

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1828t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16(L)F1824 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Description	
RA4/AN3/CPS3/OSC2/	RA4	TTL	CMOS	General purpose I/O.
CLKOUT/T1OSO/CLKR/	AN3	AN	_	A/D Channel 3 input.
SDO("/P2B("/TIG(",=)	CPS3	AN		Capacitive sensing input 3.
	OSC2	_	CMOS	Crystal/Resonator (LP, XT, HS modes).
	CLKOUT	_	CMOS	Fosc/4 output.
	T10S0	XTAL	XTAL	Timer1 oscillator connection.
	CLKR	_	CMOS	Clock Reference output.
	SDO	_	CMOS	SPI data output.
	P2B	_	CMOS	PWM output.
	T1G	ST		Timer1 Gate input.
RA5/CLKIN/OSC1/T1OSI/	RA5	TTL	CMOS	General purpose I/O.
T1CKI/P2A ⁽¹⁾ /CCP2 ⁽¹⁾	CLKIN	ST		External clock input (EC mode).
	OSC1	XTAL		Crystal/Resonator (LP, XT, HS modes).
	T10SI	XTAL	XTAL	Timer1 oscillator connection.
	T1CKI	ST		Timer1 clock input.
	P2A		CMOS	PWM output.
	CCP2	ST	CMOS	Capture/Compare/PWM2.
RC0/AN4/CPS4/C2IN+/SCL/	RC0	TTL	CMOS	General purpose I/O.
SCK/P1D ⁽¹⁾	AN4	AN		A/D Channel 4 input.
	CPS4	AN		Capacitive sensing input 4.
	C2IN+	AN		Comparator C2 positive input.
	SCL	l ² C	OD	I ² C [™] clock.
	SCK	ST	CMOS	SPI clock.
	P1D	_	CMOS	PWM output.
RC1/AN5/CPS5/C12IN1-/SDA/	RC1	TTL	CMOS	General purpose I/O.
SDI/P1C ⁽¹⁾ /CCP4	AN5	AN		A/D Channel 5 input.
	CPS5	AN		Capacitive sensing input 5.
	C12IN1-	AN		Comparator C1 or C2 negative input.
	SDA	l ² C	OD	I ² C data input/output.
	SDI	CMOS		SPI data input.
	P1C	_	CMOS	PWM output.
	CCP4	ST	CMOS	Capture/Compare/PWM4.
RC2/AN6/CPS6/C12IN2-/	RC2	TTL	CMOS	General purpose I/O.
P1D ^(1,2) /P2B ^(1,2) /SDO ^(1,2) /	AN6	AN		A/D Channel 6 input.
MDCIN1	CPS6	AN		Capacitive sensing input 6.
	C12IN2-	AN		Comparator C1 or C2 negative input.
	P1D	—	CMOS	PWM output.
	P2B	—	CMOS	PWM output.
	SDO	—	CMOS	SPI data output.
	MDCIN1	ST		Modulator Carrier Input 1.

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C

HV = High Voltage

XTAL = Crystal levels Note 1: Pin functions can be moved using the APFCONO and APFCON1 registers (Register 12-1 and Register 12-2).

2: Default function location.

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative Addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- Automatic Interrupt Context Saving
- 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 8.5 "Automatic Context Saving"**, for more information.

2.2 16-level Stack with Overflow and Underflow

These devices have an external stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled will cause a software Reset. See section **Section 3.4 "Stack"** for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one data pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.5 "Indirect Addressing"** for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 29.0 "Instruction Set Summary"** for more details.

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The High directive will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants			
RETLW DAT	ГАО	;Index0	data
RETLW DAT	ra1	;Index1	data
RETLW DAT	ra2		
RETLW DAT	ra3		
my_function			
; LOTS (OF CODE		
MOVLW L	OW constan	ts	
MOVWF F	SR1L		
MOVLW H	IGH consta	nts	
MOVWF F	SR1H		
MOVIW 0	[FSR1]		
;THE PROGRAM	MEMORY IS	IN W	

3.2 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-2):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.5** "Indirect Addressing" for more information.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed in Table 3-2 below. For detailed information, see Table 3-3.

TABLE 3-2: (CORE REGISTERS
--------------	----------------

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

TABLE 3-4:PIC16F1824/PIC16F1828 MEMORY MAP, BANKS 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	INDF0	080h	INDF0	100h	INDF0	180h	INDF0	200h	INDF0	280h	INDF0	300h	INDF0	380h	INDF0
001h	INDF1	081h	INDF1] 101h	INDF1	181h	INDF1	201h	INDF1	281h	INDF1	301h	INDF1	381h	INDF1
002h	PCL	082h	PCL	102h	PCL	182h	PCL	202h	PCL	282h	PCL	302h	PCL	382h	PCL
003h	STATUS	083h	STATUS	103h	STATUS	183h	STATUS	203h	STATUS	283h	STATUS	303h	STATUS	383h	STATUS
004h	FSR0L	084h	FSR0L	104h	FSR0L	184h	FSR0L	204h	FSR0L	284h	FSR0L	304h	FSR0L	384h	FSR0L
005h	FSR0H	085h	FSR0H	105h	FSR0H	185h	FSR0H	205h	FSR0H	285h	FSR0H	305h	FSR0H	385h	FSR0H
006h	FSR1L	086h	FSR1L	106h	FSR1L	186h	FSR1L	206h	FSR1L	286h	FSR1L	306h	FSR1L	386h	FSR1L
007h	FSR1H	087h	FSR1H	107h	FSR1H	187h	FSR1H	207h	FSR1H	287h	FSR1H	307h	FSR1H	387h	FSR1H
008h	BSR	088h	BSR	108h	BSR	188h	BSR	208h	BSR	288h	BSR	308h	BSR	388h	BSR
0090	WREG	089n	WREG	109n	WREG	189n	WREG	209n	WREG	289n	WREG	309n	WREG	389n	WREG
00An	PCLATH	08An		10An	PCLATH	18An		20An	PCLATH	28An	PCLATH	30An	PCLATH	38An	PCLATH
0080				1080		18BN		20Bh		28BN	INTCON	30Bh	INTCON	38BN	
0000								2000		2000		3001	_	3001	
00Dh	PORTB	08Dh	TRISBUT	10Dh		18Dh	ANSELB	20Dh	WPUBIN	28Dh	—	30Dh	_	38Dh	INLVLB
OUEN	PURIC		TRISC		LAIC	18EN	ANSELC	20En	WPUC			30En	_	38EN	INLVLC
00Fn	_	08Fn		10-1		18FN		20FN		28FN		30FN	_	38FN	_
01011		09011				1901		21011		29011		0146	-	39011	
0111	PIR1	0910	PIE1	11111	CMICONU	1910	EEADRL	2110	SSPIBUE	2910	COPRIL	3110	CCPRJL	3910	IUCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSP1ADD	292h	CCPR1H	312h	ССРКЗН	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	EEDATL	213h	SSP1MSK	293h	CCP1CON	313h	CCP3CON	393h	IOCAF
014h	_	094h	_	114h	CM2CON1	194h	EEDATH	214h	SSP1STAT	294h	PWM1CON	314h	—	394h	IOCBP ⁽¹⁾
015h	TMR0	095h	OPTION	115h	CMOUT	195h	EECON1	215h	SSP1CON	295h	CCP1AS	315h	—	395h	IOCBN ⁽¹⁾
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSP1CON2	296h	PSTR1CON	316h	—	396h	IOCBF ⁽¹⁾
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	—	217h	SSP1CON3	297h	—	317h	-	397h	—
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	_	218h	_	298h	CCPR2L	318h	CCPR4L	398h	_
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	—	299h	CCPR2H	319h	CCPR4H	399h	_
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TXREG	21Ah	_	29Ah	CCP2CON	31Ah	CCP4CON	39Ah	CLKRCON
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh	_	29Bh	PWM2CON	31Bh	_	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	_	19Ch	SPBRGH	21Ch	_	29Ch	CCP2AS	31Ch	_	39Ch	MDCON
01Dh	_	09Dh	ADCON0	111Dh	APFCON0	19Dh	RCSTA	21Dh	_	29Dh	PSTR2CON	31Dh	_	39Dh	MDSRC
01Eh	CPSCON0	09Eh	ADCON1	1 11Eh	APFCON1	19Eh	TXSTA	21Eh	_	29Eh	CCPTMRS0	31Eh	_	39Eh	MDCARL
01Eh	CPSCON1	09Eh		11Eh		19Eh	BAUDCON	21Fh	_	29Eh	_	31Fh	_	39Eh	MDCARH
020h	01000111	040h		120h		140h	BAODCON	220h		231 H		320h		340h	
02011	- ·	07.011	- ·	12011		17 1011		22011		2/1011		02011		0/ 1011	
	General		General		General		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented
	Pulpose Register		Purpose		Purpose		Read as '0'				Dhimplemented				Read as '0'
	80 Bytes		80 Bytes		80 Bytes		Redu do 0		iteau as 0		iteau as 0		itedu do 0		iteau as 0
	00 29100		00 29,000		00 29100										
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
	Common RAM		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
			70h — 7⊦h		70h — 7⊦h		/Uh — /⊦h	075	/Uh — /⊦h		/Uh – /⊦h		70h — 7⊢h		/Uh — /⊦h
07Fh		OFFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Available only on PIC16(L)F1828.

TABLE 3-6: PIC16(L)F1824/8 MEMORY MAP, BANKS 16-23

	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h	INDF0	880h	INDF0	900h	INDF0	980h	INDF0	A00h	INDF0	A80h	INDF0	B00h	INDF0	B80h	INDF0
801h	INDF1	881h	INDF1	901h	INDF1	981h	INDF1	A01h	INDF1	A81h	INDF1	B01h	INDF1	B81h	INDF1
802h	PCL	882h	PCL	902h	PCL	982h	PCL	A02h	PCL	A82h	PCL	B02h	PCL	B82h	PCL
803h	STATUS	883h	STATUS	903h	STATUS	983h	STATUS	A03h	STATUS	A83h	STATUS	B03h	STATUS	B83h	STATUS
804h	FSR0L	884h	FSR0L	904h	FSR0L	984h	FSR0L	A04h	FSR0L	A84h	FSR0L	B04h	FSR0L	B84h	FSR0L
805h	FSR0H	885h	FSR0H	905h	FSR0H	985h	FSR0H	A05h	FSR0H	A85h	FSR0H	B05h	FSR0H	B85h	FSR0H
806h	FSR1L	886h	FSR1L	906h	FSR1L	986h	FSR1L	A06h	FSR1L	A86h	FSR1L	B06h	FSR1L	B86h	FSR1L
807h	FSR1H	887h	FSR1H	907h	FSR1H	987h	FSR1H	A07h	FSR1H	A87h	FSR1H	B07h	FSR1H	B87h	FSR1H
808h	BSR	888h	BSR	908h	BSR	988h	BSR	A08h	BSR	A88h	BSR	B08h	BSR	B88h	BSR
809h	WREG	889h	WREG	909h	WREG	989h	WREG	A09h	WREG	A89h	WREG	B09h	WREG	B89h	WREG
80Ah	PCLATH	88Ah	PCLATH	90Ah	PCLATH	98Ah	PCLATH	A0Ah	PCLATH	A8Ah	PCLATH	B0Ah	PCLATH	B8Ah	PCLATH
80Bh	INTCON	88Bh	INTCON	90Bh	INTCON	98Bh	INTCON	A0Bh	INTCON	A8Bh	INTCON	B0Bh	INTCON	B8Bh	INTCON
80Ch	—	88Ch		90Ch	_	98Ch		A0Ch	_	A8Ch	_	B0Ch	—	B8Ch	_
80Dh	—	88Dh	_	90Dh	—	98Dh	—	A0Dh	—	A8Dh	—	B0Dh	—	B8Dh	
80Eh	—	88Eh		90Eh	_	98Eh		A0Eh	_	A8Eh	_	B0Eh	_	B8Eh	_
80Fh	—	88Fh	_	90Fh	—	98Fh	—	A0Fh	—	A8Fh	—	B0Fh	—	B8Fh	—
810h	—	890h		910h	_	990h		A10h	_	A90h	_	B10h	—	B90h	_
811h	—	891h		911h	_	991h		A11h	_	A91h	_	B11h	—	B91h	_
812h	—	892h		912h	_	992h		A12h	_	A92h	_	B12h	—	B92h	_
813h	—	893h		913h	_	993h		A13h	_	A93h	_	B13h	—	B93h	_
814h	—	894h	_	914h	—	994h	—	A14h	—	A94h	—	B14h	—	B94h	
815h	—	895h		915h	_	995h		A15h	_	A95h	_	B15h	—	B95h	_
816h	—	896h		916h	_	996h		A16h	_	A96h	_	B16h	—	B96h	_
817h	—	897h		917h	_	997h	_	A17h	_	A97h	_	B17h	—	B97h	_
818h	—	898h	—	918h	_	998h	—	A18h	—	A98h	_	B18h	—	B98h	_
819h	—	899h	—	919h	—	999h	—	A19h	—	A99h	—	B19h	—	B99h	—
81Ah	—	89Ah	—	91Ah	—	99Ah	—	A1Ah	—	A9Ah	—	B1Ah	—	B9Ah	—
81Bh	—	89Bh	—	91Bh	_	99Bh	—	A1Bh	—	A9Bh	_	B1Bh	—	B9Bh	_
81Ch	—	89Ch	—	91Ch	_	99Ch	—	A1Ch	—	A9Ch	_	B1Ch	—	B9Ch	—
81Dh	—	89Dh	—	91Dh	_	99Dh	—	A1Dh	_	A9Dh	_	B1Dh	—	B9Dh	_
81Eh	—	89Eh	—	91Eh	_	99Eh	—	A1Eh	_	A9Eh	_	B1Eh	—	B9Eh	—
81Fh	—	89Fh	—	91Fh	_	99Fh		A1Fh	—	A9Fh	—	B1Fh	—	B9Fh	—
820h		8A0h		920h		9A0h		A20h		AA0n		B20h		BAUN	
	Unimplemented Read as '0'														
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h		8F0h		970h		9F0h		A70h		AF0h		B70h		BF0h	
	Accesses 70h – 7Fh														
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fh		BFFh	

Legend: = Unimplemented data memory locations, read as '0'.

4.5 Device ID and Revision ID

The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See **Section 11.5 "User ID, Device ID and Configuration Word Access**" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

REGISTER 4-3: DEVICEID: DEVICE ID REGISTER⁽¹⁾

		R	R	R	R	R	R
				DEV<	8:3>		
		bit 13					bit 8
R	R	R	R	R	R	R	R
	DEV<2:0>				REV<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	'0' = Bit is clear	ed	'1' = Bit is set			
bit 13-5	DEV<8:0>: [Device ID bits					
	100111010 :	= PIC16F1824					
	100111110	= PIC16F1828					
	101000010	= PIC16LF1824					
	101000110	= PIC16LF1828					
bit 4-0	REV<4:0>: F	Revision ID bits					
	These bits ar	e used to identify the	ne revision.				

Note 1: This location cannot be written.

IGURE 5-7:	INTERNAL OSCILLATOR SWITCH TIMING
SERECCEC	LFINTOSC (FBCM and WOT (Faahlad)
HFINTOSC/	
LFINTOSC	
IRCF <3:0>	$\neq 0$ $\chi = 0$
System Clock	
< 1012X (2010) (2010)	
20730:00500 2072030	un Her Gala (dalahka makakan kerakar berkarika)
HFINTOSC/	La Degen Sync La Parring
LFINTOSC	
IRCF <3:0>	$\neq 0$ $\chi = 0$
System Clock	
s ann an an ar ar	
1.8.813 (1973/9»-	nemes cascale in a casc. LANGUOSC turns off univer WOY or A SOM is enabled
08999030	
BENTOSO/ MENTOSO	
\$P.CF <3:0>	
System Clock	
Seie to See	Table 5-1, "Oscillutor Switching Delays" for more information.

7.0 RESETS

There are multiple ways to reset this device:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- · Stack Underflow
- Programming mode exit

To allow VDD to stabilize, an optional Power-up Timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 7-1.

FIGURE 7-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

FIGURE 7-2: BROWN-OUT READY

8.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to the Section 9.0 "Power-Down Mode (Sleep)" for more details.

8.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

8.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the Shadow registers:

- W register
- STATUS register (except for TO and PD)
- · BSR register
- · FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding Shadow register should be modified and the value will be restored when exiting the ISR. The Shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

REGISTER 12-1: APFCON0: ALTERNATE PIN FUNCTION CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	U-0
RXDTSEL	SDOSEL ⁽¹⁾	SSSEL ⁽¹⁾	_	TIGSEL	TXCKSEL	_	_
bit 7							bit 0
bit i							511 0
Legend:							
R = Readable b	it	W = Writable bit		U = Unimpleme	ented bit, read as	'0'	
u = Bit is unchar	nged	x = Bit is unknow	'n	-n/n = Value at	POR and BOR/V	alue at all other l	Resets
'1' = Bit is set	0	'0' = Bit is cleare	d				
bit 7	RXDTSEL : Pin (PIC16(L)F182: 0 = RX/DT fu 1 = RX/DT fu (PIC16(L)F182: 0 = RX/DT fu	Selection <u>4)</u> inction is on RC5 inction is on RA1 <u>8)</u> inction is on RB5 inction is on R55					
bit 6	SDOSEL: Pin S(PIC16(L)F182:0 = SDO fund1 = SDO fund(PIC16(L)F182:Bit is Read-OnlSDO function is	Selection <u>4)</u> ction is on RC2 ction is on RA4 <u>8)</u> y, '0' s always on RC7					
bit 5	SSSEL: Pin Set (PIC16(L)F182- $0 = \overline{SS}$ functi $1 = \overline{SS}$ functi (PIC16(L)F182- Bit is Read-Onl \overline{SS} function is a	election <u>4)</u> ion is on RC3 ion is on RA3 <u>8)</u> ly, '0' always on RC6					
bit 4	Unimplemente	ed: Read as '0'					
bit 3	T1GSEL: Pin S 0 = T1G func 1 = T1G func	Selection ction is on RA4 ction is on RA3					
bit 2	TXCKSEL: Pin (PIC16(L)F182: 0 = TX/CK fu 1 = TX/CK fu (PIC16(L)F182: 0 = TX/CK fu 0 = TX/CK fu 1 = TX/CK fu	Selection <u>4)</u> Inction is on RC4 Inction is on RA0 <u>8)</u> Inction is on RB7 Inction is on RC4					
bit 1-0	Unimplemente	ed: Read as '0'					
Note 1: PIC	16(L)F1824 only.						

REGISTER 12-5: LAT	A: PORTA DATA	LATCH REGISTER
--------------------	---------------	----------------

U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u
—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				

bit 7-6	Unimplemented: Read as '0
bit 5-4	LATA<5:4>: RA<5:4> Output Latch Value bits ⁽¹⁾

bit 3 Unimplemented: Read as '0

bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits⁽¹⁾

REGISTER 12-6: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	 ANSA4: Analog Select between Analog or Digital Function on pins RA4, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
Note 1:	When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to input more allow external control of the voltage on the pin.

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-12: ANSELB: PORTB ANALOG SELECT REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
—	_	ANSB5	ANSB4	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bi	it	U = Unimpleme	ented bit, read as	; '0'	
u = Bit is unchan	iged	x = Bit is unkno	own	-n/n = Value at	POR and BOR/	/alue at all other	Resets
'1' = Bit is set		'0' = Bit is clear	ed				
u = Bit is unchangedx = Bit is unknown'1' = Bit is set'0' = Bit is cleared				-n/n = Value at	POR and BOR/\	/alue at all other	Resets

DIL 7-0	Unimplemented: Read as 0
bit 5-4	 ANSB<5:4>: Analog Select between Analog or Digital Function on pins RB<5:4>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
bit 3-0	Unimplemented: Read as '0'

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 12-13: WPUB: WEAK PULL-UP PORTB REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 WPUB<7:4>: Weak Pull-up Register bits^(1,2) 1 = Pull-up enabled 0 = Pull-up disabled bit 3-0 Unimplemented: Read as '0'

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 12-14: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	INLVLB<7:4>: PORTB Input Level Select bits
	For RB<7:4> pins, respectively
	 1 = ST input used for PORT reads and interrupt-on-change 0 = TTL input used for PORT reads and interrupt-on-change
bit 3-0	Unimplemented: Read as '0

REGISTER 13-4: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER (PIC16(L)F1828 ONLY)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBP7	IOCBP6	IOCBP5	IOCBP4	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable b	it	U = Unimplem	nented bit, read a	s '0'	
u = Bit is unchanged x = Bit is unknown		own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit is cleared							

bit 7-4	IOCBP<7:4>: Interrupt-on-Change PORTB Positive Edge Enable bits				
	1 = Interrupt-on-Change enabled on the pin for a positive going edge. Associated Status bit and interrupt				
	flag will be set upon detecting an edge.				
	0 = Interrupt-on-Change disabled for the associated pin.				
bit 3-0	Unimplemented: Read as '0'				

REGISTER 13-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER (PIC16(L)F1828 ONLY)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **IOCAN<7:4>:** Interrupt-on-Change PORTB Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.
- bit 3-0 Unimplemented: Read as '0'

21.11 Timer1 Control Registers

REGISTER 21-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u
TMR1CS<1:0>		T1CKPS<1:0>		T1OSCEN	T1SYNC	_	TMR10N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	t POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	TMR1CS<1:0 11 = Timer1 c 10 = Timer1 c <u>If T10SC</u> External <u>If T10SC</u> Crystal o 01 = Timer1 c 00 = Timer1 c	>: Timer1 Cloc lock source is lock source is CEN = 0: clock from T10 CEN = 1: scillator on T10 lock source is lock source is	ck Source Sele Capacitive Se pin or oscillato CKI pin (on the OSI/T1OSO p system clock (instruction cloc	ect bits nsing Oscillator or: e rising edge) ins (Fosc) ck (Fosc/4)	(CAPOSC)		
bit 5-4	T1CKPS<1:0 11 = 1:8 Pres 10 = 1:4 Pres 01 = 1:2 Pres 00 = 1:1 Pres	>: Timer1 Inpu cale value cale value cale value cale value cale value	t Clock Presca	ale Select bits			
bit 3	T1OSCEN: Ll 1 = Dedicate 0 = Dedicate	P Oscillator En d Timer1 oscilla d Timer1 oscilla	able Control b ator circuit ena ator circuit disa	iit abled abled			
bit 2	T1SYNC: Tim 1 = Do not sy 0 = Synchron	er1 Synchroniz nchronize syn ize asynchron	zation Control chronous cloc ous clock inpu	bit k input it with system c	lock (Fosc)		
bit 1	Unimplemen	ted: Read as '	o'				
bit 0	TMR1ON: Tin 1 = Enables 0 = Stops Tin	ner1 On bit Timer1 ner1 and clears	s Timer1 gate	flip-flop			

24.1 Capture Mode

The Capture mode function described in this section is available and identical for CCP modules ECCP1, ECCP2, CCP3 and CCP4.

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the CCPx pin, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- · Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Figure 24-1 shows a simplified diagram of the Capture operation.

24.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Also, the CCPx pin function can be moved to alternative pins using the APFCON1 register. Refer to **Section 12.1 "Alternate Pin Function**" for more details.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 24-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

24.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 21.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

24.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in Operating mode.

Note:	Clocking Timer1 from the system clock
	(Fosc) should not be used in Capture
	mode. In order for Capture mode to
	recognize the trigger event on the CCPx
	pin, Timer1 must be clocked from the
	instruction clock (FOSC/4) or from an
	external clock source.

24.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler. Example 24-1 demonstrates the code to perform this function.

EXAMPLE 24-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEL	CCPxCON	;Set Bank bits to point
		;to CCPxCON
CLRF	CCPxCON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		;the new prescaler
		;move value and CCP ON
MOVWF	CCPxCON	;Load CCPxCON with this
		;value

25.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDA from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 25-12 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDA line low before asserting it low. This does not conform to the I²C Specification that states no bus collision can occur on a Start.

25.4.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high.

Note:	At least one SCL low time must appear
	before a Stop is valid, therefore, if the SDA
	line goes low then high again while the SCL
	line stays high, only the Start condition is
	detected.

25.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart

FIGURE 25-12: I²C START AND STOP CONDITIONS

has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/\overline{W} bit set. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/\overline{W} clear in 10-bit mode, a prior match flag is set and maintained. Until a Stop condition, a high address with R/\overline{W} clear, or high address match fails.

25.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSP1CON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

FIGURE 30-20: I²C[™] BUS START/STOP BITS TIMING

TABLE 30-15:	I ² C™ BUS	START/STOP	BITS REQUIREMENTS
--------------	-----------------------	------------	-------------------

Param No.	Symbol	Characteristic		Min.	Тур	Max.	Units	Conditions	
SP90*	TSU:STA	Start condition	100 kHz mode	4700	—	—	ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600	-	—		Start Condition	
SP91*	THD:STA	Start condition	100 kHz mode	4000	-	-	ns	After this period, the first	
		Hold time	400 kHz mode	600	_	_		clock pulse is generated	
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	—	—	ns		
		Setup time	400 kHz mode	600	10	25			
SP93	THD:STO	Stop condition	100 kHz mode	4000	25	50	ns		
		Hold time	400 kHz mode	600	10	25			

* These parameters are characterized but not tested.

FIGURE 30-21: I²C[™] BUS DATA TIMING

FIGURE 31-31: IPD, CAPACITIVE SENSING (CPS) MODULE, LOW-CURRENT RANGE, CPSRM = 0, PIC16LF1824/8 ONLY

FIGURE 31-32: IPD, CAPACITIVE SENSING (CPS) MODULE, LOW-CURRENT RANGE, CPSRM = 0, PIC16F1824/8 ONLY

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		5.40	
Contact Pad Width	Х			0.60
Contact Pad Length	Y			1.50
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	3.90		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A