

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XE

Details	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	43
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21346ykfp-w4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ltem	Function	Specification
CPU	Central processing	R8C CPU core
	unit	 Number of fundamental instructions: 89
		 Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		• Multiply-accumulate instruction: 16 bits \times 16 bits + 32 bits \rightarrow 32 bits
		 Operating mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM, Data	Refer to Table 1.10 Product List for R8C/34X Group.
-	flash	
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	 Voltage detection 3 (detection level of voltage detection 1 selectable)
Detection		
I/O Ports	Programmable I/O	Input-only: 1 pin
	ports	 CMOS I/O ports: 43, selectable pull-up resistor
Clock	Clock generation	3 circuits: XIN clock oscillation circuit (with on-chip feedback resistor),
	circuits	High-speed on-chip oscillator (with frequency adjustment function),
		Low-speed on-chip oscillator
		 Oscillation stop detection: XIN clock oscillation stop detection function
		 Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		 Low power consumption modes:
		Standard operating mode (high-speed clock, high-speed on-chip oscillator,
		low-speed on-chip oscillator), wait mode, stop mode
Interrupts		Interrupt vectors: 69
		 External: 9 sources (INT × 5, key input × 4)
		Priority levels: 7 levels
Watchdog Tim	er	 14 bits × 1 (with prescaler)
		Reset start selectable
		 Low-speed on-chip oscillator for watchdog timer selectable
DTC (Data Tra	nsfer Controller)	• 1 channel
		Activation sources: 31
	1	Transfer modes: 2 (normal mode, repeat mode)
Timer	Timer RA	8 bits (with 8-bit prescaler) × 1
		Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
	Timor DD	measurement mode
	Timer RB	8 bits (with 8-bit prescaler) × 1 Timer mode (period timer), programmable waveform generation mode (PWM
		output), programmable one-shot generation mode, programmable wait one-
		shot generation mode
	Timer RC	16 bits (with 4 capture/compare registers) × 1
		Timer mode (input capture function, output compare function), PWM mode
		(output 3 pins), PWM2 mode (PWM output pin)
	Timer RD	16 bits (with 4 capture/compare registers) × 2
		Timer mode (input capture function, output compare function), PWM mode
		(output 6 pins), reset synchronous PWM mode (output three-phase
		waveforms (6 pins), sawtooth wave modulation), complementary PWM mode
		(output three-phase waveforms (6 pins), triangular wave modulation), PWM3
		mode (PWM output 2 pins with fixed period)
	Timer RE	8 bits × 1
		Output compare mode

 Table 1.3
 Specifications for R8C/34X Group (1)

Item	Function	Specification	
Serial Interface	UART0	1 channel Clock synchronous serial I/O, UART	
	UART2	1 channel Clock synchronous serial I/O, UART, I ² C mode (I ² C-bus), IE mode (IEBus), multiprocessor communication function	
Synchronous S	Serial	1 channel	
Communication	n Unit (SSU)		
LIN Module		Hardware LIN: 1 (timer RA, UART0)	
CAN Module		1 channel, 16 Mailboxes (conforms to the ISO 11898-1)	
A/D Converter		10-bit resolution x 12 channels, includes sample and hold function, with sweep mode	
Flash Memory		 Programming and erasure voltage: VCC = 2.7 to 5.5 V 	
		 Programming and erasure endurance: 100 times (program ROM) 	
		Program security: ROM code protect, ID code check	
		Debug functions: On-chip debug, on-board flash rewrite function	
Operating Fred Voltage	uency/Supply	f(XIN) = 20 MHz (VCC = 2.7 to 5.5 V)	
Current Consu	mption	Typ. 7 mA (VCC = 5.0 V, f(XIN) = 20 MHz)	
Operating Ambient Temperature		-40 to 85°C (J version) -40 to 125°C (K version) ⁽¹⁾	
Package		48-pin LQFP Package code: PLQP0048KB-A (previous code: 48P6Q-A)	

Table 1.4	Specifications for R8C/34X Group (2)
-----------	--------------------------------------

Note: 1. Specify the K version if K version functions are to be used.

1.5 Pin Functions

Tables 1.15 and 1.16 list Pin Functions.

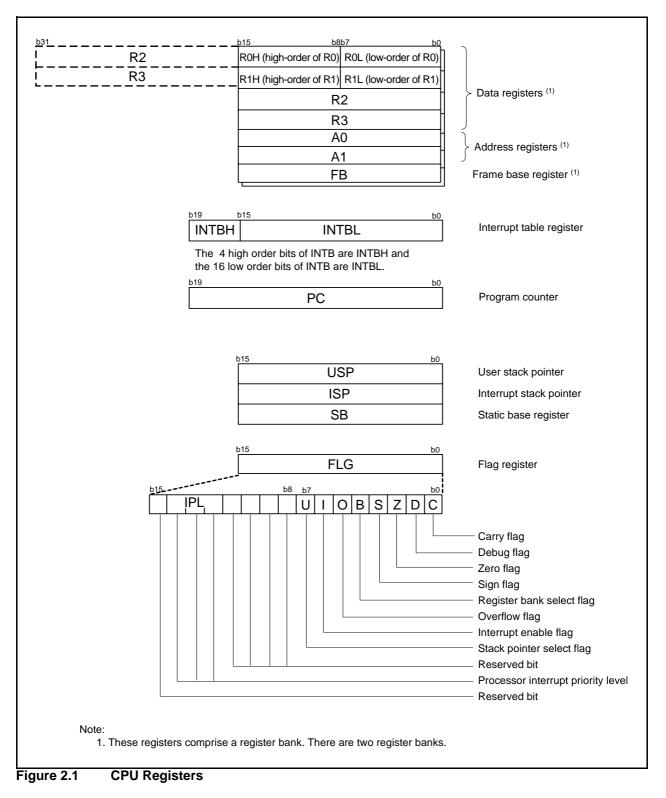
Item	Pin Name	I/O Type	Description
Power supply input	VCC, VSS	-	Apply 2.7 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin
Analog power supply input	AVCC, AVSS	-	Power supply for the A/D converter. Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between
XIN clock output	XOUT	I/O	the XIN and XOUT pins ⁽¹⁾ . To use an external clock, input in to the XOUT pin and leave the XIN pin open.
INT interrupt input	INT0 to INT4	I	INT interrupt input pins.
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAIO	I/O	Timer RA I/O pin
	TRAO	0	Timer RA output pin
Timer RB	TRBO	0	Timer RB output pin
Timer RC	TRCCLK	I	External clock input pin
	TRCTRG	I	External trigger input pin
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Timer RC I/O pins
Timer RD	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1	I/O	Timer RD I/O pins
	TRDCLK	I	External clock input pin
Timer RE	TREO	0	Divided clock output pin
Serial interface	CLK0, CLK2	I/O	Transfer clock I/O pins
	RXD0, RXD2	I	Serial data input pins
	TXD0, TXD2	0	Serial data output pins
	CTS2	I	Transmission control input pin
	RTS2	0	Reception control output pin
	SCL2	I/O	I ² C mode clock I/O pin
	SDA2	I/O	I ² C mode data I/O pin
SSU	SSI	I/O	Data I/O pin
	SCS	I/O	Chip-select signal I/O pin
	SSCK	I/O	Clock I/O pin
	SSO	I/O	Data I/O pin

I: Input O: Output I/O: Note:

1. Refer to the oscillator manufacturer for oscillation characteristics.

Pin Functions (2) Table 1.16

Item	Pin Name	I/O Type	Description
CAN module	CRX0 ⁽¹⁾	I	CAN data input pin
	CTX0 ⁽¹⁾	0	CAN data output pin
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter
	ADTRG	I	AD external trigger input pin
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_1, P3_3 to P3_5, P3_7, P4_3 to P4_7, P6_0 to P6_7	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program.
Input port	P4_2	I	Input-only port
Input port I: Input O: Outp		I nd output	Input-only port


I: Input Note: O: Output

1. Only in the R8C/34W Group and R8C/34X Group.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

3.4 R8C/34Z Group

Figure 3.4 is a Memory Map of R8C/34Z Group. The R8C/34Z Group has a 1-Mbyte address space from addresses 00000h to FFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM area is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 4-Kbyte internal RAM area is allocated addresses 00400h to 013FFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh (the SFR areas for the DTC and other modules). Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

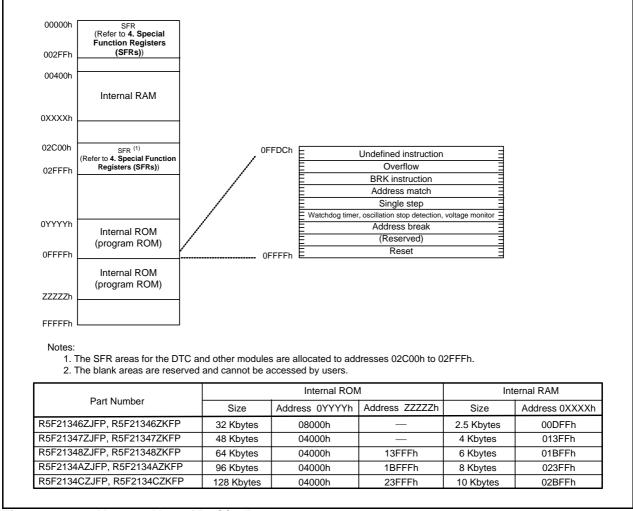


Figure 3.4

Memory Map of R8C/34Z Group

Address	Register	Symbol	After reset
0080h	DTC Activation Control Register	DTCTL	00h
0081h			
0082h			
0083h			
0084h			
0085h			
0086h			
0087h			
0088h	DTC Activation Enable Register 0	DTCEN0	00h
0089h	DTC Activation Enable Register 1	DTCEN1	00h
008Ah	DTC Activation Enable Register 2	DTCEN2	00h
008An	DTC Activation Enable Register 3	DTCEN2	00h
	DTC Activation Enable Register 4	DTCEN3	00h
008Ch	DTC Activation Enable Register 5	DTCEN4	00h
008Dh		DTCENS	
008Eh	DTC Activation Enable Register 6	DICEN6	00h
008Fh			
0090h			
0091h			
0092h			
0093h			
0094h			
0095h			
0096h			
0097h			
0098h			
0099h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009Fh			
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UART0 Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
00A3h			XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	0000010b
00A6h	UART0 Receive Buffer Register	UORB	XXh
00A7h			XXh
00A8h	UART2 Transmit/Receive Mode Register	U2MR	00h
00A9h	UART2 Bit Rate Register	U2BRG	XXh
00AAh	UART2 Transmit Buffer Register	U2TB	XXh
00AAh 00ABh		0210	XXh
00ACh	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
00ADh	UART2 Transmit/Receive Control Register 0	U2C1	00000010b
00ADh 00AEh	UART2 Receive Buffer Register	U2RB	XXh
00AEn 00AFh	ONTRE NEGENE DUILE NEGISIE	UZND	XXh
	LIART2 Digital Filter Function Select Register	URXDF	
00B0h 00B1h	UART2 Digital Filter Function Select Register		00h
00B1h 00B2h			
00B2h			
00B4h			
00B5h			
00B6h			
00B7h			
00B8h			
00B9h			
00BAh			
	UART2 Special Mode Register 5	U2SMR5	00h
00BBh		U2SMR4	00h
00BCh	UART2 Special Mode Register 4		
00BCh 00BDh	UART2 Special Mode Register 3	U2SMR3	000X0X0Xb
00BCh			

SFR Information (3)⁽¹⁾ Table 4.3

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Register	Symbol	After reset
		XXh
		XXh
	DTCD0	XXh
		XXh

SFR Information (9)⁽¹⁾ Table 4.9

DTC Transfer Vector Area

DTC Transfer Vector Area

DTC Transfer Vector Area DTC Transfer Vector Area

DTC Transfer Vector Area

2C07h			
2C08h	DTC Transfer Vector Area		XXh
2C09h	DTC Transfer Vector Area		XXh
2C0Ah	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area	-	XXh
2C3Ah			
2C3Bh			
2C3Ch			
2C3Dh 2C3Eh			-
2C3En 2C3Fh			
2C3FN 2C40h	DTC Control Data 0	DTCD0	XXh
2C4011		DICDO	XXh
2C42h			XXh
2C43h			XXh
2C44h	4		XXh
2C45h			XXh
2C46h			XXh
2C47h			XXh
2C48h	DTC Control Data 1	DTCD1	XXh
2C49h			XXh
2C4Ah			XXh
2C4Bh			XXh
2C4Ch			XXh
2C4Dh			XXh
2C4Eh	-		XXh
2C4Fh	DTC Control Data 2	DTCD2	XXh
2C50h	DTC Control Data 2	DTCD2	XXh
2C51h 2C52h	4		XXh XXh
2C52h			XXh
2C54h	-		XXh
2C55h			XXh
2C56h	4		XXh
2C57h			XXh
2C58h	DTC Control Data 3	DTCD3	XXh
2C59h			XXh
2C5Ah			XXh
2C5Bh			XXh
2C5Ch			XXh
2C5Dh			XXh
2C5Eh			XXh
2C5Fh		DTOD (XXh
2C60h	DTC Control Data 4	DTCD4	XXh
2C61h			XXh
2C62h 2C63h	4		XXh XXh
2C63h	4		XXh
2C65h			XXh
2C66h			XXh
2C67h			XXh
2C68h	DTC Control Data 5	DTCD5	XXh
2C69h			XXh
2C6Ah	1		XXh
2C6Bh	1		XXh
2C6Ch	1		XXh
2C6Dh	1		XXh
2C6Eh]		XXh
2C6Fh			XXh
Undefined			

X: Undefined Note:

1. The blank areas are reserved and cannot be accessed by users.

Address 2C00h

2C01h

2C02h 2C03h

2C03h 2C04h 2C05h 2C06h 2C07h 2C08h

Address	Register	Symbol	After reset
2CB0h	DTC Control Data 14	DTCD14	XXh
2CB1h		5.02	XXh
2CB2h	-		XXh
2CB3h	-		XXh
2CB4h	-		XXh
2CB5h	-		XXh
2CB6h			XXh
2CB7h			XXh
2CB8h	DTC Control Data 15	DTCD15	XXh
2CB9h		510513	XXh
2CBAh			XXh
2CBBh	-		XXh
2CBCh	-		XXh
2CBDh	-		XXh
2CBEh	-		XXh
2CBEh	-		XXh
2CDFII 2CC0h	DTC Control Data 16	DTCD16	XXh
20001 2001h	DTC Control Data 16	DICDI8	XXh
	-		
2CC2h	4		XXh
2CC3h	4		XXh XXh
2CC4h	4		
2CC5h	4		XXh
2CC6h	4		XXh
2CC7h		DT0D (7	XXh
2CC8h	DTC Control Data 17	DTCD17	XXh
2CC9h			XXh
2CCAh			XXh
2CCBh			XXh
2CCCh			XXh
2CCDh			XXh
2CCEh			XXh
2CCFh			XXh
2CD0h	DTC Control Data 18	DTCD18	XXh
2CD1h			XXh
2CD2h			XXh
2CD3h			XXh
2CD4h			XXh
2CD5h			XXh
2CD6h			XXh
2CD7h			XXh
2CD8h	DTC Control Data 19	DTCD19	XXh
2CD9h			XXh
2CDAh			XXh
2CDBh			XXh
2CDCh			XXh
2CDDh			XXh
2CDEh			XXh
2CDFh	1		XXh
2CE0h	DTC Control Data 20	DTCD20	XXh
2CE1h	1		XXh
2CE2h	1		XXh
2CE3h	1		XXh
2CE4h	1		XXh
2CE5h	1		XXh
2CE6h	1		XXh
2CE7h	1		XXh
2CE8h	DTC Control Data 21	DTCD21	XXh
2CE9h		2.022.	XXh
2CEAh	4		XXh
2CEBh	4		XXh
2CEDh	4		XXh
2CEDh	4		XXh
2CEEh	4		XXh
2CEFh	4		XXh
X: Undefined		1	2000

SFR Information (11) ⁽¹⁾ Table 4.11

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.14	SFR Information (14)	(1)
------------	----------------------	-----

Address	Desister	Symbol	After react
Address	Register	Symbol	After reset
2E70h	CAN0 Mailbox7 : Message ID	C0MB7	XXh
2E71h			XXh
2E72h			XXh
2E73h			XXh
2E74h			
2E75h	CAN0 Mailbox7 : Data length		XXh
2E76h	CAN0 Mailbox7 : Data field		XXh
2E77h	4		XXh
2E78h			XXh
2E79h	-		XXh
	4		
2E7Ah	-		XXh
2E7Bh			XXh
2E7Ch			XXh
2E7Dh			XXh
2E7Eh	CAN0 Mailbox7 : Time stamp		XXh
2E7Fh			XXh
2E80h	CAN0 Mailbox8 : Message ID	C0MB8	XXh
2E81h	1	000000	XXh
2E82h	4		XXh
2E820 2E83h	4		XXh
2E84h			
2E85h	CAN0 Mailbox8 : Data length		XXh
2E86h	CAN0 Mailbox8 : Data field		XXh
2E87h]		XXh
2E88h			XXh
2E89h			XXh
2E8Ah	-		XXh
2E8Bh			XXh
2E8Ch	-		XXh
	4		
2E8Dh			XXh
2E8Eh	CAN0 Mailbox8 : Time stamp		XXh
2E8Fh			XXh
2E90h	CAN0 Mailbox9 : Message ID	C0MB9	XXh
2E91h			XXh
2E92h			XXh
2E93h			XXh
2E94h			
2E95h	CAN0 Mailbox9 : Data length		XXh
2E96h	CANO Mailbox9 : Data field		XXh
2E90h			XXh
	-		
2E98h			XXh
2E99h	1		XXh
2E9Ah			XXh
2E9Bh			XXh
2E9Ch	1		XXh
2E9Dh	1		XXh
2E9Eh	CAN0 Mailbox9 : Time stamp		XXh
2E9Fh			XXh
2EA0h	CAN0 Mailbox10 : Message ID	C0MB10	XXh
	CANO Malibux IU . Message ID	CUIVID TU	
2EA1h	4		XXh
2EA2h	1		XXh
2EA3h			XXh
2EA4h			
2EA5h	CAN0 Mailbox10 : Data length		XXh
2EA6h	CAN0 Mailbox10 : Data field		XXh
2EA7h	1		XXh
2EA/h	4		XXh
	4		XXh
2EA9h	4		
2EAAh	4		XXh
2EABh	1		XXh
2EACh			XXh
2EADh]		XXh
2EAEh	CAN0 Mailbox10 : Time stamp		XXh
2EAFh	1 '		XXh

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.17SFR Information $(17)^{(1)}$
--

Address	Register	Symbol	After reset
2F3Bh	CAN0 Message Control Register 11	C0MCTL11	00h
2F3Ch	CAN0 Message Control Register 12	C0MCTL12	00h
2F3Dh	CAN0 Message Control Register 13	C0MCTL13	00h
2F3Eh	CAN0 Message Control Register 14	C0MCTL14	00h
2F3Fh	CAN0 Message Control Register 15	C0MCTL15	00h
2F40h	CAN0 Control Register	COCTLR	00000101b
2F41h			00h
2F42h	CAN0 Status Register	COSTR	00000101b
2F43h			00h
2F44h	CAN0 Bit Configuration Register	COBCR	00h
2F45h			00h
2F46h			00h
2F47h			
2F48h	CAN0 Receive FIFO Control Register	CORFCR	1000000b
2F49h	CAN0 Receive FIFO Pointer Control Register	CORFPCR	XXh
2F4Ah	CAN0 Transmit FIFO Control Register	COTFCR	1000000b
2F4Bh	CAN0 Transmit FIFO Pointer Control Register	COTFPCR	XXh
2F4Ch	CAN0 Error Interrupt Enable Register	COEIER	00h
2F4Dh	CAN0 Error Interrupt Factor Judge Register	COEIFR	00h
2F4Eh	CAN0 Reception Error Count Register	CORECR	00h
2F4Fh	CAN0 Transmission Error Count Register	COTECR	00h
2F50h	CAN0 Error Code Store Register	COECSR	00h
2F51h	CAN0 Channel Search Support Register	COCSSR	XXh
2F52h	CAN0 Mailbox Search Status Register	COMSSR	1000000b
2F53h	CAN0 Mailbox Search Mode Register	COMSMR	00h
2F54h	CAN0 Time Stamp Register	COTSR	00h
2F55h]		00h
2F56h	CAN0 Acceptance Filter Support Register	COAFSR	XXh
2F57h	1		XXh
2F58h	CAN0 Test Control Register	COTCR	00h
:	·	÷	•
2FFFh			

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.18 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset
: FFDBh	Option Function Select Register 2	OFS2	(Note 1)
: FFDFh	ID1		(Note 2)
: FFE3h	ID2		(Note 2)
: FFEBh	ID3		(Note 2)
: FFEFh	ID4		(Note 2)
: FFF3h	1 ID5		(Note 2)
: FFF7h	ID6		(Note 2)
: FFFBh	ID7		(Note 2)
: FFFFh	Option Function Select Register	OFS	(Note 1)

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh. When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user. When factory-programming products are shipped, the value of the option function select area is the value programmed by the user. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

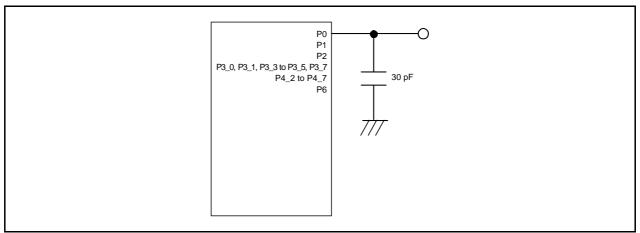
2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

Cumhal		De	romotor	Conditions		ł	Unit		
Symbol	Parameter			Conditions	Min.	Тур.	Max.	Unit	
Vcc/AVcc	Supply voltage	ly voltage				2.7	-	5.5	V
Vss/AVss	Supply voltage					-	0	-	V
Vih	Input "H" voltage	Other that	an CMOS inpu	t		0.8 Vcc	-	Vcc	V
		CMOS	Input level	Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.5 Vcc	-	Vcc	V
		input	switching	: 0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.55 Vcc	-	Vcc	V
			function	Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.65 Vcc	-	Vcc	V
			(I/O port)	: 0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.7 Vcc	-	Vcc	V
				Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.85 Vcc	-	Vcc	V
				: 0.7 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.85 Vcc	-	Vcc	V
		External	clock input (XOUT)		1.2	-	Vcc	V
VIL	Input "L" voltage	Other that	an CMOS inpu	t		0	-	0.2 Vcc	V
		input swit func	switching		$4.0~\text{V} \leq \text{Vcc} \leq 5.5~\text{V}$	0	-	0.2 Vcc	V
					$2.7~V \leq Vcc < 4.0~V$	0	-	0.2 Vcc	V
			function	(I/O port)	$4.0~V \leq Vcc \leq 5.5~V$	0	-	0.4 Vcc	V
			(I/O port)		$2.7~V \leq Vcc < 4.0~V$	0	-	0.3 Vcc	V
			Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0	-	0.55 Vcc	V	
				: 0.7 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	-	0.45 Vcc	V
		External	clock input (XOUT)		0	-	0.4	V
IOH(sum)	Peak sum output	"H"	Sum of all p	ins IOH(peak)		-	-	-80	mA
IOH(sum)	Average sum outp	ut "H"	Sum of all p	oins IOH(avg)		-	-	-40	mA
IOH(peak)	Peak output "H" o	urrent				-	-	-10	mA
IOH(avg)	Average output "I	H" current				-	-	-5	mA
IOL(sum)	Peak sum output	"L"	Sum of all p	oins IOL(peak)		-	-	80	mA
IOL(sum)	Average sum outp	out "L"	Sum of all p	oins IOL(avg)		-	-	40	mA
IOL(peak)	Peak output "L" c					-	-	10	mA
IOL(avg)	Average output "L	" current				-	-	5	mA
f(XIN)	XIN clock input of	scillation f	requency		$2.7~V \leq Vcc \leq 5.5~V$	-	-	20	MHz
fOCO40M	When used as the	e count so	ource for time	er RC or timer RD	$2.7~V \leq Vcc \leq 5.5~V$	32	_	40	MHz
fOCO-F	fOCO-F frequenc	у			$2.7~V \leq Vcc \leq 5.5~V$	-	-	20	MHz
-	System clock free	luency			$2.7~V \leq Vcc \leq 5.5~V$	-	=	20	MHz
f(BCLK)	CPU clock freque	ncy			$2.7~V \leq Vcc \leq 5.5~V$	-	_	20	MHz

Recommended Operating Conditions (1) Table 5.2

Notes:

Vcc = 2.7 to 5.5 V at T_{opr} = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.
 The average output current indicates the average value of current measured during 100 ms.



Symbol	Parameter		Conditions	:	Unit		
Symbol			Conditions	Min.	Тур.	Max.	Onit
IIC(H)	High input injection current			-	-	2	mA
lic(l)	Low input injection current	P0 to P2, P3_0, P3_1, P3_3 to P3_5, P3_7, P4_3 to P4_5, P6	$V_{I} < V_{SS}$	-	-	-2	mA
Σ IIC	Total injection curre	nt		-	_	8	mA

Table 5.3 Recommended Operating Conditions (2)

Note:

1. Vcc = 4.5 to 5.5 V at T_{opr} = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

Figure 5.1 Ports P0 to P2, P3_0, P3_1, P3_3 to P3_5, P3_7, P4_2 to P4_7, and P6 Timing Measurement Circuit

Symbol	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min.	Min. Typ. Max.		Unit
_	Program/erase endurance (2)	R8C/34X, R8C/34Z Group	100 (3)	-	-	times
		R8C/34W, R8C/34Y Group	1,000 (3)	-	-	times
-	Byte program time (program/erase endurance ≤ 100 times)		-	60	300	μs
_	Byte program time (program/erase endurance > 100 times)		-	60	500	μS
_	Word program time (program/erase endurance ≤ 100 times)		-	100	400	μS
-	Word program time (program/erase endurance > 100 times)		-	100	650	μS
_	Block erase time		-	0.3	4	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	5+CPU clock × 3 cycles	ms
_	Interval from erase start/restart until following suspend request		0	_	-	μs
_	Time from suspend until erase restart		-	_	30+CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		-	_	30+CPU clock × 1 cycle	μs
-	Program, erase voltage		2.7	-	5.5	V
_	Read voltage		2.7	-	5.5	V
_	Program, erase temperature		-40	_	85 (J version) 125 (K version)	°C
_	Data hold time (7)	Ambient temperature = $55^{\circ}C^{(8)}$	20	-	-	year

Table 5.5 Flash Memory (Program ROM) Electrical Characteristics

Notes: 1. Vcc = 2.7 to 5.5 V at T_{opr} = -40 to 85°C (J version) / -40 to 125°C (K version) (under consideration), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 100, 1,000), each block can be erased n times. For example, if 1,024 1byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

8. This data hold time includes 3,000 hours in Ta = 125°C and 7,000 hours in Ta = 85°C.

Symbol	Parameter	Condition	Si	Standard			
Symbol	Falameter		Condition	Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Other than XOUT	Iон = -5 mA	Vcc - 2.0	-	Vcc	V
			Іон = -200 μА	Vcc - 0.3	-	Vcc	V
		XOUT	Іон = -200 μА	1.0	-	Vcc	V
Vol	Output "L" voltage	Other than XOUT	IOL = 5 mA	-	-	2.0	V
			Ιοι = 200 μΑ	-	-	0.45	V
		XOUT	Іон = -200 μА	-	-	0.5	V
VT+-VT-	Hysteresis	INTO to INT4, KI0 to KI3, TRAIO, TRBO, TRCIOA to TRCIOD, TRDIOA0 to TRDIOD0, TRDIOA1 to TRDIOD1, TRCCLK, <u>TRDCLK,</u> TRCTRG, ADTRG, RXD0, RXD2, CLK0, CLK2, SSI, SCL2, SDA2, SSO RESET		0.1	1.2	-	V
Ін	Input "H" current		VI = 5 V, Vcc = 5.0 V	-	-	1.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 5.0 V	-	-	-1.0	μA
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 5.0 V	25	50	100	kΩ
Rfxin	Feedback resistance	XIN		_	0.3	-	MΩ
Vram	RAM hold voltage		During stop mode	2.0	_	-	V

Table 5.15 Electrical Characteristics (1) [4.2 V \leq Vcc \leq 5.5 V]

Note:

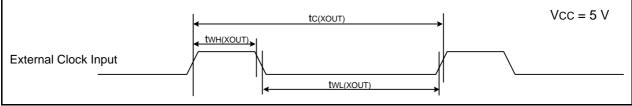
1. $4.2 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}$ at T_{opr} = -40 to 85°C (J version) / -40 to 125°C (K version), f(XIN) = 20 MHz, unless otherwise specified.

Symbol	Parameter	Condition			Standard		Unit
Symbol	i didificici		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 3.3 to 5.5 V)	High-speed clock mode ⁽¹⁾	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	15	mA
	Single-chip mode, output pins are open, other pins		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	5.6	12.5	mA
	are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.6	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	=	2.2	-	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	-	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	15	mA
		(1)	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	400	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	15	330	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	5	320	μA
	Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	2.0	5.0	μA	
		XIN clock off, Topr = 125°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	60.0	-	μA	

Table 5.17 Electrical Characteristics (3) [3.3 V \leq Vcc \leq 5.5 V] (Topr = -40 to 125°C (K version), unless otherwise specified.)

Note:

1. The typical value (Typ.) indicates the current value when the CPU and the memory operate.


The maximum value (Max.) indicates the current when the CPU, the memory, and the peripheral functions operate and the flash memory is programmed/erased.

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = -40°C to 85°C (J ver)/-40°C to 125°C (K ver))

Table 5.18 External clock input (XOUT)

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(XOUT)	XOUT input cycle time	50	-	ns	
twh(xout)	XOUT input "H" width	24	-	ns	
twl(xout)	XOUT input "L" width	24	-	ns	

Figure 5.7 External Clock Input Timing Diagram when Vcc = 5 V

Table 5.19 TRAIO Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	100	-	ns	
twh(traio)	TRAIO input "H" width	40	-	ns	
twl(traio)	TRAIO input "L" width	40	-	ns	

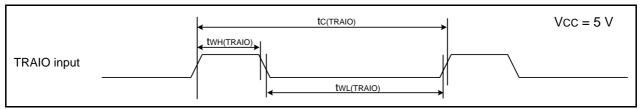
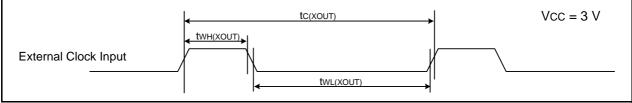


Figure 5.8 TRAIO Input Timing Diagram when Vcc = 5 V

Table 5.23Electrical Characteristics (4) $[2.7 V \le Vcc < 3.3 V]$
(Topr = -40 to 85°C (J version), unless otherwise specified.)

Symbol	Parameter	Parameter Condition		Standar	t k	Unit	
5,11001				Min.	Тур.	Max.	Unit
Icc Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open, other pins are Vss	High-speed clock mode (1)	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	1	7.0	14.5	mA	
		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	5.6	12.0	mA	
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.6	-	mA
		XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	-	mA	
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.2	-	mA
			_	1.5	-	mA	
	High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	14.5	mA	
		mode ⁽¹⁾	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	85	180	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	15	110	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	5	100	μA
	Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μA	
			XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	13.0	_	μA

Note:


1. The typical value (Typ.) indicates the current value when the CPU and the memory operate.

The maximum value (Max.) indicates the current when the CPU, the memory, and the peripheral functions operate and the flash memory is programmed/erased.

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = -40°C to 85°C (J ver)/-40°C to 125°C (K ver))

Table 5.25 External clock input (XOUT)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tc(XOUT)	XOUT input cycle time	50	-	ns
twh(xout)	XOUT input "H" width	24	-	ns
twl(xout)	XOUT input "L" width	24	-	ns

Figure 5.11 External Clock Input Timing Diagram when Vcc = 3 V

Table 5.26 TRAIO Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Onit
tc(TRAIO)	TRAIO input cycle time	300	-	ns
twh(traio)	TRAIO input "H" width	120	-	ns
twl(traio)	TRAIO input "L" width	120	-	ns

Figure 5.12 TRAIO Input Timing Diagram when Vcc = 3 V

Table 5.27 Serial Interface

Symbol	Parameter	Condition	Stan	Standard	
		Condition	Min.	Max.	Unit
tc(CK)	CLKi input cycle time		300	-	ns
tW(CKH)	CLKi input "H" width		150	-	ns
tW(CKL)	CLKi Input "L" width	When external clock selected	150	-	ns
td(C-Q)	TXDi output delay time		-	120	ns
th(C-Q)	TXDi hold time		0	-	ns
tsu(D-C)	RXDi input setup time		30	-	ns
th(C-D)	RXDi input hold time		90	-	ns
td(C-Q)	TXDi output delay time		-	30	ns
tsu(D-C)	RXDi input setup time	When internal clock selected	120	-	ns
th(C-D)	RXDi input hold time		90	-	ns

i = 0, 2

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.