

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3930 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f66j11t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number	Pin B	Buffer	Description	
Fin Name	80-TQFP	Туре	Туре	Description	
				PORTD is a bidirectional I/O port.	
RD0/AD0/PMD0 RD0 AD0 PMD0 ⁽⁶⁾	72	1/0 1/0 1/0	ST TTL TTL	Digital I/O. External Memory Address/Data 0. Parallel Master Port data.	
RD1/AD1/PMD1 RD1 AD1 PMD1 ⁽⁶⁾	69	I/O I/O I/O	ST TTL TTL	Digital I/O. External Memory Address/Data 1. Parallel Master Port data.	
RD2/AD2/PMD2 RD2 AD2 PMD2 ⁽⁶⁾	68	1/0 1/0 1/0	ST TTL TTL	Digital I/O. External Memory Address/Data 2. Parallel Master Port data.	
RD3/AD3/PMD3 RD3 AD3 PMD3 ⁽⁶⁾	67	I/O I/O I/O	ST TTL TTL	Digital I/O. External Memory Address/Data 3. Parallel Master Port data.	
RD4/AD4/PMD4/SDO2 RD4 AD4 PMD4 ⁽⁶⁾ SDO2	66	I/O I/O I/O O	ST TTL TTL —	Digital I/O. External Memory Address/Data 4. Parallel Master Port data. SPI data out.	
RD5/AD5/PMD5/ SDI2/SDA2 RD5 AD5 PMD5 ⁽⁶⁾ SDI2 SDA2	65	I/O I/O I/O I	ST TTL TTL ST ST	Digital I/O. External Memory Address/Data 5. Parallel Master Port data. SPI data in. I ² C data I/O.	
RD6/AD6/PMD6/ SCK2/SCL2 RD6 AD6 PMD6 ⁽⁶⁾ SCK2 SCL2	64	I/O I/O I/O I/O	ST TTL TTL ST ST	Digital I/O. External Memory Address/Data 6. Parallel Master Port data. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.	
RD7/AD7/PMD7/ SS2 RD7 AD7 PMD7 ⁽⁶⁾ SS2	63	1/0 1/0 1/0 1	ST TTL TTL TTL	Digital I/O. External Memory Address/Data 7. Parallel Master Port data. SPI slave select input.	

0

Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).

7: Alternate assignment for PMP data and control pins when PMPMX Configuration bit is cleared (programmed).

2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).

Befault assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).
 Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).
 Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).
 Default assignment for PMP data and control pins when PMPMX Configuration bit is set.

OD

= Output

= Open-Drain (no P diode to VDD)

TABLE 1-4: PIC18F8XJ1X PINOUT I/O DESCRIPTIONS (CONTINUED)

= Input

= Power

 $I^2C = ST$ with I^2C^{TM} or SMB levels

Т

Р

Pin Name	Pin Number	Pin	Buffer	Description
Pin Name	80-TQFP	Туре	Туре	Description
				PORTF is a bidirectional I/O port.
RF1/AN6/C2OUT RF1 AN6 C2OUT	23	I/O I O	ST Analog —	Digital I/O. Analog Input 6. Comparator 2 output.
RF2/PMA5/AN7/C1OUT RF2 PMA5 AN7 C1OUT	18	I/O O I O	ST — Analog —	Digital I/O. Parallel Master Port address. Analog Input 7. Comparator 1 output.
RF3/AN8/C2INB RF3 AN8 C2INB	17	I/O I I	ST Analog Analog	Digital input. Analog Input 8. Comparator 2 Input B.
RF4/AN9/C2INA RF4 AN9 C2INA	16	I/O I I	ST Analog Analog	Digital input. Analog Input 8. Comparator 2 Input A.
RF5/PMD2/AN10/ C1INB/CVREF RF5 PMD2 ⁽⁷⁾ AN10 C1INB CVREF	15	I/O I/O I I O	ST TTL Analog Analog Analog	Digital I/O. Parallel Master Port address. Analog Input 10. Comparator 1 Input B. Comparator reference voltage output.
RF6/PMD1/AN11/C1INA RF6 PMD1 ⁽⁷⁾ AN11 C1INA	14	I/O I/O I	ST TTL Analog Analog	Digital I/O. Parallel Master Port address. Analog Input 11. Comparator 1 Input A.
RF7/PMD0/ <u>SS1</u> RF7 PMD0 ⁽⁷⁾ SS1	13	I/O I/O I	ST TTL TTL	Digital I/O. Parallel Master Port address. SPI slave select input.
Legend: TTL = TTL compa ST = Schmitt Trig		/IOS leve	els	CMOS = CMOS compatible input or output Analog = Analog input

TABLE 1-4: PIC18F8XJ1X PINOUT I/O DESCRIPTIONS (CONTINUED)

Т

= Input = Power Р

 $I^2C = ST$ with I^2C^{TM} or SMB levels

Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).

0

OD

= Output

= Open-Drain (no P diode to VDD)

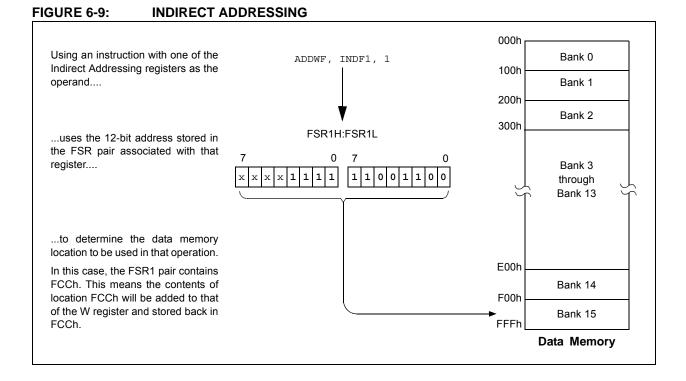
2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).

3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).

4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).

5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).

6: Default assignment for PMP data and control pins when PMPMX Configuration bit is set.


7: Alternate assignment for PMP data and control pins when PMPMX Configuration bit is cleared (programmed).

6.4.3.1 FSR Registers and the INDF Operand

At the core of Indirect Addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair of 8-bit registers, FSRnH and FSRnL. The four upper bits of the FSRnH register are not used, so each FSR pair holds a 12-bit value. This represents a value that can address the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations.

Indirect Addressing is accomplished with a set of Indirect File Operands, INDF0 through INDF2. These can be thought of as "virtual" registers: they are mapped in the SFR space but are not physically implemented. Reading or writing to a particular INDF register actually accesses its corresponding FSR register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L. Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR as a pointer to the instruction's target. The INDF operand is just a convenient way of using the pointer.

Because Indirect Addressing uses a full 12-bit address, data RAM banking is not necessary. Thus, the current contents of the BSR and the Access RAM bit have no effect on determining the target address.

REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
bit 7							bit 0
Legend:	abla bit	\\/ = \\/ritable	h it	II – Unimplor	monted bit rea	d oo 'O'	
R = Reada -n = Value		W = Writable '1' = Bit is set		'0' = Bit is cle	nented bit, read	x = Bit is unkr	
	arron				aleu		
bit 7	INT2IP: INT2	External Interr	upt Priority bit				
	1 = High prio						
	0 = Low prior	-					
bit 6		External Interr	upt Priority bit				
	1 = High prio 0 = Low prior						
bit 5	•	External Interr	upt Enable bit				
		the INT3 extern	•				
	0 = Disables	the INT3 exter	nal interrupt				
bit 4		External Interr	-				
		the INT2 extern the INT2 extern					
bit 3		External Interr	•				
Sit 0		the INT1 exteri	-				
		the INT1 exter					
bit 2	INT3IF: INT3	External Interr	upt Flag bit				
				must be cleare	d in software)		
L:1			rupt did not occ	cur			
bit 1		External Interr		must be cleare	d in softwara)		
			rupt did not occ		u ili soltwale)		
bit 0		External Interr	•				
				must be cleare	d in software)		
	0 = The INT1	l external inter	rupt did not occ	cur			
Note:	Interrupt flag bits						
	enable bit or the (errupt flag bits
	are clear prior to	enabling an int	errupt. This fea	ature allows for	sonware pollin	ıg.	

REGISTER 11-1: ODCON1: PERIPHERAL OPEN-DRAIN CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_			CCP5OD	CCP4OD	ECCP3OD	ECCP2OD	ECCP10D
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	Unimplemented: Read as '0'
bit 4-3	CCP5OD:CCP4OD: CCPx Open-Drain Output Enable bits
	 1 = Open-drain output is on the CCPx pin (Capture/PWM modes) is enabled 0 = Open-drain output is disabled
bit 2-0	ECCP3OD: ECCP1OD: ECCPx Open-Drain Output Enable bits
	 1 = Open-drain output is on the ECCPx pin (Capture mode) is enabled 0 = Open-drain output is disabled

REGISTER 11-2: ODCON2: PERIPHERAL OPEN-DRAIN CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	_	U2OD	U10D
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2 Unimplemented: Read as '0'

bit 1-0 U2OD:U1OD: EUSARTx Open-Drain Output Enable bits

1 = Open-drain output is on the TXx pin is enabled

0 = Open-drain output is disabled

REGISTER 11-3: ODCON3: PERIPHERAL OPEN-DRAIN CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—	—	_	—	SPI2OD	SPI10D
bit 7							bit 0
Legend:							

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2 Unimplemented: Read as '0'

bit 1-0 SPI2OD:SPI1OD: SPI Open-Drain Output Enable bits

1 = Open-drain output is on the SDOx pin is enabled

0 = Open-drain output is disabled

11.2 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. It may function as a 6-bit or 7-bit port, depending on the oscillator mode selected. The corresponding Data Direction and Output Latch registers are TRISA and LATA.

The RA4 pin is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin; it is also multiplexed as the Parallel Master Port data pin (in 80-pin devices). The other PORTA pins are multiplexed with the analog VREF+ and VREF- inputs. The operation of pins, RA<5,3:0>, as A/D Converter inputs is selected by clearing or setting the appropriate PCFGx control bits in the ANCON0 register.

- Note 1: RA5 (RA5/PMD4/AN4) is multiplexed as an analog input in all devices and Parallel Master Port data in 80-pin devices.
 - RA5 and RA<3:0> are configured as analog inputs on any Reset and are read as '0'. RA4 is configured as a digital input.

The RA4/T0CKI pin is a Schmitt Trigger input. All other PORTA pins have TTL input levels and full CMOS output drivers.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

OSC2/CLKO/RA6 and OSC1/CLKI/RA7 normally serve as the external circuit connections for the external (primary) oscillator circuit (HS and HSPLL Oscillator modes), or the external clock input (EC and ECPLL Oscillator modes). In these cases, RA6 and RA7 are not available as digital I/O, and their corresponding TRIS and LAT bits are read as '0'. For INTIO and INTPLL Oscillator modes (FOSC2 Configuration bit is '0'), either RA7 or both RA6 and RA7 automatically become available as digital I/O, depending on the oscillator mode selected. When RA6 is not configured as a digital I/O, in these cases, it provides a clock output at FOSC/4. A list of the possible configurations for RA6 and RA7, based on oscillator mode, is provided in Table 11-3. For these pins, the corresponding PORTA, TRISA and LATA bits are only defined when the pins are configured as I/O.

TABLE 11-3:	FUNCTION OF RA<7:6> IN
	INTIO AND INTPLL MODES

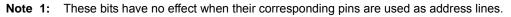
Oscillator Mode (FOSC<2:0> Configuration)	RA6	RA7
INTPLL1 (011)	CLKO	I/O
INTPLL2 (010)	I/O	I/O
INTIO1 (001)	CLKO	I/O
INTIO2 (000)	I/O	I/O

Legend: CLKO = Fosc/4 clock output; I/O = digital port.

CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
CLRF	LATA	;	Alternate method to
		;	clear data latches
BSF	WDTCON, ADSHR	;	Enable write/read to
		;	the shared SFR
MOVLW	1Fh	;	Configure A/D
MOVWF	ANCON0	;	for digital inputs
BCF	WDTCON, ADSHR	;	Disable write/read
		;	to the shared SFR
MOVLW	H'CF'	;	Value used to
		;	initialize
		;	data direction
MOVWF	TRISA	;	Set RA<3:0> as inputs,
		;	RA<5:4> as outputs

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RF1/AN6/	RF1	0	0	DIG	LATF<1> data output; not affected by analog input.
C2OUT		1	I	ST	PORTF<1> data input; disabled when analog input is enabled.
	AN6	1	I	ANA	A/D Input Channel 6. Default configuration on POR.
	C2OUT	х	0	DIG	Comparator 2 output.
RF2/PMA5/	RF2	0	0	DIG	LATF<2> data output; not affected by analog input.
AN7//C1OUT		1	Ι	ST	PORTF<2> data input; disabled when analog input is enabled.
	PMA5	х	0	DIG	Parallel Master Port address.
	AN7	1	Ι	ANA	A/D Input Channel 7. Default configuration on POR.
	C10UT	х	0	DIG	Comparator 1 output.
RF3/AN8/	RF3	0	0	DIG	LATF<3> data output; not affected by analog input.
C2INB		1	Ι	ST	PORTF<3> data input; disabled when analog input is enabled.
	AN8	1		ANA	A/D Input Channel 8. Default configuration on POR.
	C2INB	х	Ι	ANA	Comparator 2 Input B.
RF4/AN9/	RF4	0	0	DIG	LATF<4> data output; not affected by analog input.
C2INA		1		ST	PORTF<4> data input; disabled when analog input is enabled.
	AN9	1	Ι	ANA	A/D Input Channel 9. Default configuration on POR.
	C2INA	х	Ι	ANA	Comparator 2 Input A.
RF5/PMD2/ AN10/C1INB/	RF5	0	0	DIG	LATF<5> data output; not affected by analog input. Disabled when CVREF output is enabled.
CVREF		1	I	ST	PORTF<5> data input; disabled when analog input is enabled. Disabled when CVREF output is enabled.
	PMD2 ⁽¹⁾	х	0	DIG	Parallel Master Port data out.
		х	Ι	TTL	Parallel Master Port data input.
	AN10	1	I	ANA	A/D Input Channel 10 and Comparator C1+ input. Default input configuration on POR.
	C1INB	х	I	ANA	Comparator 1 Input B.
	CVREF	х	0	ANA	Comparator voltage reference output. Enabling this feature disables digital I/O.
RF6/PMD1/	RF6	0	0	DIG	LATF<6> data output; not affected by analog input.
AN11/C1INA		1	I	ST	PORTF<6> data input; disabled when analog input is enabled.
	PMD1 ⁽¹⁾	x	0	DIG	Parallel Master Port data out.
		х	I	TTL	Parallel Master Port data input.
	AN11	1	I	ANA	A/D Input Channel 11 and Comparator C1- input. Default input configuration on POR; does not affect digital output.
	C1INA	x	I	ANA	Comparator 1 Input A.
RF7/PMD0/	RF7	0	0	DIG	LATF<7> data output.
SS1		1	I	ST	PORTF<7> data input.
	PMD0 ⁽¹⁾	x	0	DIG	Parallel Master Port data out.
		x	I	TTL	Parallel Master Port data input.
	SS1	1	1	TTL	Slave select input for MSSP1 module.

TABLE 11-14: PORTF FUNCTIONS


Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,

TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate PMP configuration when the PMPMX Configuration bit = 0; available on 80-pin devices only.

REGISTER 12-2: PMCONL: PARALLEL PORT CONTROL LOW BYTE REGISTER

R/W-0	R/W-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0
CSF1	CSF0	ALP	CS2P	CS1P	BEP	WRSP	RDSP
oit 7							bit
Legend:							
R = Readab		W = Writable		U = Unimplen			
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 7-6	11 = Reserv 10 = PMCS 1	and PMCS2 fu	nction as chip		Address Bit 14	4 (PMADDRH A	ddress Bit 6)
bit 5	ALP: Addres	s Latch Polarity	[,] bit ⁽¹⁾ d PMALH)	lress Bits 15 an	d 14 (PMADD	RH Address Bit	s 7 and 6)
oit 4	CS2P: Chip	ow (PMALL and Select 2 Polarity igh (PMCS2)	,				
bit 3		ow (PMCS2) Select 1 Polarity igh (PMCS1/PM					
		w (PMCS1/PM					
bit 2	-	nable Polarity b					
		able active-high able active-low (
bit 1	WRSP: Write	e Strobe Polarity	/ bit				
	1 = Write str	odes and Maste obe active-high obe active-low	(PMWR)	<u>MODEH<1:0> =</u>	<u>: 00, 01, 10):</u>		
	1 = Enable	node 1 (PMMOE strobe active-hig strobe active-lov	gh (PMENB)	<u>L):</u>			
oit 0	RDSP: Read	I Strobe Polarity	bit				
	1 = Read st	odes and Maste robe active-high robe active-low	(PMRD)	<u>MODEH<1:0> =</u>	<u>: 00, 01, 10):</u>		
		node 1 (PMMOE ite strobe active	e-high (PMRD/	PMWR)			

14.7 Considerations in Asynchronous Counter Mode

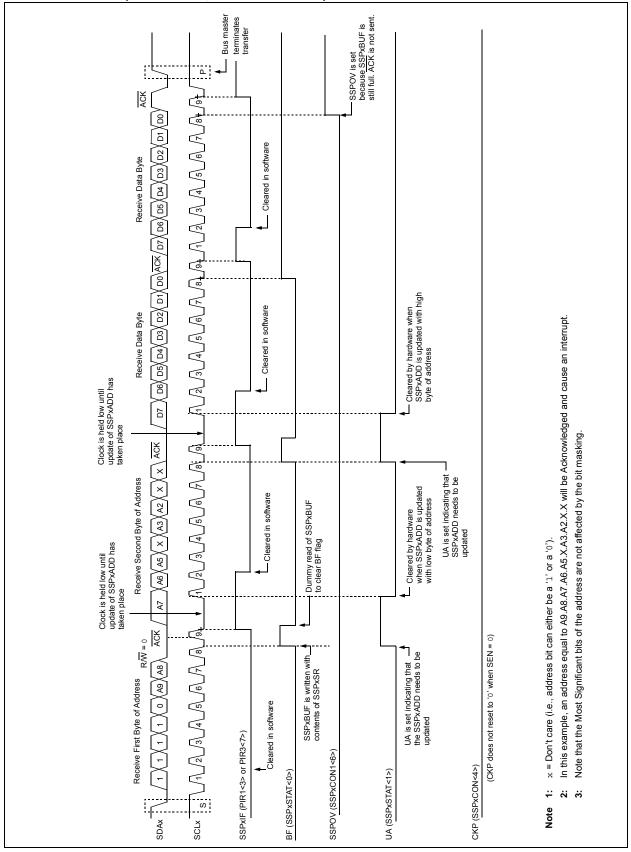
Following a Timer1 interrupt and an update to the TMR1 registers, the Timer1 module uses a falling edge on its clock source to trigger the next register update on the rising edge. If the update is completed after the clock input has fallen, the next rising edge will not be counted.

If the application can reliably update TMR1 before the timer input goes low, no additional action is needed. Otherwise, an adjusted update can be performed fol-

lowing a later Timer1 increment. This can be done by monitoring TMR1L within the interrupt routine until it increments, and then updating the TMR1H:TMR1L register pair while the clock is low, or one-half of the period of the clock source. Assuming that Timer1 is being used as a Real-Time Clock, the clock source is a 32.768 kHz crystal oscillator. In this case, one-half period of the clock is 15.25 μ s.

The Real-Time Clock application code in Example 14-1 shows a typical ISR for Timer1, as well as the optional code required if the update cannot be done reliably within the required interval.

EXAMPLE 14-1: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE


RTCinit			
	MOVLW	80h	; Preload TMR1 register pair
	MOVWF	TMR1H	; for 1 second overflow
	CLRF	TMR1L	
	MOVLW	b'00001111'	; Configure for external clock,
	MOVWF	T1CON	; Asynchronous operation, external oscillator
	CLRF	secs	; Initialize timekeeping registers
	CLRF	mins	;
	MOVLW	.12	
	MOVWF	hours	
	BSF	PIE1, TMR1IE	; Enable Timer1 interrupt
	RETURN		
RTCisr			
			; Insert the next 4 lines of code when TMR1
			; can not be reliably updated before clock pulse goes low
	BTFSC	TMR1L,0	; wait for TMR1L to become clear
	BRA	\$-2	; (may already be clear)
	BTFSS	TMR1L,0	; wait for TMR1L to become set
	BRA	\$-2	; TMR1 has just incremented
			; If TMR1 update can be completed before clock pulse goes low
			; Start ISR here
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVLW	.59	; 60 seconds elapsed?
	CPFSGT	secs	
	RETURN		; No, done
	CLRF	secs	; Clear seconds
	INCF	mins, F	; Increment minutes
	MOVLW	.59	; 60 minutes elapsed?
	CPFSGT	mins	
	RETURN		; No, done
	CLRF	mins	; clear minutes
	INCF	hours, F	; Increment hours
	MOVLW	.23	; 24 hours elapsed?
	CPFSGT	hours	
	RETURN		; No, done
	CLRF	hours	; Reset hours
	RETURN		; Done

REGISTER 20-3: SSPxSTAT: MSSPx STATUS REGISTER (I²C[™] MODE)

R/W-0	R/W-0	R-0		R-0		R-0	R-0	R-0	R-0		
SMP	CKE	D/A		P ⁽¹⁾		S(1)	R/W ^(2,3)	UA	BF		
bit 7	•						•	•	bit C		
Legend:											
R = Readab		W = Writab				-	mented bit, rea				
-n = Value a	t POR	'1' = Bit is :	set		.0,	= Bit is cle	eared	x = Bit is unkn	iown		
bit 7	SMP: Slew	Rate Control	bit								
	In Master or Slave mode:										
		ate control is d ate control is e					de (100 kHz ar 00 kHz)	nd 1 MHz)			
bit 6	CKE: SMBL			a lot tilgt		a mede (1	100 Hi 12)				
	In Master or	Slave mode:									
		s SMBus-spec s SMBus-spec									
bit 5	D/A: Data/A	-		puto							
	In Master m	iode:									
	Reserved.										
	In Slave mo										
		s that the last s that the last									
bit 4	 Indicates that the last byte received or transmitted was address P: Stop bit⁽¹⁾ 										
	1 = Indicates that a Stop bit has been detected last										
	0 = Stop bit was not detected last										
bit 3	S: Start bit ⁽¹⁾ 1 = Indicates that a Start bit has been detected last										
		was not deteo			etected	last					
bit 2		Write Informa									
	In Slave mo										
	1 = Read										
	0 = Write										
	<u>In Master m</u> 1 = Transmi	i <u>ode:</u> it is in progres	\$								
		it is not in prog									
bit 1	UA: Update	Address bit (10-Bit	t Slave m	ode on	ly)					
		s that the use does not nee				address i	n the SSPxAD	D register			
bit 0		Full Status bit			,u						
	In Transmit										
	1 = SSPxBl	JF is full									
	0 = SSPxBl										
	In Receive r	<u>mode:</u> JF is full (doe:	a not i	noludo th		and Stor	hite)				
		JF is empty (c									
Note 1: ⊺	his bit is cleare	ed on Reset a	nd wh	en SSPE	N is cl	eared.					
							ess match. This	bit is only valid	from the		
а	ddress match	to the next Sta	art bit,	Stop bit	or not 7	ACK bit.					
• •		HL OFN DOF	NI DE		1 1		and a star of the star				

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

ADD W to f

f {,d {,a}}

01da

Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the

result is stored back in register 'f'.

If 'a' is '0', the Access Bank is selected.

If 'a' is '1', the BSR is used to select the

If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \leq 95$ (5Fh). See

Section 26.2.3 "Byte-Oriented and **Bit-Oriented Instructions in Indexed** Literal Offset Mode" for details.

Q3

Process

Data

REG, 0, 0

ffff

ffff

Q4

Write to

destination

ADDWF

a ∈ [0,1]

 $0 \leq f \leq 255$ $d \in [0,1]$

 $(W) + (f) \rightarrow dest$

N, OV, C, DC, Z

0010

GPR bank.

> Q2 Read

register 'f

ADDWF

17h

0C2h

0D9h

0C2h

26.1.1 STANDARD INSTRUCTION SET

ADDLW	ADD Litera	l to W		ADDWF	AI
Syntax:	ADDLW	k		Syntax:	A
Operands:	$0 \leq k \leq 255$			Operands:	0
Operation:	$(W) + k \rightarrow V$	N			d a
Status Affected:	N, OV, C, D	С, Z		Operation:	(W
Encoding:	0000	1111 kł	kk kkkk	Status Affected:	(V) N,
Description:		ts of W are a k' and the re	dded to the sult is placed in	Encoding: Description:	Ac
Words:	1				re
Cycles:	1				re: If '
Q Cycle Activity:					If '
Q1	Q2	Q3	Q4		Gl
Decode	Read literal 'k'	Process Data	Write to W		lf ' se in
<u>Example:</u> Before Instruc		.5h			m Se Bi
W =	10h				Li
After Instructio W =	on 25h			Words:	1
				Cycles:	1
				Q Cycle Activity:	
				Q1	
				Decode	F reg
				Example:	AI
				Before Instruct W REG After Instructio W REG	= =

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

BTFS	C	Bit Test File	, Skip if Clear		BTFS	S	Bit Test File	, Skip if Set	
Synta	x:	BTFSC f, b	{,a}		Syntax	(:	BTFSS f, b {	,a}	
Opera	ands:	$0 \leq f \leq 255$			Opera	nds:	$0 \leq f \leq 255$		
		0 ≤ b ≤ 7 a ∈ [0,1]					0 ≤ b < 7 a ∈ [0,1]		
Opera	ation:	skip if (f)	= 0		Opera	tion:	skip if (f)	= 1	
•	s Affected:	None			•	Affected:	None		
Enco		1011	bbba ff	ff ffff	Encod	ina:	1010	bbba ff:	ff ffff
Desci	iption:	instruction is the next inst current instru and a NOP is	gister 'f' is '0', ' skipped. If bit ruction fetched uction execution executed inst rcle instruction.	'b' is '0', then during the in is discarded ead, making	Descri	ption:	instruction is the next inst current instru and a NOP is	gister 'f' is '1', t skipped. If bit ruction fetched uction executio executed instruction.	'b' is '1', then during the n is discarded ead, making
			e Access Banl BSR is used to	is selected. If select the				e Access Bank BSR is used to	is selected. If select the
		is enabled, t Indexed Lite whenever f ≤ Section 26.2 Bit-Oriented	d the extended his instruction ral Offset Addr ≤ 95 (5Fh). See 2.3 "Byte-Orie d Instructions et Mode" for d	essing mode ented and in Indexed			set is enable Indexed Lite whenever f ≤ Section 26.2 Bit-Oriented	d the extended d, this instructi ral Offset Addr g 95 (5Fh). See 2.3 "Byte-Orie I Instructions et Mode" for d	on operates in essing mode nted and in Indexed
Word	s:	1			Words	:	1		
Cycle	s:		cles if skip and 2-word instruc		Cycles	:		vcles if skip an a 2-word instru	
Q C\	cle Activity:	- , -			Q Cv	cle Activity:	-)		
ر د د ا	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read	Process	No	Γ	Decode	Read	Process	No
		register 'f'	Data	operation			register 'f'	Data	operation
lf ski	•	00	00	04	lf skip		00	00	04
I	Q1 No	Q2 No	Q3 No	Q4 No	Г	Q1 No	Q2 No	Q3 No	Q4 No
	operation	operation	operation	operation		operation	operation	operation	operation
lf ski	p and followed	by 2-word ins	truction:	· · · · · · · · · · · · · · · · · · ·	lf skip	and followe	d by 2-word ins	truction:	
	Q1	Q2	Q3	Q4	-	Q1	Q2	Q3	Q4
	No	No	No	No		No	No	No	No
	operation	operation	operation	operation	-	operation	operation	operation	operation
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operation
<u>Exam</u>	<u>ple:</u>	HERE B FALSE : TRUE :	FFSC FLAG	;, l, O	<u>Exam</u> ţ	<u>ble:</u>	HERE B FALSE : TRUE :	TFSS FLAG	, 1, 0
	Before Instruct PC After Instructio If FLAG< PC If FLAG< PC	= add n 1> = 0; = add 1> = 1;	ress (HERE) ress (TRUE) ress (FALSE)			efore Instruc PC fter Instructio If FLAG PC If FLAG PC	tion = add on 1> = 0; = add 1> = 1;	ress (HERE) ress (FALSE) ress (TRUE))

COMF	Compleme	ent f		CPFSEQ	Compare	Compare f with W, Skip if f = W			
Syntax:	COMF f	{,d {,a}}		Syntax:	CPFSEQ	f {,a}			
Operands:	0 ≤ f ≤ 255			Operands:	$0 \le f \le 25$	5			
	d ∈ [0,1]				a ∈ [0,1]				
	a ∈ [0,1]			Operation:	(f) - (W),				
Operation:	$\overline{f} \rightarrow dest$				skip if (f) =	· · /			
Status Affected:	N, Z			Status Affected:	None	comparison)			
Encoding:	0001	11da ffi	ff ffff	Encoding:	0110	001a ff	ff ffff		
Description:	complemer stored in W	ts of register 'f nted. If 'd' is '0' /. If 'd' is '1', th < in register 'f'.	, the result is	Description:	Compares location 'f' performing	the contents of to the content g an unsigned	of data memory s of W by subtraction.		
	lf 'a' is '0', t	he Access Bai he BSR is use			discarded	hen the fetche and a NOP is e aking this a tw	executed		
	set is enab in Indexed	and the extendent led, this instruct Literal Offset A never $f \le 95$ (51	ction operates		,	the Access Ba the BSR is use			
	Section 26 Bit-Oriente	ad Instruction set Mode" for	iented and s in Indexed		set is enal in Indexec	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See			
Words:	1					6.2.3 "Byte-O	,		
Cycles:	1					ted Instruction			
Q Cycle Activity:					Literal Of	fset Mode" for	r details.		
Q1	Q2	Q3	Q4	Words:	1				
Decode	Read register 'f'	Process Data	Write to destination	Cycles:		ycles if skip an a 2-word instru			
E				Q Cycle Activity	-				
Example:	COMF	REG, 0, 0		Q1	Q2	Q3	Q4		
Before Instruc REG	tion = 13h			Decode	Read	Process	No		
After Instructio				lf a bin a	register 'f'	Data	operation		
REG	= 13h			lf skip: Q1	Q2	Q3	Q4		
W	= ECh			No	No	No	No		
				operation	-	operation	operation		
				If skip and follo	wed by 2-word i		•		
				Q1	Q2	Q3	Q4		
				No	No	No	No		
				operation	· ·	operation	operation		
				No operation	No operation	No operation	No operation		
				Example:	HERE NEQUAL EQUAL	CPFSEQ RE : :	•		
				Before Inst PC Ac W		ERE			

VV	=	<i>.</i>	
REG	=	?	
After Instruction			
If REG	=	W;	
PC	=		(EQUAL)
If REG	≠	W;	
PC	=	Address	(NEQUAL)

26.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, the PIC18F87J11 family of devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment Indirect and Indexed Addressing operations and the implementation of Indexed Literal Offset Addressing for many of the standard PIC18 instructions.

The additional features of the extended instruction set are enabled by default on unprogrammed devices. Users must properly set or clear the XINST Configuration bit during programming to enable or disable these features.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers, or use them for Indexed Addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- function pointer invocation
- software Stack Pointer manipulation
- manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 26-3. Detailed descriptions are provided in Section 26.2.2 "Extended Instruction Set". The opcode field descriptions in Table 26-1 (page 348) apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

26.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of Indexed Addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. The MPASM[™] Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byte-oriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 26.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

Mnemonic, Operands		Description	Cycles	16-E	Bit Instru	uction V	/ord	Status
		Description	Cycles	MSb			LSb	Affected
ADDFSR	f, k	Add Literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add Literal to FSR2 and Return	2	1110	1000	11kk	kkkk	None
CALLW		Call Subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0zzz	zzzz	None
		f _d (destination) 2nd word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	lzzz	zzzz	None
		z _d (destination) 2nd word		1111	xxxx	XZZZ	zzzz	
PUSHL	k	Store Literal at FSR2,	1	1110	1010	kkkk	kkkk	None
		Decrement FSR2						
SUBFSR	f, k	Subtract Literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract Literal from FSR2 and	2	1110	1001	11kk	kkkk	None
		Return						

TABLE 26-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

27.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

27.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

27.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

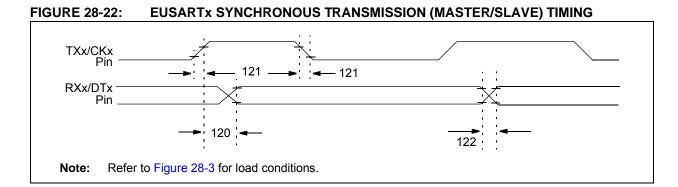
The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

27.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.


The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

27.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

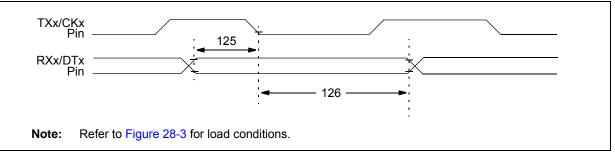

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

TABLE 28-28: EUSARTx SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
120	TCKH2DTV	SYNC XMIT (MASTER and SLAVE) Clock High to Data Out Valid		40	ns	
121	TCKRF	Clock Out Rise Time and Fall Time (Master mode)	—	20	ns	
122	TDTRF	Data Out Rise Time and Fall Time		20	ns	

FIGURE 28-23: EUSARTx SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

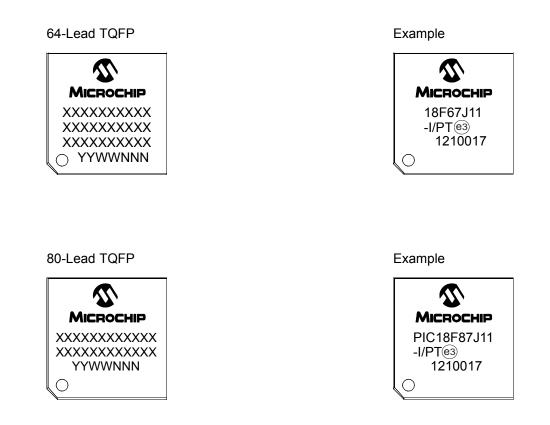


TABLE 28-29: EUSARTx SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER and SLAVE)	4.0			
		Data Hold Before CKx \downarrow (DTx hold time)	10	—	ns	
126	TCKL2DTL	Data Hold After CKx \downarrow (DTx hold time)	15	_	ns	

29.0 PACKAGING INFORMATION

29.1 Package Marking Information

Legen	d: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information.

NOTES:

F

Fail-Safe Clock Monitor	331, 343
Exiting	
Interrupts in Power-Managed Modes	
POR or Wake-up From Sleep	
WDT During Oscillator Failure	
Fast Register Stack	73
Firmware Instructions	
Flash Configuration Words	
Flash Program Memory	
Associated Registers	
Control Registers	
EECON1 and EECON2	
TABLAT (Table Latch) Register	
TBLPTR (Table Pointer) Register	
Erase Sequence	100
Erasing	
Operation During Code-Protect	104
Reading	
Table Pointer	
Boundaries Based on Operation	
Table Pointer Boundaries	
Table Reads and Table Writes	
Write Sequence	101
Write Sequence (Word Programming)	103
Writing	
Unexpected Termination	
Write Verify	104
FSCM. See Fail-Safe Clock Monitor.	
G	

G

GOTO	3
------	---

н

Hardware Multiplier	
8 x 8 Multiplication Algorithms	
Operation	
Performance Comparison (table)	117

I

I/O Ports	135
Input Pull-up Configuration	136
Open-Drain Outputs	137
Pin Capabilities	135
I ² C Mode (MSSP)	
Acknowledge Sequence Timing	277
Associated Registers	283
Baud Rate Generator	270
Bus Collision	
During a Repeated Start Condition	281
During a Stop Condition	282
Clock Arbitration	271
Clock Stretching	263
10-Bit Slave Receive Mode (SEN = 1)	263
10-Bit Slave Transmit Mode	263
7-Bit Slave Receive Mode (SEN = 1)	263
7-Bit Slave Transmit Mode	263
Clock Synchronization and the CKP bit	264
Effects of a Reset	278
General Call Address Support	267
I ² C Clock Rate w/BRG	270

Master Mode	
Operation	
Reception	
Repeated Start Condition Timing	
Start Condition Timing	272
Transmission	
Multi-Master Communication, Bus Collision	
	070
and Arbitration	
Multi-Master Mode	278
Operation	253
Read/Write Bit Information (R/W Bit)	252 256
Registers	
Serial Clock (RC3/SCKx/SCLx)	256
Slave Mode	
Address Masking Modes	
5-Bit	254
7-Bit	
Addressing	
-	
Reception	
Transmission	256
Sleep Operation	278
Stop Condition Timing	
INCF	
INCFSZ	
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	331, 345
Indexed Literal Offset Addressing	
and Standard PIC18 Instructions	204
Indexed Literal Offset Mode	394
Indirect Addressing	80
-	
INFSNZ	369
INFSNZ Initialization Conditions for all Registers	369 61–66
INFSNZ Initialization Conditions for all Registers	369 61–66
INFSNZ Initialization Conditions for all Registers Instruction Cycle	369 61–66 74
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme	369 61–66 74 74
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF	369 61–66 74 74 74
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode)	369 61–66 74 74 74
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF	369 61–66 74 74 74
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW	369 61–66 74 74 74 353 353 353 354 354
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW ANDWF	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW BC	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW ANDWF	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW BC	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW BC BCF BN	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BC BCF BN BN BNC	369 61–66 74 74 74 353 353 355 354 355 355 355 356 356 357
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW BC BCF BN	369 61–66 74 74 74 353 353 355 354 355 355 355 356 356 357
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDLW BC BC BC BN BNN	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW BC BC BC BN BNN BNN BNOV	369 61–66 74 74 74 353 353 355 354 355 355 355 356 356 356 357 358
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW BC BC BC BN BNC BNN BNOV BNZ	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW BC BC BC BN BNN BNN BNOV	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW BC BC BC BN BNC BNN BNOV BNZ	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW BC BC BC BN BNC BNN BNN BNOV BNZ BOV BRA	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDLW BC BC BC BN BNC BNN BNOV BNZ BOV BRA BSF	369 61–66 74 74 74 353 353 355 354 355 355 356 356 356 356 357 358 358 358 358 358 358 358 359 359 359
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDUF BC BC BC BN BNC BNN BNOV BNZ BOV BSF BSF (Indexed Literal Offset Mode)	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDLW BC BC BC BN BNC BNN BNOV BNZ BOV BRA BSF	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDWF BC BC BC BN BNC BNN BNN BNOV BNN BNOV BNZ BSF BSF (Indexed Literal Offset Mode) BTFSC	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDLW BC BC BC BC BN BNC BNN BNC BNN BNOV BNZ BOV BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDUW BC BC BC BC BN BNC BNN BNC BNN BNOV BNZ BOV BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNN BNN BNOV BNZ BOV BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNN BNN BNN BNN BNN BNOV BNZ BOV BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNN BNN BNN BNN BNOV BNZ BOV BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTFSS BTG BZ CALL CLRF CLRWDT	369
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNN BNN BNN BNN BNOV BNZ BOV BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF	369