900h	INDF0	980h	INDF0	A00h	INDF0	A80h	INDF0	B00h	INDF0	B80h	INDF0
801h	INDF1	881h	INDF1	901h	INDF1	981h	INDF1	A01h	INDF1	A81h	INDF1	B01h	INDF1	B81h	INDF1
802h	PCL	882h	PCL	902h	PCL	982h	PCL	A02h	PCL	A82h	PCL	B02h	PCL	B82h	PCL
803h	STATUS	883h	STATUS	903h	STATUS	983h	STATUS	A03h	STATUS	A83h	STATUS	B03h	STATUS	B83h	STATUS
804h	FSR0L	884h	FSR0L	904h	FSR0L	984h	FSR0L	A04h	FSR0L	A84h	FSR0L	B04h	FSR0L	B84h	FSR0L
805h	FSR0H	885h	FSR0H	905h	FSR0H	985h	FSR0H	A05h	FSR0H	A85h	FSR0H	B05h	FSR0H	B85h	FSR0H
806h	FSR1L	886h	FSR1L	906h	FSR1L	986h	FSR1L	A06h	FSR1L	A86h	FSR1L	B06h	FSR1L	B86h	FSR1L
807h	FSR1H	887h	FSR1H	907h	FSR1H	987h	FSR1H	A07h	FSR1H	A87h	FSR1H	B07h	FSR1H	B87h	FSR1H
808h	BSR	888h	BSR	908h	BSR	988h	BSR	A08h	BSR	A88h	BSR	B08h	BSR	B88h	BSR
809h	WREG	889h	WREG	909h	WREG	989h	WREG	A09h	WREG	A89h	WREG	B09h	WREG	B89h	WREG
80Ah	PCLATH	88Ah	PCLATH	90Ah	PCLATH	98Ah	PCLATH	A0Ah	PCLATH	A8Ah	PCLATH	B0Ah	PCLATH	B8Ah	PCLATH
80Bh	INTCON	88Bh	INTCON	90Bh	INTCON	98Bh	INTCON	A0Bh	INTCON	A8Bh	INTCON	B0Bh	INTCON	B8Bh	INTCON
80Ch	_	88Ch		90Ch	—	98Ch	_	A0Ch	_	A8Ch	_	B0Ch	-	B8Ch	_
80Dh	—	88Dh	-	90Dh	—	98Dh	—	A0Dh	—	A8Dh	—	B0Dh	-	B8Dh	_
80Eh	—	88Eh	—	90Eh	—	98Eh	_	A0Eh	—	A8Eh	—	B0Eh	—	B8Eh	
80Fh	—	88Fh	-	90Fh	—	98Fh	—	A0Fh	—	A8Fh	—	B0Fh	-	B8Fh	_
810h	—	890h	—	910h	_	990h	_	A10h	—	A90h	—	B10h	—	B90h	—
811h	—	891h	—	911h	_	991h	_	A11h	—	A91h	—	B11h	—	B91h	—
812h	_	892h	_	912h	_	992h		A12h	—	A92h	—	B12h	—	B92h	
813h	—	893h	_	913h		993h	-	A13h	—	A93h	—	B13h	_	B93h	
814h	_	894h	_	914h		994h		A14h	—	A94h	—	B14h	_	B94h	—
815h	—	895h	_	915h	_	995h	_	A15h	—	A95h	—	B15h	—	B95h	_
816h	—	896h	—	916h	_	996h	—	A16h	—	A96h	—	B16h	—	B96h	—
817h	—	897h	_	917h		997h		A17h	—	A97h	_	B17h	_	B97h	—
818h	—	898h	_	918h		998h		A18h	—	A98h	_	B18h	_	B98h	—
819h	—	899h	_	919h		999h	-	A19h	—	A99h	—	B19h	_	B99h	
81Ah	_	89Ah	_	91Ah		99Ah	_	A1Ah	—	A9Ah	—	B1Ah	_	B9Ah	_
81Bh	_	89Bh	_	91Bh		99Bh		A1Bh	—	A9Bh	—	B1Bh	_	B9Bh	—
81Ch	—	89Ch	_	91Ch		99Ch		A1Ch	—	A9Ch	_	B1Ch	_	B9Ch	—
81Dh	_	89Dh	_	91Dh		99Dh	_	A1Dh	—	A9Dh	_	B1Dh	_	B9Dh	—
81Eh	_	89Eh	_	91Eh		99Eh	_	A1Eh	—	A9Eh	_	B1Eh	_	B9Eh	—
81Fh	—	89Fh	—	91Fh	_	99Fh	—	A1Fh	—	A9Fh	—	B1Fh	—	B9Fh	—
820h		8A0h		920h		9A0h		A20h		AA0h		B20h		BA0h	
	Unimplemented														
	Read as '0'														
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h		8F0h		970h		9F0h		A70h		AF0h		B70h		BF0h	
	Accesses														
	70h – 7Fh														
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fh		BFFh	

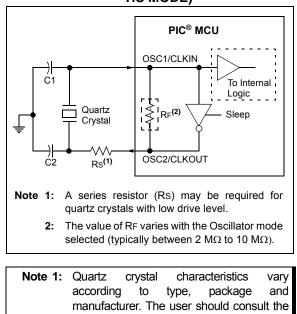
Legend: = Unimplemented data memory locations, read as '0'.

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)												
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
Banks 9	9-30											
x00h/ x80h ⁽¹⁾	INDF0	Addressing th (not a physical		es contents of	FSR0H/FSR0	L to address	data memory	/		XXXX XXXX	XXXX XXXX	
x00h/ x81h ⁽¹⁾	INDF1	Addressing th (not a physical		es contents of	FSR1H/FSR1	L to address	data memory	1		XXXX XXXX	XXXX XXXX	
x02h/ x82h ⁽¹⁾	PCL	Program Cou	inter (PC) Lea	st Significant B	yte					0000 0000	0000 0000	
x03h/ x83h ⁽¹⁾	STATUS	_								1 1000	q quuu	
x04h/ x84h ⁽¹⁾	FSR0L	Indirect Data	ndirect Data Memory Address 0 Low Pointer									
x05h/ x85h (1)	FSR0H	Indirect Data	ndirect Data Memory Address 0 High Pointer									
x06h/ x86h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu	
x07h/ x87h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	nter					0000 0000	0000 0000	
x08h/ x88h (1)	BSR	—	_	—			BSR<4:0>			0 0000	0 0000	
x09h/ x89h ⁽¹⁾	WREG	Working Reg	ister							0000 0000	uuuu uuuu	
x0Ah/ x8Ah ⁽¹⁾	PCLATH	—	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	er			-000 0000	-000 0000	
x0Bh/ x8Bh (1)	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 000x	0000 000u	
x0Ch/ x8Ch	_	Unimplement	ed							_	-	
x1Fh/ x9Fh												

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

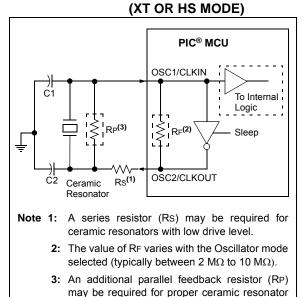
 $Legend: \quad x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. \\ Shaded locations are unimplemented, read as '0'.$

Note 1: These registers can be addressed from any bank.


2: PIC16(L)F1828 only.

3: PIC16(L)F1824 only.

4: Unimplemented, read as '1'.


FIGURE 5-3:

QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- manufacturer data sheets for specifications and recommended application.2: Always verify oscillator performance over the VDD and temperature range that is
 - expected for the application.
- For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 5-4: CERAMIC RESONATOR OPERATION

5.2.1.3 Oscillator Start-up Timer (OST)

operation.

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended unless either FSCM or Two-Speed Start-up are enabled. In this case, the code will continue to execute at the selected INTOSC frequency while the OST is counting. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see **Section 5.4 "Two-Speed Clock Start-up Mode"**).

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
_		WDTPS4	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN
bit 7			1	•	•	•	bit 0
							,
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is un	changed	x = Bit is unk	nown	-m/n = Value	at POR and BO	DR/Value at all	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared				
bit 7-6	Unimpleme	nted: Read as '	0'				
bit 5-1	WDTPS<4:0)>: Watchdog Ti	imer Period Se	elect bits			
	Bit Value =	Prescale Rate					
		32 (Interval 1 m					
		64 (Interval 2 m 128 (Interval 4					
		256 (Interval 8	21 /				
	00100 = 1 :	512 (Interval 16	6 ms typ)				
		1024 (Interval 3					
		2048 (Interval 6 4096 (Interval 1					
		8192 (Interval 2	21				
		16384 (Interval					
		32768 (Interval 65536 (Interva		at value)			
	01100 = 1 :	$131072(2^{17})$ (h	nterval 4s tvp)				
	01101 = 1 :	262144 (2 ¹⁸) (li	nterval 8s tvp)				
	01110 = 1:	524288 (2 ¹⁹) (li 1048576 (2 ²⁰) (nterval 16s typ)))			
	10000 = 1	2097152 (2 ²¹) (Interval 32s ty Interval 64s ty	(p)			
	10001 = 1:	4194304 (2 ²²) (Interval 128s	typ)			
	10010 = 1 :	8388608 (2 ²³) (Interval 256s	typ)			
	10011 = R	eserved. Result	s in minimum	interval (1·32)			
	•						
	•						
	• 11111 - D	eserved. Result	e in minimum	interval (1.32)			
bit 0		Software Enable		()	bit		
bit 0	If WDTE<1:			atchoog miner	bit		
	This bit is ig						
	If WDTE<1:0						
	1 = WDT is 0 = WDT is						
	0 = WDT IS <u>If WDTE<1:(</u>						
	This bit is ig						

REGISTER 10-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

TABLE 12-1:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTA
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—		—	ANSA4		ANSA2	ANSA1	ANSA0	122
APFCON0 ⁽¹⁾	RXDTSEL	SDOSEL	SSSEL	_	T1GSEL	TXCKSEL	_	—	117
APFCON1	—	_	—	_	P1DSEL	P1CSEL	P2BSEL	CCP2SEL	118
INLVLA	—	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	123
LATA	—	_	LATA5	LATA4	_	LATA2	LATA1	LATA0	122
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		176
PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	121
TRISA	—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	121
WPUA	_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	123

Legend: x = unknown, u = unchanged, - = unimplemented locations, read as '0'. Shaded cells are not used by PORTA.

Note 1: Unshaded cells apply to PIC16(L)F1824 only.

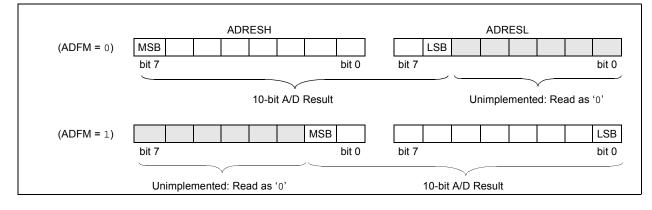
TABLE 12-2: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page	
	13:8		—	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		CPD	40	
CONFIG1	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>		48			

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

16.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.


Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

Please refer to **Section 16.1.5** "Interrupts" for more information.

FIGURE 16-3: 10-BIT A/D CONVERSION RESULT FORMAT

16.1.6 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 16-3 shows the two output formats.

17.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR Buffer2

The output of the DAC can be configured to supply a reference voltage to the following:

- · Comparator positive input
- · ADC input channel
- DACOUT pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACCON0 register.

17.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the DACCON1 register.

The DAC output voltage is determined by the following equations:

EQUATION 17-1: DAC OUTPUT VOLTAGE

$$\label{eq:Vout} \begin{split} \text{Vout} &= \left((\text{Vsource+} - \text{Vsource-}) \times \frac{\text{DACR}{25}}{2^5}\right) + \text{Vsrc-} \\ \text{Note:} \quad \text{Vsource+ can equal FVR Buffer 2, VDD or} \\ \text{Vref+}. \text{Vsource- can equal Vss or Vref-}. \end{split}$$

17.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in **Section 30.0** "**Electrical Specifications**".

17.3 DAC Voltage Reference Output

The DAC can be output to the DACOUT pin by setting the DACOE bit of the DACCON0 register to '1'. Selecting the DAC reference voltage for output on the DACOUT pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACOUT pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to DACOUT. Figure 17-2 shows an example buffering technique.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ANSELA	—	_		ANSA4	_	ANSA2	ANSA1	ANSA0	122	
CCP1CON	P1M•	<1:0>	DC1B	<1:0>	:0> CCP1M<3:0>					
CCP2CON	P2M	<:0>1	DC2B	<1:0>		225				
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	123	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	89	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	90	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	93	
TMR1H	Holding Regi	ster for the M	ost Significan	t Byte of the	16-bit TMR1 F	Register			182*	
TMR1L	Holding Regi	ster for the Le	ast Significar	nt Byte of the	16-bit TMR1	Register			182*	
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	121	
T1CON	TMR1CS1	S1 TMR1CS0 T1CKPS<1:0>		T10SCEN	T1SYNC	_	TMR10N	186		
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS1	T1GSS0	187	

TABLE 21-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.

* Page provides register information.

Note 1: PIC16(L)F1828 only.

R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u					
MDCLODIS	MDCLPOL	MDCLSYNC	_		MDCI	_<3:0>						
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable bi	t	U = Unimpler	nented bit, read	1 as '0'						
u = Bit is unch	anged	x = Bit is unkno	wn	-	at POR and BO		other Resets					
'1' = Bit is set	0	'0' = Bit is clear	ed									
bit 7	1 = Output s is disable 0 = Output s	ignal driving the p	peripheral	output pin (selec	-		. ,					
bit 6	MDCLPOL: I 1 = Selected	is enabled MDCLPOL: Modulator Low Carrier Polarity Select bit 1 = Selected low carrier signal is inverted 0 = Selected low carrier signal is not inverted										
bit 5	1 = Modulato time carr	: Modulator Low (or waits for a fallin rier or output is not sy	g edge on	the low time carr	ier signal befor	-	itch to the high					
bit 4		nted: Read as '0'			-							
bit 3-0	MDCL<3:0> Modulator Data High Carrier Selection bits ⁽¹⁾ 1111 = Reserved. No channel connected.											
	0111 = CCF 0110 = CCF 0101 = CCF 0100 = CCF	CIN1 port pin	Output mo Output mo Output mo Output mo	de only) de only) de only)								

REGISTER 23-4: MDCARL: MODULATION LOW CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

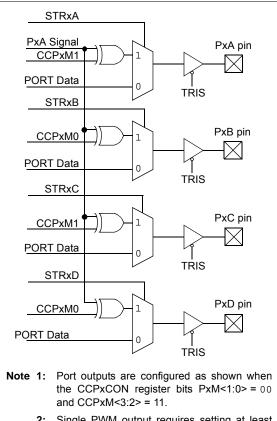
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	—		MDCH<3:0>					
MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	_		MDCL<3:0>					
MDCON	MDEN	MDOE	MDSLR	MDOPOL	MDOUT MDBIT				198		
MDSRC	MDMSODIS	_	—	—		199					

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

^{© 2010-2015} Microchip Technology Inc.

24.4.6 PWM STEERING MODE

In Single Output mode, PWM steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.


Once the Single Output mode is selected (CCPxM<3:2> = 11 and PxM<1:0> = 00 of the CCPxCON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STRx<D:A> bits of the PSTRxCON register, as shown in Table 24-9.

Note: The associated TRIS bits must be set to output ('0') to enable the pin output driver in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCPxM<1:0> bits of the CCPxCON register select the PWM output polarity for the Px<D:A> pins.

The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 24.4.3 "Enhanced PWM Auto-shutdown mode"**. An autoshutdown event will only affect pins that have PWM outputs enabled.

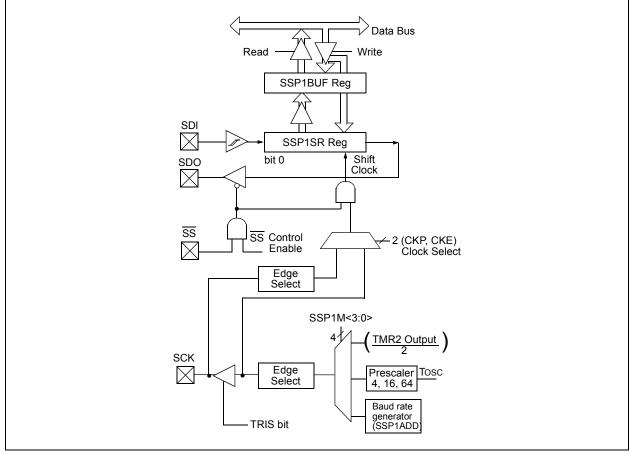
FIGURE 24-18: SIMPLIFIED STEERING BLOCK DIAGRAM

2: Single PWM output requires setting at least one of the STRx bits.

25.0 MASTER SYNCHRONOUS SERIAL PORT MODULE

25.1 Master SSP (MSSP1) Module Overview

The Master Synchronous Serial Port (MSSP1) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP1 module can operate in one of two modes:


- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

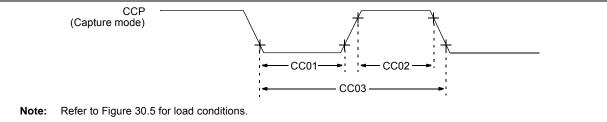
The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy chain connection of slave devices

Figure 25-1 is a block diagram of the SPI interface module.

FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-o 13	priented file	regi 8	ster o	ope 6	erat	ions		0
(OPCODE	-	d			f (FII	E #)	
C	l = 0 for des l = 1 for des = 7-bit file r	tinati	on f		ss			
Bit-ori 13	iented file r	-	er op 9	era 7				0
	OPCODE		b (Bl	T #	#)	f (F	ILE #)	
	o = 3-bit bit a = 7-bit file r			dre	SS			
Litera	and contro	ol op	eratio	ons	5			
Gener	al							
13			8	7				0
	OPCODE					k (lit	eral)	
ŀ	x = 8-bit imm	edia	te val	ue				
CALL a	and Goto in:	struc	tions	onl	у			
13	11	10						0
(OPCODE			k	c (lit	eral)		
MOVLE 13	o instruction	only		7	6			0
	OPCODE					k (lite	eral)	
MOVLE	a = 7-bit imm		te val	ue				
13	OPCODE				5	4	(literal)	0
k	= 5-bit imm	edia	e val	ue		ĸ	(iiterai)	
	struction on	ly						_
13	OPCODE		<u>9</u> 8	3		k (lit	orol)	0
	c = 9-bit imm	edia	te val			K (III	eral)	
	Offset instruc							
13		JUOIN	, 7	6	5			0
	OPCODE			n		k	(literal))
	n = appropri k = 6-bit imn			ue				
FSR In 13	crement ins	truct	ons			32	1	0
	OPCODE					n	m (m	
	n = appropri m = 2-bit mo							
	DE only							0
13			PCO		-			0
		C		יטכ	-			


TABLE 30-6: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

	ng Temperatur	re -40°C ≤ IA∶ I	≤ +125°C		Γ			l	
Param No.	Sym.		Characteristic		Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High F	Pulse Width	No Prescaler	0.5 Tcy + 20	_		ns	
				With Prescaler	10			ns	
41*	T⊤0L	T0CKI Low P	ulse Width	No Prescaler	0.5 Tcy + 20	—	_	ns	
				With Prescaler	10	—	_	ns	
42*	Тт0Р	T0CKI Period	ł		Greater of: 20 or <u>Tcy + 40</u> N		—	ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1H T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20			ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30	_		ns	
46*	T⊤1L	T1CKI Low	Synchronous, No Prescaler		0.5 Tcy + 20			ns	
		Time	Synchronous, v	with Prescaler	15	—	_	ns	
			Asynchronous		30	_		ns	
47*	TT1P	T1CKI Input Synchronous Period		Greater of: 30 or <u>Tcy + 40</u> N		_	ns	N = prescale value (1, 2, 4, 8)	
			Asynchronous		60	_		ns	
48	FT1		lator Input Frequency Range nabled by setting bit T1OSCEN)		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Edge to Timer		2 Tosc	—	7 Tosc	—	Timers in Sync mode

These parameters are characterized but not tested.
Data in "Typ" column is at 3.0V, 25°C unless otherwi

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 30-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteris	stic	Min.	Тур†	Max.	Units	Conditions
CC01*	TccL	CCP Input Low Time	No Prescaler	0.5Tcy + 20			ns	
			With Prescaler	20			ns	
CC02*	TccH	CCP Input High Time	No Prescaler	0.5Tcy + 20			ns	
			With Prescaler	20			ns	
CC03*	TccP	CCP Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 30-22: MEMORY PROGRAMMING REQUIREMENTS FOR PIC16F1824/8-H (High Temp.)

PIC16F1824/8Standard Operating Conditions: (unless otherwise stated) Operating Temperature: $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					9				
Param No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
		Data EEPROM Memory							
D116	ED	Byte Endurance	50K		_	E/W	-40°C to +150°C		
D118	TDEW	Erase/Write Cycle Time		_	6.0	ms	-40°C to +150°C		
D119	TRETD	Data Retention		20	_	Years	≤ 50K Programming cycles		
		Program Flash Memory							
D121	Ер	Cell Endurance	_	_	_	_	Programming the Flash memory above +125°C is not permitted		
D124	TRETD	Data Retention	—	20	_	Years			

TABLE 30-23: OSCILLATOR PARAMETERS FOR PIC16F1824/8-H (High Temp.)

			Standard Operating Conditions: (unless otherwise stated) Operating Temperature: -40°C \leq TA \leq +150°C for High Temperature						
Param No.	Sym.	Characteristic	Frequency Tolerance	Min.	Тур.	Max.	Units	Conditions	
OS08	HFosc	Int. Calibrated HFINTOSC Freq. ⁽¹⁾	±5%	1	16.0	_	MHz	$\begin{array}{l} -40^{\circ}C \leq TA \leq 125^{\circ}C \\ V\text{DD} \geq 2.5V \end{array}$	
			±10%		16.0	_	MHz	$\begin{array}{l} -40^{\circ}C \leq TA \leq 150^{\circ}C \\ V\text{DD} \geq 2.5V \end{array}$	
OS08A	MFosc	Int. Calibrated MFINTOSC Freq. ⁽¹⁾	±5%	_	500	—	kHz	$\begin{array}{l} -40^{\circ}C \leq TA \leq 125^{\circ}C \\ VDD \geq 2.5V \end{array}$	
			±10%		500	—	kHz	$\begin{array}{l} -40^{\circ}C \leq TA \leq 150^{\circ}C \\ V\text{DD} \geq 2.5V \end{array}$	
OS09	LFosc	Internal LFINTOSC Freq.	±35%	_	31	_	kHz	$\begin{array}{l} -40^{\circ}C \leq TA \leq 150^{\circ}C \\ V\text{DD} \geq 2.5V \end{array}$	

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

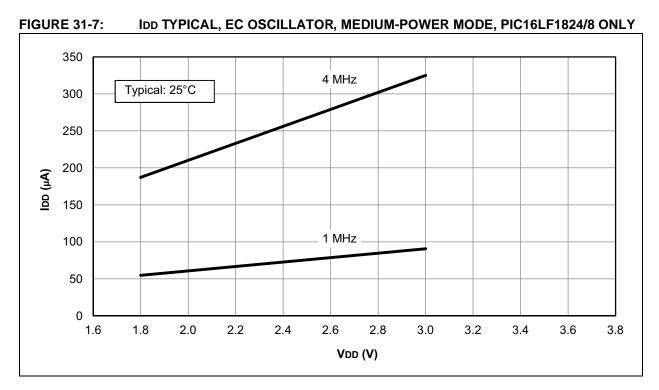
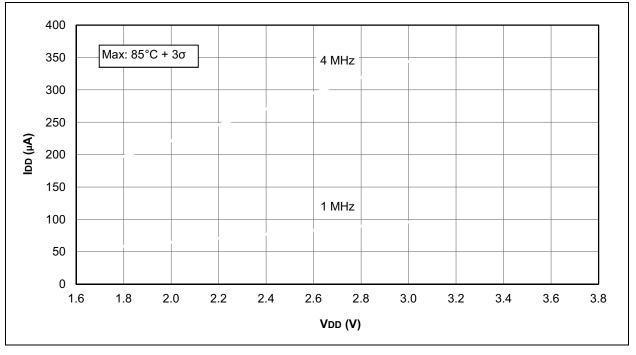
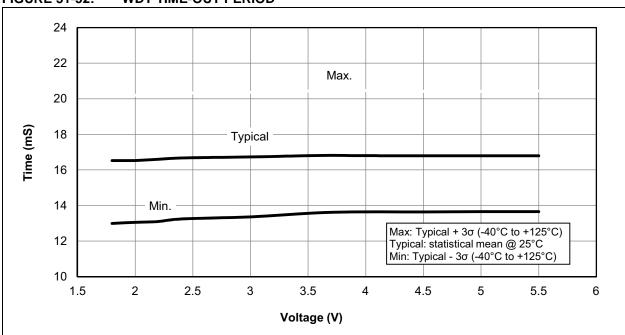
Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

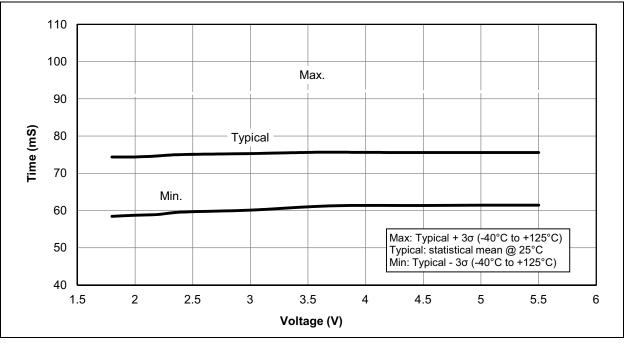
TABLE 30-24: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS FOR PIC16F1824/8-H (High Temp.)

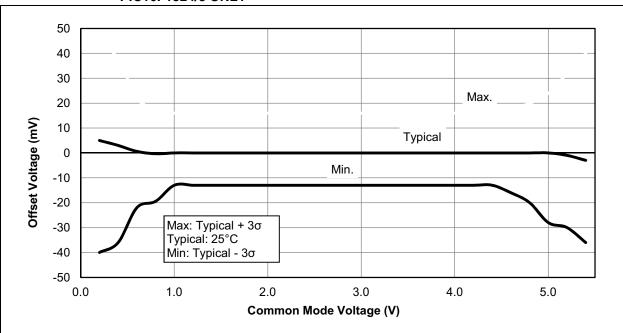
				Standard Operating Conditions: (unless otherwise stated) Operating Temperature: $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
31	TWDTLP	Low-Power Watchdog Timer Time-out Period (No Prescaler)	10	16	24	ms	V _{DD} = 3.3V-5V 1:16 Prescaler used		
35	VBOR	Brown-out Reset Voltage ⁽¹⁾	2.50 —	2.70	2.90 —	V	BORV = 0 BORV = 1		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.


FIGURE 31-8: IDD MAXIMUM, EC OSCILLATOR, MEDIUM-POWER MODE, PIC16LF1824/8 ONLY



20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-255A Sheet 1 of 2

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (06/2010)

Original release.

Revision B (12/2010)

Updated the data sheet to new format; Updated the Electrical Specifications section; Revised Sections 24.2 and 24.3.1; Updated Figure 8-2; Revised the Product Identification System section; Added the Temperature Indicator section.

Revision C (09/2011)

Updated Table 3-3 and Register 20-1.

Revision D (07/2012)

Updated the Family Types Table; Updated Figures 1, 2, 3 and 4; Removed CCPTMRS1; Updated Table 3-9; Updated Register 4-2; Updated Sections 5.2.1.3 and 5.5.3; Added Note below Section 5.4.1; Updated Note 1 in Table 7-1; Updated Register 14-1, Figure 16-1, Register 16-1, Equation 16-1, Register 12-20, Register 24-1 and Register 24-3; Updated the Capacitive Sensing (CPS) Module section; Updated the Electrical Specifications section; Added charts to the DC and AC Characteristics Graphs and Charts section; Updated the Product Identification System section; Updated the Packaging Information section; Other minor corrections.

Revision E (05/2014)

Added new UQFN packages: 16-Lead, UQFN, 4x4x0.5, (JQ) and 20-Lead, UQFN, 4x4x0.5, (GZ) packages. Minor edits.

Revision F (4/2015)

Added Section 30.9: High Temperature Operation in the Electrical Specifications section.

APPENDIX B: MIGRATING FROM OTHER PIC[®] DEVICES

This section provides comparisons when migrating from other similar PIC[®] devices to the PIC16(L)F1824/8 family of devices.

B.1 PIC16F648A to PIC16(L)F1828

Feature	PIC16F648A	PIC16(L)F1828					
Max. Operating Speed	20 MHz	32 MHz					
Max. Program Memory (Words)	4K	4K					
Max. SRAM (Bytes)	256	256					
Max. EEPROM (Bytes)	256	256					
A/D Resolution	10-bit	10-bit					
Timers (8/16-bit)	2/1	4/1					
Brown-out Reset	Y	Y					
Internal Pull-ups	RB<7:0>	RA<7:0> RB<7:4> ⁽¹⁾					
Interrupt-on-change	RB<7:4>	RA<5:0>, Edge Selectable RB<7:4> ⁽¹⁾					
Comparator	2	2					
AUSART/EUSART	1/0	0/1					
Extended WDT	N	Y					
Software Control Option of WDT/BOR	N	Y					
INTOSC Frequencies	48 kHz or 4 MHz	31 kHz - 32 MHz					
Clock Switching	Y	Y					
Capacitive Sensing	N	Y					
CCP/ECCP	2/0	2/2					
Enhanced PIC16 CPU	N	Y					
MSSPx/SSPx	0	1/0					
Reference Clock	N	Y					
Data Signal Modulator	N	Y					
SR Latch	N	Y					
Voltage Reference	N	Y					
DAC	Y	Y					
Note 1: PIC16(L)F1828 only.							

Note 1: PIC16(L)F1828 only.