

Welcome to E-XFL.COM

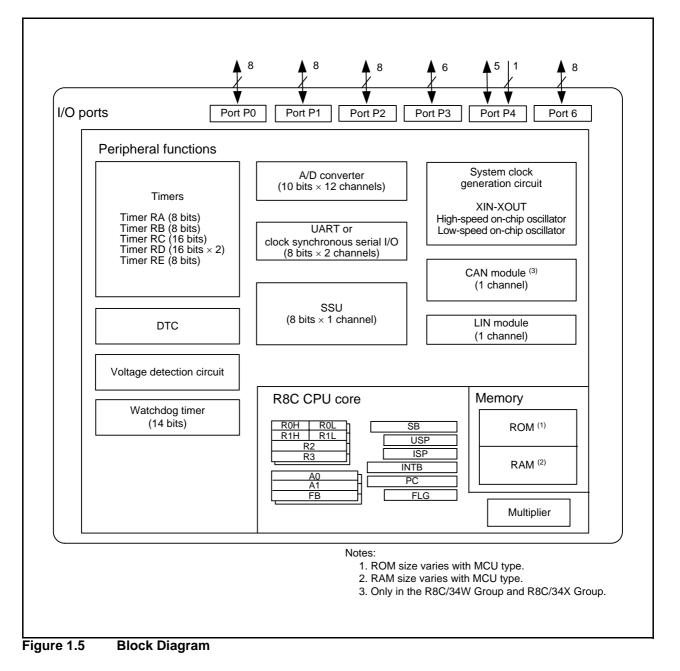
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XE


Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, IEBus, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	43
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f2134cwkfp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Block Diagram

Figure 1.5 shows a Block Diagram.

1.5 Pin Functions

Tables 1.15 and 1.16 list Pin Functions.

Item	Pin Name	I/O Type	Description
Power supply input	VCC, VSS	-	Apply 2.7 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin
Analog power supply input	AVCC, AVSS	-	Power supply for the A/D converter. Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between
XIN clock output	XOUT	I/O	the XIN and XOUT pins ⁽¹⁾ . To use an external clock, input in to the XOUT pin and leave the XIN pin open.
INT interrupt input	INT0 to INT4	I	INT interrupt input pins.
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAIO	I/O	Timer RA I/O pin
	TRAO	0	Timer RA output pin
Timer RB	TRBO	0	Timer RB output pin
Timer RC	TRCCLK	I	External clock input pin
	TRCTRG	I	External trigger input pin
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Timer RC I/O pins
Timer RD	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1	I/O	Timer RD I/O pins
	TRDCLK	I	External clock input pin
Timer RE	TREO	0	Divided clock output pin
Serial interface	CLK0, CLK2	I/O	Transfer clock I/O pins
	RXD0, RXD2	I	Serial data input pins
	TXD0, TXD2	0	Serial data output pins
	CTS2	I	Transmission control input pin
	RTS2	0	Reception control output pin
	SCL2	I/O	I ² C mode clock I/O pin
	SDA2	I/O	I ² C mode data I/O pin
SSU	SSI	I/O	Data I/O pin
	SCS	I/O	Chip-select signal I/O pin
	SSCK	I/O	Clock I/O pin
	SSO	I/O	Data I/O pin

I: Input O: Output I/O: Note:

1. Refer to the oscillator manufacturer for oscillation characteristics.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

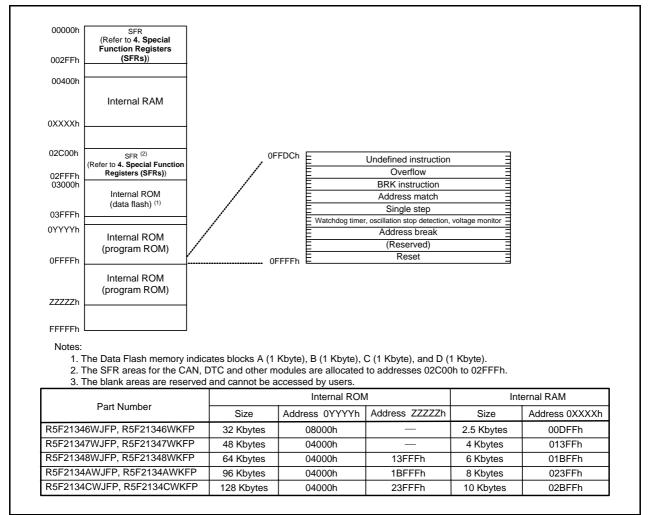
IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3. Memory

3.1 R8C/34W Group


Figure 3.1 is a Memory Map of R8C/34W Group. The R8C/34W Group has a 1-Mbyte address space from addresses 00000h to FFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM area is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 4-Kbyte internal RAM area is allocated addresses 00400h to 013FFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh (the SFR areas for the CAN, DTC, and other modules). Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

RENESAS

3.3 R8C/34Y Group

Figure 3.3 is a Memory Map of R8C/34Y Group. The R8C/34Y Group has a 1-Mbyte address space from addresses 00000h to FFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFh. For example, a 48-Kbyte internal ROM area is allocated addresses 04000h to 0FFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 4-Kbyte internal RAM area is allocated addresses 00400h to 013FFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFh (the SFR areas for the DTC and other modules). Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

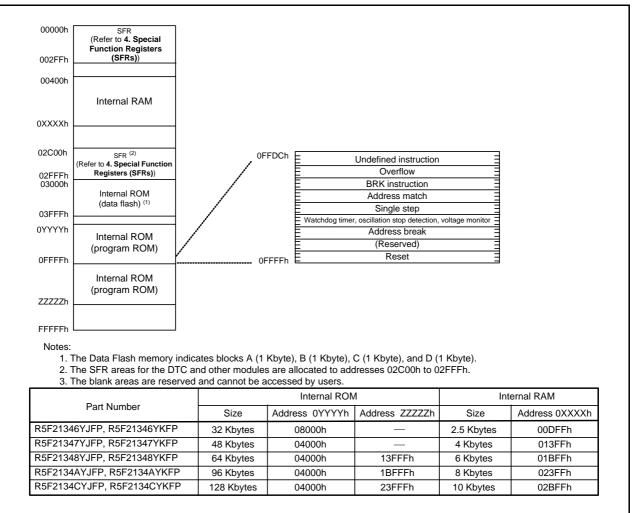


Figure 3.3 Memory Map of R8C/34Y Group

Address	Register	Symbol	After reset
003Ah	Voltage Monitor 2 Circuit Control Register	VW2C	10000010b
003Bh			
003Ch			
003Dh 003Eh			
003En			
003Fn 0040h			
004011 0041h	Elash Mamany Boody Interrupt Control Bogistor	FMRDYIC	XXXXX000b
004111 0042h	Flash Memory Ready Interrupt Control Register	FWIRDTIC	^^^^0000
0042h			
0043h			
0044h			
0046h	INT4 Interrupt Control Register	INT4IC	XX00X000b
0047h	Timer RC Interrupt Control Register	TRCIC	XXXXX000b
0048h	Timer RD0 Interrupt Control Register	TRDOIC	XXXXX000b
0049h	Timer RD1 Interrupt Control Register	TRD1IC	XXXXX000b
004Ah	Timer RE Interrupt Control Register	TREIC	XXXXX000b
004Bh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
004Ch	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh	SSU Interrupt Control Register	SSUIC	XXXXX000b
0050h			
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h			
0054h			
0055h	INT2 Interrupt Control Register	INT2IC	XX00X000b
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0057h			
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Ah	INT3 Interrupt Control Register	INT3IC	XX00X000b
005Bh			
005Ch		NITOLO	
005Dh	INTO Interrupt Control Register	INTOIC	XX00X000b
005Eh 005Fh	UART2 Bus Collision Detection Interrupt Control Register	U2BCNIC	XXXXX000b
005Fn			
0060h			
0061h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			
006Ch	CAN0 Reception Complete Interrupt Control Register	CORIC	XXXXX000b
006Dh	CAN0 Transmission Complete Interrupt Control Register	COTIC	XXXXX000b
006Eh	CANO Receive FIFO Interrupt Control Register	COFRIC	XXXXX000b
006Fh	CAN0 Transmit FIFO Interrupt Control Register	COFTIC	XXXXX000b
0070h	CAN0 Error Interrupt Control Register	COEIC	XXXXX000b
0071h	CAN0 Wake-up Interrupt Control Register	COWIC	XXXXX000b
0072h	Voltage Monitor 1 Interrupt Control Register	VCMP1IC	XXXXX000b
0073h	Voltage Monitor 2 Interrupt Control Register	VCMP2IC	XXXXX000b
0074h			
0075h			
0076h			
0077h			
0078h			
0079h			
007Ah			
007Bh			
007Bh 007Ch			
007Bh 007Ch 007Dh			
007Bh 007Ch			

SFR Information (2)⁽¹⁾ Table 4.2

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Desister	Cumbal	After react
Address	Register	Symbol	After reset
01C0h	Address Match Interrupt Register 0	RMAD0	XXh
01C1h			XXh
01C2h			0000XXXXb
01C3h	Address Match Interrupt Enable Register 0	AIER0	00h
01C4h	Address Match Interrupt Register 1	RMAD1	XXh
01C5h			XXh
	4		
01C6h			0000XXXXb
01C7h	Address Match Interrupt Enable Register 1	AIER1	00h
01C8h			
01C9h			
01CAh			
01CBh			
01CCh			
01CDh			
01CEh			
01CFh			
01D0h			
01D1h			
01D2h			
01D3h			
01D4h			
01D5h			
01D6h		1	
01D7h			
01D8h			
01D9h			
01DAh			
01DBh			
01DCh			
01DDh			
01DEh			
01DFh			
01E0h	Pull-Up Control Register 0	PUR0	00h
01E1h	Pull-Up Control Register 1	PUR1	00h
01E2h			
01E3h			
01E4h			
01E5h			
01E6h			
01E7h			
01E8h			
01E9h			
01EAh			
01EBh			
01ECh			
01EDh			
01EEh			
01EFh			
01F0h			
01F1h			
01F2h			
01F3h			
01F4h			
01F5h	Input Threshold Control Register 0	VLT0	00h
	Input Threshold Control Register 0		
01F6h	input Threshold Control Register 1	VLT1	00h
01F7h			
01F8h			
01F9h		l l	
01FAh	External Input Enable Register 0	INTEN	00h
01FBh	External Input Enable Degister 1	INTEN1	
	External Input Enable Register 1		00h
01FCh	INT Input Filter Select Register 0	INTF	00h
01FDh	INT Input Filter Select Register 1	INTF1	00h
01FEh	Key Input Enable Register 0	KIEN	00h
8			
01FFh			

Table 4.8	SFR Information	(8) (1)
-----------	-----------------	---------

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After rese
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h			XXh
2CF2h			XXh
2CF3h			XXh
2CF4h			XXh
2CF5h			XXh
2CF6h			XXh
2CF7h	-		XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h			XXh
2CFAh			XXh
2CFBh			XXh
2CFCh			XXh
2CFDh			XXh
2CFEh			XXh
2CFFh			XXh
2D00h			
2D01h			
:	·		•
2E00h	CAN0 Mailbox 0 : Message ID	COMBO	XXh
2E01h			XXh
0E00h			VVh

Table 4.12 SFR Information (12)⁽¹⁾

2D00h			
2D01h			
:			
2E00h	CAN0 Mailbox 0 : Message ID	C0MB0	XXh
2E01h			XXh
2E02h			XXh
2E03h			XXh
2E04h			
2E05h	CAN0 Mailbox 0 : Data length		XXh
2E00h	CANO Mailbox 0 : Data field		XXh
2E00h			XXh
2E07h			XXh
2E0011	4		XXh
2EU9n	-		
2E0Ah	-		XXh
2E0Bh			XXh
2E0Ch			XXh
2E0Dh			XXh
2E0Eh	CAN0 Mailbox 0 : Time stamp		XXh
2E0Fh			XXh
2E10h	CAN0 Mailbox 1 : Message ID	C0MB1	XXh
2E11h			XXh
2E12h			XXh
2E13h			XXh
2E14h			
2E15h	CAN0 Mailbox 1 : Data length		XXh
2E16h	CAN0 Mailbox 1 : Data field		XXh
2E17h			XXh
2E18h			XXh
2E19h	4		XXh
2E1Ah	4		XXh
2E1Bh			XXh
2E1Dh			XXh
2E1Dh	-		XXh
2E1Dh 2E1Eh	CAN0 Mailbox 1 : Time stamp		XXh
2E1EII 2E1Fh			XXh
	CANO Mailhau O Maaaana ID	C0MB2	XXh
2E20h	CAN0 Mailbox 2 : Message ID	CUIVIBZ	
2E21h	4		XXh
2E22h	4		XXh
2E23h			XXh
2E24h			104
2E25h	CAN0 Mailbox 2 : Data length		XXh
2E26h	CAN0 Mailbox 2 : Data field		XXh
2E27h			XXh
2E28h			XXh
2E29h			XXh
2E2Ah			XXh
2E2Bh			XXh
2E2Ch	1		XXh
2E2Dh	1		XXh
2E2Eh	CAN0 Mailbox 2 : Time stamp		XXh
2E2Fh	1		XXh
2			L

X: Undefined

Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.13	SFR Information (13) ⁽¹)
------------	------------------------------------	---

Address	Degister	Sumbol	After react
Address	Register	Symbol	After reset
2E30h	CAN0 Mailbox 3 : Message ID	C0MB3	XXh
2E31h			XXh
2E32h			XXh
2E33h			XXh
2E34h			204
2E35h	CAN0 Mailbox 3 : Data length		XXh
2E36h	CAN0 Mailbox 3 : Data field		XXh
2E37h	4		XXh
2E38h	4		XXh
2E39h	-		XXh
2E3Ah	-		XXh
2E3Bh			XXh
2E3Ch			XXh
2E3Dh			XXh
2E3Eh	CAN0 Mailbox3 : Time stamp		XXh
2E3Fh			XXh
2E40h	CAN0 Mailbox4 : Message ID	C0MB4	XXh
2E41h	1		XXh
2E42h			XXh
2E43h			XXh
2E44h			
2E45h	CAN0 Mailbox4 : Data length		XXh
2E46h	CAN0 Mailbox4 : Data field		XXh
2E47h			XXh
2E48h			XXh
2E49h			XXh
2E4Ah	1		XXh
2E4Bh			XXh
2E4Ch			XXh
2E4Dh			XXh
2E4Eh	CAN0 Mailbox4 : Time stamp		XXh
2E4Fh	1		XXh
2E50h	CAN0 Mailbox5 : Message ID	C0MB5	XXh
2E51h	1 *		XXh
2E52h			XXh
2E53h			XXh
2E54h			
2E55h	CAN0 Mailbox5 : Data length		XXh
2E56h	CAN0 Mailbox5 : Data field		XXh
2E57h			XXh
2E58h			XXh
2E59h			XXh
2E5Ah	1		XXh
2E5Bh	1		XXh
2E5Ch	4		XXh
2E5Dh	1		XXh
2E5Eh	CAN0 Mailbox5 : Time stamp		XXh
2E5Fh			XXh
2E60h	CAN0 Mailbox6 : Message ID	C0MB6	XXh
2E61h		CONIDO	XXh
2E62h	4		XXh
2E63h	4		XXh
2E63h			
2E64h	CAN0 Mailbox6 : Data length		XXh
2E66h	CANO Mailbox6 : Data field		XXh
2E60h			XXh
2E67h 2E68h	4		XXh
	4		XXh
2E69h	4		
			XXh
2E6Ah	4		
2E6Bh			XXh
2E6Bh 2E6Ch			XXh
2E6Bh 2E6Ch 2E6Dh			XXh XXh
2E6Bh 2E6Ch	CAN0 Mailbox6 : Time stamp		XXh

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.17SFR Information $(17)^{(1)}$
--

Address	Register	Symbol	After reset
2F3Bh	CAN0 Message Control Register 11	C0MCTL11	00h
2F3Ch	CAN0 Message Control Register 12	C0MCTL12	00h
2F3Dh	CAN0 Message Control Register 13	C0MCTL13	00h
2F3Eh	CAN0 Message Control Register 14	C0MCTL14	00h
2F3Fh	CAN0 Message Control Register 15	C0MCTL15	00h
2F40h	CAN0 Control Register	COCTLR	00000101b
2F41h			00h
2F42h	CAN0 Status Register	COSTR	00000101b
2F43h			00h
2F44h	CAN0 Bit Configuration Register	COBCR	00h
2F45h			00h
2F46h			00h
2F47h			
2F48h	CAN0 Receive FIFO Control Register	CORFCR	1000000b
2F49h	CAN0 Receive FIFO Pointer Control Register	CORFPCR	XXh
2F4Ah	CAN0 Transmit FIFO Control Register	COTFCR	1000000b
2F4Bh	CAN0 Transmit FIFO Pointer Control Register	COTFPCR	XXh
2F4Ch	CAN0 Error Interrupt Enable Register	COEIER	00h
2F4Dh	CAN0 Error Interrupt Factor Judge Register	COEIFR	00h
2F4Eh	CAN0 Reception Error Count Register	CORECR	00h
2F4Fh	CAN0 Transmission Error Count Register	COTECR	00h
2F50h	CAN0 Error Code Store Register	COECSR	00h
2F51h	CAN0 Channel Search Support Register	COCSSR	XXh
2F52h	CAN0 Mailbox Search Status Register	COMSSR	1000000b
2F53h	CAN0 Mailbox Search Mode Register	COMSMR	00h
2F54h	CAN0 Time Stamp Register	COTSR	00h
2F55h]		00h
2F56h	CAN0 Acceptance Filter Support Register	COAFSR	XXh
2F57h	1		XXh
2F58h	CAN0 Test Control Register	COTCR	00h
:	·	÷	•
2FFFh			

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.18 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset
: FFDBh	Option Function Select Register 2	OFS2	(Note 1)
: FFDFh	ID1		(Note 2)
: FFE3h	ID2		(Note 2)
: FFEBh	ID3		(Note 2)
: FFEFh	ID4		(Note 2)
: FFF3h	1 ID5		(Note 2)
: FFF7h	ID6		(Note 2)
: FFFBh	ID7		(Note 2)
: FFFFh	Option Function Select Register	OFS	(Note 1)

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh. When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user. When factory-programming products are shipped, the value of the option function select area is the value programmed by the user. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

5. **Electrical Characteristics**

Table 5.1	Absolute Maximu	um Ratings
-----------	-----------------	------------

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vi	Input voltage ⁽¹⁾		-0.3 to Vcc + 0.3	V
IIN	Input current ⁽¹⁾	(2, 3, 4)	-4 to 4	mA
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	$-40~^\circ C \leq T_{opr} < 85~^\circ C$	300	mW
		85 °C \leq Topr $<$ 125 °C	125	mW
Topr	Operating ambient temperature		-40 to 85 (J version) / -40 to 125 (K version)	°C
Tstg	Storage temperature		-65 to 150	°C

Notes:

1. Meet the specified range for the input voltage or the input current.

Applicable ports: P0 to P2, P3_0, P3_1, P3_3 to P3_5, P3_7, P4_3 to P4_5, P6
 The total input current must be 12 mA or less.

4. Even if no voltage is supplied to Vcc, the input current may cause the MCU to be powered on and operate. When a voltage is supplied to Vcc, the input current may cause the supply voltage to rise. Since operations in any cases other than above are not guaranteed, use the power supply circuit in the system to ensure the supply voltage for the MCU is stable within the specified range.

Cumbol	Parameter		Cana	litions		Standard		Unit
Symbol	Falameter		Cond	IIIIOIIS	Min.	Тур.	Max.	Unit
-	Resolution		Vref = AVCC		-	-	10	Bit
-	Absolute accuracy	10-bit mode	Vref = AVCC = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±3	LSB
			Vref = AVCC = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±5	LSB
		8-bit mode	Vref = AVCC = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±2	LSB
			Vref = AVCC = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	_	-	±2	LSB
φAD	A/D conversion clock		$4.0 \le Vref = AVCC = \le$	5.5 (2)	2	-	20	MHz
			$2.7 \le Vref = AVCC = \le$	5.5 (2)	2	-	10	MHz
-	Tolerance level impedance	;			-	3	-	kΩ
Ivref	Vref current		Vcc = 5.0 V, XIN = f1	= \$\phi AD = 20 MHz	-	45	-	μA
t CONV	Conversion time	10-bit mode	Vref = AVCC = 5.0 V, c	þAD = 20 MHz	2.2	-	-	μS
		8-bit mode	Vref = AVCC = 5.0 V, c	þAD = 20 MHz	2.2	-	-	μS
t SAMP	Sampling time	-	φAD = 20 MHz		0.8	-	-	μS
Vref	Reference voltage				2.7	-	AVcc	V
VIA	Analog input voltage (3)				0	-	Vref	V
OCVREF	On-chip reference voltage		$2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MH}$	Z	1.14	1.34	1.54	V

Notes:

1. Vcc/AVcc = Vref = 2.7 to 5.5 V, Vss = 0 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-consumption current mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Symbol	Parameter	Conditions		Stan	dard	Unit
Symbol	Farameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance (2)		10,000 (3)	-	-	times
-	Byte program time (program/erase endurance ≤ 1,000 times)		-	160	950	μS
-	Byte program time (program/erase endurance > 1,000 times)		-	300	950	μS
-	Block erase time (program/erase endurance ≤ 1,000 times)		-	0.2	1	S
-	Block erase time (program/erase endurance > 1,000 times)		-	0.3	1	S
td(SR-SUS)	Time delay from suspend request until suspend		-	_	3+CPU clock × 3 cycles	ms
-	Interval from erase start/restart until following suspend request		0	Ì	-	μS
-	Time from suspend until erase restart		-	-	30+CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		-	_	30+CPU clock × 1 cycle	μS
_	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.7	-	5.5	V
-	Program, erase temperature		-40	-	85 (J version) 125 (K version)	°C
-	Data hold time (7)	Ambient temperature = 55 °C $^{(8)}$	20	-	-	year

Table 5.6	Flash Memory	(Data flash Block A to Block D) Electrical Characteristics
-----------	--------------	--------------------------------	------------------------------

Notes:

1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100, 1,000, 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.
- 8. This data hold time includes 3,000 hours in Ta = 125° C and 7,000 hours in Ta = 85° C.

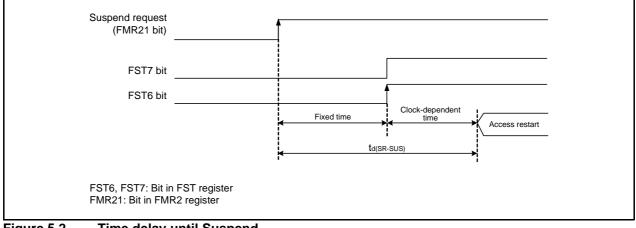


Figure 5.2 Time delay until Suspend

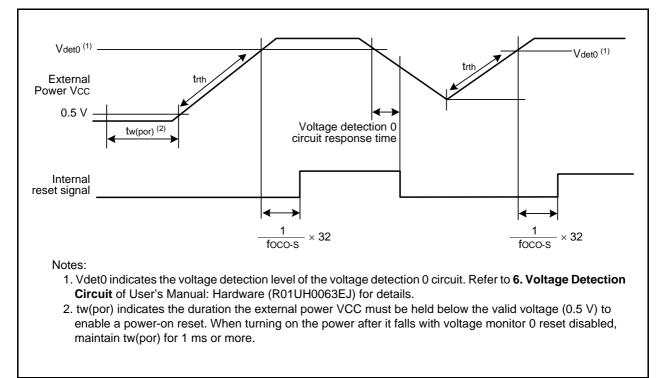
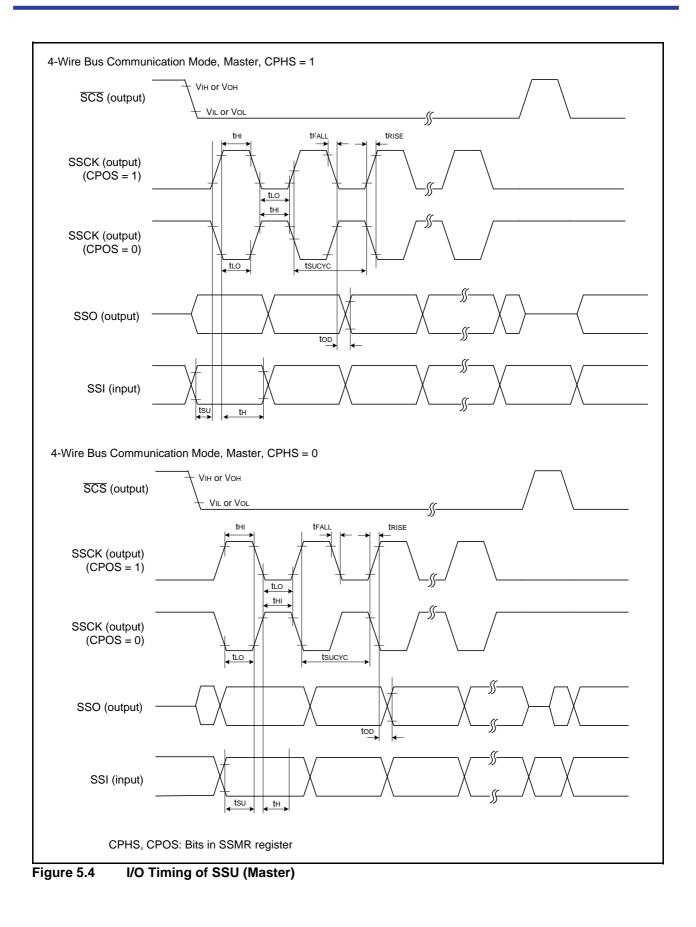


Table 5.10 Power-on Reset Circuit, Voltage Monitor 0 Reset Electrical Characteristics	able 5.10	Т
---	-----------	---

Symbol	Parameter	Condition		Standard		Unit
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Onic
trth	External power Vcc rise gradient	(1)	0	-	50000	mV/msec


Notes:

1. The measurement condition is Vcc = 2.7 V to 5.5 V and $T_{opr} = -40$ to 85°C (J version) / -40 to 125°C (K version).2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

Power-on Reset Circuit Electrical Characteristics Figure 5.3

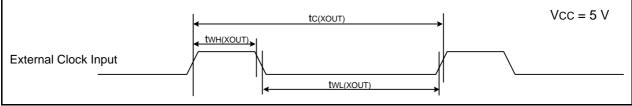
RENESAS

Symbol	Parameter		Condition		Standard		Unit
Symbol	i didificici		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 3.3 to 5.5 V)	High-speed clock mode ⁽¹⁾	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	15	mA
	Single-chip mode, output pins are open, other pins		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	5.6	12.5	mA
	are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.6	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	=	2.2	-	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	-	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	15	mA
		(1)	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	400	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	15	330	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	5	320	μA
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	2.0	5.0	μA
			XIN clock off, Topr = 125°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	60.0	-	μA

Table 5.17 Electrical Characteristics (3) [3.3 V \leq Vcc \leq 5.5 V] (Topr = -40 to 125°C (K version), unless otherwise specified.)

Note:

1. The typical value (Typ.) indicates the current value when the CPU and the memory operate.


The maximum value (Max.) indicates the current when the CPU, the memory, and the peripheral functions operate and the flash memory is programmed/erased.

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = -40°C to 85°C (J ver)/-40°C to 125°C (K ver))

Table 5.18 External clock input (XOUT)

Symbol	Parameter	Stan	dard	Unit
Symbol	Falameter	Min.	Max.	Unit
tc(XOUT)	XOUT input cycle time	50	-	ns
twh(xout)	XOUT input "H" width	24	-	ns
twl(xout)	XOUT input "L" width	24	-	ns

Figure 5.7 External Clock Input Timing Diagram when Vcc = 5 V

Table 5.19 TRAIO Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Falanielei	Min.	Max.	Onit
tc(TRAIO)	TRAIO input cycle time	100	-	ns
twh(traio)	TRAIO input "H" width	40	-	ns
twl(traio)	TRAIO input "L" width	40	-	ns

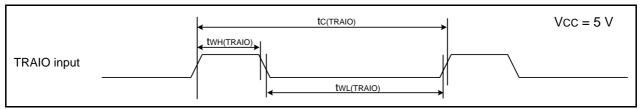


Figure 5.8 TRAIO Input Timing Diagram when Vcc = 5 V

Symbol	Parameter		Condition	Standard			Unit
				Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Other than XOUT	Iон = –1 mA	Vcc - 0.5	-	Vcc	V
		XOUT	Іон = –200 μА	1.0	-	Vcc	V
Vol	Output "L" voltage	Other than XOUT	IOL = 1 mA	-	-	0.5	V
		XOUT	Ιοι = 200 μΑ	-	-	0.5	V
VT+-VT-	Hysteresis	INT0 to INT4, KI0 to KI3, TRAIO, TRBO, TRCIOA to TRCIOD, TRDIOA0 to TRDIOD0, TRDIOA1 to TRDIOD1, TRCLK, <u>TRDCLK</u> , TRCTRG, ADTRG, RXD0, RXD2, CLK0, CLK2, SSI, SCL2, SDA2, SSO		0.1	0.4	_	V
		RESET		0.1	0.5	-	V
Ін	Input "H" current		VI = 3 V, Vcc = 3.0 V	-	-	1.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 3.0 V	-	-	-1.0	μΑ
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 3.0 V	42	84	168	kΩ
RfXIN	Feedback resistance	XIN		-	0.3	-	MΩ
Vram	RAM hold voltage		During stop mode	2.0	-	-	V

Table 5.22Electrical Characteristics (3) $[2.7 V \le VCC < 4.2 V]$

Note:

1. $2.7 \text{ V} \le \text{Vcc} < 4.2 \text{ V}$ at T_{opr} = -40 to 85°C (J version) / -40 to 125°C (K version), f(XIN) = 20 MHz, unless otherwise specified.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infingement of patents, copyrights, or other intellectual property rights of third patries by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

*Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by vou.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 90500-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millozard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-11628-651-804 Renesas Electronics China) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-4825-1155, Fax: +462-10-828-7679 Renesas Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Shanghai 200120, China Tel: +86-10-887-7858 - 7789 Renesas Electronics Hong Kong Limited Unit 1601-1613, 16/F., Towrer 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2886-9318, Fax: +456-21-6877-788 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +856-2-8175-9600, Fax: +886-2-8175-9670 Renesas Electronics Taiwan Co., Ltd. 80 Bendemeer Road, Unit #06-f2, Hyflux Innovation Centre Singapore 339949 Tel: +656-721507, Fax: +656-2130300 Renesas Electronics Kalaysia Sdn.Bhd. Unit 905, Block B, Menara Arncorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +696-2355-9300, Fax: +656-21300