

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3930 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f66j16-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-4:PIC18F8XJ1X PINOUT I/O DESCRIPTIONS

Dia Maraa	Pin Number	Pin	Buffer	Description			
Pin Name	80-TQFP	Туре	Туре	Description			
MCLR	9	Ι	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.			
OSC1/CLKI/RA7 OSC1	49	I	ST	Oscillator crystal or external clock input. Available only in External Oscillator modes (EC/ECPLL and HS/HSPLL). Main oscillator input connection. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; CMOS otherwise			
CLKI		I	CMOS	Main clock input connection. External clock source input. Always associated with pin function, OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)			
RA7		I/O	TTL	General purpose I/O pin. Available only in INTIO2 and INTPLL2 Oscillator modes.			
OSC2/CLKO/RA6	50			Oscillator crystal or clock output. Available only in External			
OSC2		0	_	Main oscillator feedback output connection. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.			
CLKO		0	_	System cycle clock output (Fosc/4). In EC, ECPLL, INTIO1 and INTPLL1 Oscillator modes, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate			
RA6		I/O	TTL	General purpose I/O pin. Available only in INTIO and INTPLL Oscillator modes.			
Legend: TTL = TTL compatib ST = Schmitt Trigger I = Input P = Power I ² C = ST with I ² C TM	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)						
Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).							

2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).

3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).

4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).

5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).

6: Default assignment for PMP data and control pins when PMPMX Configuration bit is set.

7: Alternate assignment for PMP data and control pins when PMPMX Configuration bit is cleared (programmed).

Din Nama	Pin Number	Pin	Buffer	Description		
	80-TQFP	Туре	Туре	Description		
				PORTD is a bidirectional I/O port.		
RD0/AD0/PMD0 RD0 AD0 PMD0 ⁽⁶⁾	72	1/0 1/0 1/0	ST TTL TTL	Digital I/O. External Memory Address/Data 0. Parallel Master Port data.		
RD1/AD1/PMD1 RD1 AD1 PMD1 ⁽⁶⁾	69	I/O I/O I/O	ST TTL TTL	Digital I/O. External Memory Address/Data 1. Parallel Master Port data.		
RD2/AD2/PMD2 RD2 AD2 PMD2 ⁽⁶⁾	68	I/O I/O I/O	ST TTL TTL	Digital I/O. External Memory Address/Data 2. Parallel Master Port data.		
RD3/AD3/PMD3 RD3 AD3 PMD3 ⁽⁶⁾	67	I/O I/O I/O	ST TTL TTL	Digital I/O. External Memory Address/Data 3. Parallel Master Port data.		
RD4/AD4/PMD4/SDO2 RD4 AD4 PMD4 ⁽⁶⁾ SDO2	66	I/O I/O I/O O	ST TTL TTL —	Digital I/O. External Memory Address/Data 4. Parallel Master Port data. SPI data out.		
RD5/AD5/PMD5/ SDI2/SDA2 RD5 AD5 PMD5 ⁽⁶⁾ SDI2 SDA2	65	/0 /0 /0 	ST TTL TTL ST ST	Digital I/O. External Memory Address/Data 5. Parallel Master Port data. SPI data in. I ² C data I/O.		
RD6/AD6/PMD6/ SCK2/SCL2 RD6 AD6 PMD6 ⁽⁶⁾ SCK2 SCL2	64	I/O I/O I/O I/O	ST TTL TTL ST ST	Digital I/O. External Memory Address/Data 6. Parallel Master Port data. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.		
RD7/AD7/PMD7/SS2 RD7 AD7 PMD7 ⁽⁶⁾ SS2 Legend: TTL = TTL compatib	63 le input	/0 /0 /0 	ST TTL TTL TTL	Digital I/O. External Memory Address/Data 7. Parallel Master Port data. SPI slave select input. CMOS = CMOS compatible input or output		
PMD7 ⁽⁶⁾ SS2 Legend: TTL = TTL compatib ST = Schmitt Trigge	le input er input with CN	I/O I /IOS leve	TTL TTL	Parallel Master Port data. SPI slave select input. CMOS = CMOS compatible input or output Analog = Analog input		

0

Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).

7: Alternate assignment for PMP data and control pins when PMPMX Configuration bit is cleared (programmed).

2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).

Befault assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).
 Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).
 Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).
 Default assignment for PMP data and control pins when PMPMX Configuration bit is set.

OD

= Output

= Open-Drain (no P diode to VDD)

TABLE 1-4: PIC18F8XJ1X PINOUT I/O DESCRIPTIONS (CONTINUED)

= Input

= Power

 $I^2C = ST$ with I^2C^{TM} or SMB levels

Т

Р

PIC18F87J11 FAMILY

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
INTSRC	PLLEN	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0		
bit 7						•	bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 7	INTSRC: Inte	rnal Oscillator I	_ow-Frequenc	y Source Selec	t bit				
	1 = 31.25 kH	z device clock	derived from 8	MHz INTOSC	source (divide-	by-256 enable	d)		
	0 = 31 kHz d	evice clock der	ived from INT	RC 31 kHz osci	llator	-	-		
bit 6	PLLEN: Freq	uency Multiplie	r PLL Enable	bit					
	1 = PLL is er	abled							
	0 = PLL is dis	sabled							
bit 5-0	TUN<5:0>: Fa	ast RC Oscillat	or (INTOSC) F	Frequency Tunir	ng bits				
	011111 = Ma	ximum frequer	ICV		-				
	•	•							
	•	•							
	000001								
	000000 = Ce	nter frequency.	Fast RC Osc	illator is running	at the calibrat	ed frequency.			
	111111								
	•	•							
	•	•							
	100000 = Minimum frequency								

REGISTER 3-2: OSCTUNE: OSCILLATOR TUNING REGISTER

3.3 Clock Sources and Oscillator Switching

Essentially, PIC18F87J11 family devices have three independent clock sources:

- Primary oscillators
- · Secondary oscillators
- · Internal oscillator

The **primary oscillators** can be thought of as the main device oscillators. These are any external oscillators connected to the OSC1 and OSC2 pins, and include the External Crystal and Resonator modes, and the External Clock modes. If selected by the FOSC<2:0> Configuration bits, the internal oscillator block (either the 31 kHz INTRC or the 8 MHz INTOSC source) may be considered a primary oscillator. The particular mode is defined by the FOSCx Configuration bits. The details of these modes are covered in Section 3.4 "External Oscillator Modes".

The **secondary oscillators** are external clock sources that are not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a power-managed mode. PIC18F87J11 family devices offer the Timer1 oscillator as a secondary oscillator source. This oscillator, in all power-managed modes, is often the time base for functions, such as a Real-Time Clock (RTC). The Timer1 oscillator is discussed in greater detail in Section 14.0 "Timer1 Module".

In addition to being a primary clock source in some circumstances, the **internal oscillator** is available as a power-managed mode clock source. The INTRC source is also used as the clock source for several special features, such as the WDT and Fail-Safe Clock Monitor. The internal oscillator block is discussed in more detail in Section 3.5 "Internal Oscillator Block".

The PIC18F87J11 family includes features that allow the device clock source to be switched from the main oscillator, chosen by device configuration, to one of the alternate clock sources. When an alternate clock source is enabled, various power-managed operating modes are available.

6.1.6.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 6-2) contains the Stack Pointer value, the STKFUL (Stack Full) status bit and the STKUNF (Stack Underflow) status bits. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to **Section 25.1 "Configuration Bits**" for a description of the device Configuration bits.) If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and the STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and set the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or until a POR occurs.

Note:	Returning a value of zero to the PC on an					
	underflow has the effect of vectoring the					
	program to the Reset vector, where the					
	stack conditions can be verified and					
	appropriate actions can be taken. This is					
	not the same as a Reset, as the contents					
	of the SFRs are not affected.					

6.1.6.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack, without disturbing normal program execution, is a desirable feature. The PIC18 instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the current PC value onto the stack.

The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

REGISTER 6-2: STKPTR: STACK POINTER REGISTER

R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STKFUL ⁽¹⁾	STKUNF ⁽¹⁾	—	SP4	SP3	SP2	SP1	SP0
bit 7							bit 0
Legend: C = Clearable Only bit							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
			(4)				

bit 7	STKFUL: Stack Full Flag bit ⁽¹⁾
	 Stack became full or overflowed
	0 = Stack has not become full or overflowed
bit 6	STKUNF: Stack Underflow Flag bit ⁽¹⁾
	1 = Stack underflow occurred
	0 = Stack underflow did not occur
bit 5	Unimplemented: Read as '0'
bit 4-0	SP<4:0>: Stack Pointer Location bits

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

PIC18F87J11 FAMILY

TABLE 0-5	5: REGISTER FILE SUMMARY (PIC18F87J11 FAMILY) (CONTINU							NUED)		
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
TRISJ ⁽⁷⁾	TRISJ7	TRISJ6	TRISJ5	TRISJ4	TRISJ3	TRISJ2	TRISJ1	TRISJ0	1111 1111	64, 165
TRISH(7)	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0	1111 1111	64, 163
TRISG	_	_	_	TRISG4	TRISG3	TRISG2	TRISG1	TRISG0	1 1111	64, 160
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	_	1111 111-	64, 157
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	1111 1111	64, 154
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	64, 151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	64, 148
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	64, 145
TRISA	TRISA7 ⁽⁸⁾	TRISA6 ⁽⁸⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	64, 142
LATJ ⁽⁷⁾	LATJ7	LATJ6	LATJ5	LATJ4	LATJ3	LATJ2	LATJ1	LATJ0	xxxx xxxx	64, 165
LATH ⁽⁷⁾	LATH7	LATH6	LATH5	LATH4	LATH3	LATH2	LATH1	LATH0	xxxx xxxx	64, 163
LATG	_	_	—	LATG4	LATG3	LATG2	LATG1	LATG0	x xxxx	64, 160
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	—	xxxx xxx-	64, 157
LATE	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx xxxx	64, 154
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx xxxx	64, 151
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	64, 148
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx xxxx	64, 145
LATA	LATA7 ⁽⁸⁾	LATA6 ⁽⁸⁾	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx xxxx	64, 142
PORTJ ⁽⁷⁾	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	xxxx xxxx	65, 165
PORTH ⁽⁷⁾	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	0000 xxxx	65, 163
PORTG	RDPU	REPU	RJPU ⁽⁷⁾	RG4	RG3	RG2	RG1	RG0	000x xxxx	65, 160
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	_	x000 000-	65, 157
PORTE	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx xxxx	65, 154
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	65, 151
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	65, 148
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	65, 145
PORTA	RA7 ⁽⁸⁾	RA6 ⁽⁸⁾	RA5	RA4	RA3	RA2	RA1	RA0	000x 0000	65, 142
SPBRGH1	EUSART1 B	aud Rate Gen	erator Registe	r High Byte					0000 0000	65, 289
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	0100 0-00	65, 289
SPBRGH2	EUSART2 B	aud Rate Gen	erator Registe	r High Byte					0000 0000	65, 289
BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	0100 0-00	65, 289
TMR3H	Timer3 Regis	ster High Byte							xxxx xxxx	65, 210
TMR3L	Timer3 Regis	ster Low Byte							xxxx xxxx	65, 210
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	65, 210
TMR4	Timer4 Regis	ster							0000 0000	65, 209
PR4 ⁽²⁾ /	Timer4 Perio	d Register							1111 1111	65, 210
CVRCON ⁽³⁾	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000 0000	65, 328
T4CON	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	-000 0000	65, 209

TABLE 6-5:	REGISTER FILE SUMMARY (PIC18F87J11 FAMILY) (CONTINUED)

Legend: x = unknown; u = unchanged; - = unimplemented; q = value depends on condition; Bold = shared access SFRs

Note 1: Bit 21 of the PC is only available in Serial Programming modes.

2: Default (legacy) SFR at this address; available when WDTCON<4> = 0.

3: Configuration SFR, overlaps with default SFR at this address; available only when WDTCON<4> = 1.

4: Reset value is '0' when Two-Speed Start-up is enabled and '1' if disabled.

5: The SSPxMSK registers are only accessible when SSPxCON2<3:0> = 1001.

6: Alternate names and definitions for these bits when the MSSP modules are operating in I²C[™] Slave mode. See Section 20.4.3.2 "Address Masking Modes" for details.

7: These bits and/or registers are only available in 80-pin devices; otherwise, they are unimplemented and read as '0'. Reset values are shown for 80-pin devices.

8: These bits are only available in select oscillator modes (FOSC2 Configuration bit = 0); otherwise, they are unimplemented.

9: The PMADDRH/PMDOUT1H and PMADDRL/PMDOUT1L register pairs share the physical registers and addresses, but have different functions determined by the module's operating mode. See Section 12.1.2 "Data Registers" for more information.

8.6.1 16-BIT BYTE WRITE MODE

Figure 8-1 shows an example of 16-Bit Byte Write mode for PIC18F87J11 family devices. This mode is used for two separate 8-bit memories connected for 16-bit operation. This generally includes basic EPROM and Flash devices; it allows table writes to byte-wide external memories. During a TBLWT instruction cycle, the TABLAT data is presented on the upper and lower bytes of the AD<15:0> bus. The appropriate WRH or WRL control line is strobed on the LSb of the TBLPTR.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	65
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	64
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	64
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	61
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	61
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	61

TABLE 11-7:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
-------------	--

Legend: Shaded cells are not used by PORTB.

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RJ0/ALE	RJ0	0	0	DIG	LATJ<0> data output.
		1	I	ST	PORTJ<0> data input.
	ALE	х	0	DIG	External Memory Interface address latch enable control output; takes priority over digital I/O.
RJ1/OE	RJ1	0	0	DIG	LATJ<1> data output.
		1	I	ST	PORTJ<1> data input.
	OE	х	0	DIG	External Memory Interface output enable control output; takes priority over digital I/O.
RJ2/WRL	RJ2	0	0	DIG	LATJ<2> data output.
		1	I	ST	PORTJ<2> data input.
	WRL	х	0	DIG	External Memory Bus write low byte control; takes priority over digital I/O.
RJ3/WRH	RJ3	0	0	DIG	LATJ<3> data output.
		1	I	ST	PORTJ<3> data input.
	WRH	х	0	DIG	External Memory Interface write high byte control output; takes priority over digital I/O.
RJ4/BA0	RJ4	0	0	DIG	LATJ<4> data output.
		1	I	ST	PORTJ<4> data input.
	BA0	x	0	DIG	External Memory Interface Byte Address 0 control output; takes priority over digital I/O.
RJ5/CE	RJ5	0	0	DIG	LATJ<5> data output.
		1	I	ST	PORTJ<5> data input.
	CE	х	0	DIG	External Memory Interface chip enable control output; takes priority over digital I/O.
RJ6/LB	RJ6	0	0	DIG	LATJ<6> data output.
		1	I	ST	PORTJ<6> data input.
	LB	x	0	DIG	External Memory Interface lower byte enable control output; takes priority over digital I/O.
RJ7/UB	RJ7	0	0	DIG	LATJ<7> data output.
		1	Ι	ST	PORTJ<7> data input.
	UB x O DIG External Memory Interface upper byte enable control o priority over digital I/O.			External Memory Interface upper byte enable control output; takes priority over digital I/O.	

TABLE 11-20: PORTJ FUNCTIONS

Legend: O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input,

x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TARI E 11-21.	SUMMARY OF REGISTERS ASSOCIATED WITH POR	тι
IADLL II-ZI.	JUNIMANT OF REGISTERS ASSOCIATED WITH FOR	10

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTJ ⁽¹⁾	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	65
LATJ ⁽¹⁾	LATJ7	LATJ6	LATJ5	LATJ4	LATJ3	LATJ2	LATJ1	LATJ0	64
TRISJ ⁽¹⁾	TRISJ7	TRISJ6	TRISJ5	TRISJ4	TRISJ3	TRISJ2	TRISJ1	TRISJ0	64
PORTG	RDPU	REPU	RJPU ⁽¹⁾	RG4	RG3	RG2	RG1	RG0	65

Legend: Shaded cells are not used by PORTJ.

Note 1: Unimplemented on 64-pin devices, read as '0'.

19.4.4 HALF-BRIDGE MODE

In the Half-Bridge Output mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the P1A pin, while the complementary PWM output signal is output on the P1B pin (Figure 19-4). This mode can be used for half-bridge applications, as shown in Figure 19-5, or for full-bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge Output mode, the programmable dead-band delay can be used to prevent shoot-through current in half-bridge power devices. The value of bits P1DC6:P1DC0 sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See Section 19.4.6 "Programmable Dead-Band Delay" for more details on dead-band delay operations.

Since the P1A and P1B outputs are multiplexed with the PORTC<2> and PORTE<6> data latches, the TRISC<2> and TRISE<6> bits must be cleared to configure P1A and P1B as outputs.

FIGURE 19-4: HALF-BRIDGE PWM OUTPUT

FIGURE 19-5: EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS

19.4.7.1 Auto-Shutdown and Automatic Restart

The auto-shutdown feature can be configured to allow automatic restarts of the module following a shutdown event. This is enabled by setting the P1RSEN bit of the ECCP1DEL register (ECCP1DEL<7>).

In Shutdown mode with P1RSEN = 1 (Figure 19-10), the ECCP1ASE bit will remain set for as long as the cause of the shutdown continues. When the shutdown condition clears, the ECCP1ASE bit is cleared. If P1RSEN = 0 (Figure 19-11), once a shutdown condition occurs, the ECCP1ASE bit will remain set until it is cleared by firmware. Once ECCP1ASE is cleared, the Enhanced PWM will resume at the beginning of the next PWM period.

Note:	Writing to the ECCP1ASE bit is disabled
	while a shutdown condition is active.

Independent of the P1RSEN bit setting, if the auto-shutdown source is one of the comparators, the shutdown condition is a level. The ECCP1ASE bit cannot be cleared as long as the cause of the shutdown persists.

The Auto-Shutdown mode can be forced by writing a '1' to the ECCP1ASE bit.

19.4.8 START-UP CONSIDERATIONS

When the ECCP1 module is used in the PWM mode, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins. When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the OFF state until the microcontroller drives the I/O pins with the proper signal levels, or activates the PWM output(s).

The CCP1M<1:0> bits (CCP1CON<1:0>) allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pins are configured as outputs. Changing the polarity configuration while the PWM pins are configured as outputs is not recommended since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pins for output at the same time as the ECCP1 module may cause damage to the application circuit. The ECCP1 module must be enabled in the proper output mode and complete a full PWM cycle before configuring the PWM pins as outputs. The completion of a full PWM cycle is indicated by the TMR2IF bit being set as the second PWM period begins.

FIGURE 19-10: PWM AUTO-SHUTDOWN (P1RSEN = 1, AUTO-RESTART ENABLED)

FIGURE 19-11: PWM AUTO-SHUTDOWN (P1RSEN = 0, AUTO-RESTART DISABLED)

© 2007-2012 Microchip Technology Inc.

20.3.4 ENABLING SPI I/O

To enable the serial port, MSSPx Enable bit, SSPEN (SSPxCON1<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPxCON registers and then set the SSPEN bit. This configures the SDIx, SDOx, SCKx and SSx pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- SDIx must have the TRISC<4> or TRISD<5> bit set
- SDOx must have the TRISC<5> or TRISD<4> bit cleared
- SCKx (Master mode) must have the TRISC<3> or TRISD<6>bit cleared
- SCKx (Slave mode) must have the TRISC<3> or TRISD<6> bit set
- SSx must have the TRISF<7> or TRISD<7> bit set

Any serial port function that is not desired may be overridden by programming the corresponding Data Direction (TRIS) register to the opposite value.

20.3.5 TYPICAL CONNECTION

Figure 20-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCKx signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- · Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 20-2: SPI MASTER/SLAVE CONNECTION

20.4.4.5 Clock Synchronization and the CKP bit

When the CKP bit is cleared, the SCLx output is forced to '0'. However, clearing the CKP bit will not assert the SCLx output low until the SCLx output is already sampled low. Therefore, the CKP bit will not assert the SCLx line until an external I²C master device has

already asserted the SCLx line. The SCLx output will remain low until the CKP bit is set and all other devices on the I^2C bus have deasserted SCLx. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCLx (see Figure 20-14).

FIGURE 20-14: CLOCK SYNCHRONIZATION TIMING

EXAMPLE 21-1: CALCULATING BAUD RATE ERROR

For a device with FOSC of 16	5 MH	z, desired baud rate of 9600, Asynchronous mode, and 8-bit BRG:
Desired Baud Rate	=	Fosc/(64 ([SPBRGHx:SPBRGx] + 1))
Solving for SPBRGHx:	SPBF	RGx:
Х	=	((FOSC/Desired Baud Rate)/64) – 1
	=	((16000000/9600)/64) - 1
	=	[25.042] = 25
Calculated Baud Rate	=	1600000/(64 (25 + 1))
	=	9615
Error	=	(Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate
	=	(9615 - 9600)/9600 = 0.16%

TABLE 21-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	63
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	63
BAUDCONx	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	65
SPBRGHx	EUSARTx Baud Rate Generator Register High Byte								
SPBRGx	EUSARTx Baud Rate Generator Register Low Byte								

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

TABLE 26-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM access bit:
	a = 0: RAM location in Access RAM (BSR register is ignored)
	a = 1: RAM bank is specified by BSR register
bbb	Bit address within an 8-bit file register (0 to 7).
BSR	Bank Select Register. Used to select the current RAM bank.
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.
d	Destination select bit:
	d = 1: store result in file register f
dest	Destination: either the WREG register or the specified register file location.
f	8-bit register file address (00h to FFh), or 2-bit FSR designator (0h to 3h).
fs	12-bit register file address (000h to FFFh). This is the source address.
f _d	12-bit register file address (000h to FFFh). This is the destination address.
GIE	Global Interrupt Enable bit.
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).
label	Label name.
mm	The mode of the TBLPTR register for the table read and table write instructions.
	Only used with table read and table write instructions:
*	No Change to register (such as TBLPTR with table reads and writes)
*+	Post-Increment register (such as TBLPTR with table reads and writes)
*_	Post-Decrement register (such as TBLPTR with table reads and writes)
+*	Pre-Increment register (such as TBLPTR with table reads and writes)
n	The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions
DC	Program Counter
PCT.	Program Counter Low Byte
PCH	Program Counter High Byte
PCLATH	Program Counter High Byte Latch.
PCLATU	Program Counter Upper Byte Latch.
PD	Power-Down bit.
PRODH	Product of Multiply High Byte.
PRODL	Product of Multiply Low Byte.
s	Fast Call/Return mode select bit:
	s = 0: do not update into/from shadow registers
	s = 1: certain registers loaded into/from shadow registers (Fast mode)
TBLPTR	21-bit Table Pointer (points to a program memory location).
TABLAT	8-bit Table Latch.
ТО	Time-out bit.
TOS	Top-of-Stack.
u	Unused or Unchanged.
WDT	Watchdog Timer.
WREG	working register (accumulator).
x	bont care (0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
Za	7-bit offset value for Indirect Addressing of register files (source).
Zd	7-bit offset value for Indirect Addressing of register files (destination).
{ }	Optional argument.
[text]	Indicates Indexed Addressing.
(text)	The contents of text.
[expr] <n></n>	Specifies bit n of the register indicated by the pointer, expr.
\rightarrow	Assigned to.
< >	Register bit field.
e	In the set of.
italics	User-defined term (font is Courier New).

ADD W to f

f {,d {,a}}

ADDWF

a ∈ [0,1]

 $\begin{array}{l} 0 \leq f \leq 255 \\ d \, \in \, [0,1] \end{array}$

 $(W) + (f) \rightarrow dest$

26.1.1 STANDARD INSTRUCTION SET

ADD	LW	ADD Litera	l to W				ADDWF
Synt	ax:	ADDLW	k				Syntax:
Ope	rands:	$0 \le k \le 255$					Operands:
Ope	ration:	(W) + k \rightarrow V	Ν				
Statu	is Affected:	N, OV, C, D)C, Z				Operation
Enco	oding:	0000	1111	kkkk	kkkk		Operation.
Desc	cription:	The conten 8-bit literal W.	ts of W a k' and th	are added ne result is	to the placed in	-	Encoding: Description:
Word	ds:	1					
Cycl	es:	1					
QC	vcle Activity:						
	Q1	Q2	Q	3	Q4	-	
	Decode	Read literal 'k'	Proce Dat	ess V a	Vrite to W		
<u>Exar</u>	nple: Before Instruc W =	ADDLW 1 tion 10h	.5h				
	Aπer Instructio	on 25h					Words:
							Cycles:
							Q Cycle Activity Q1 Decode
							Example: Before Instru W REG After Instrue W REG

N, OV, C, DC, Z 0010 01da ffff ffff Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \leq 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and **Bit-Oriented Instructions in Indexed** Literal Offset Mode" for details. 1 1 Q4 Q3 Q2 Read Process Write to register 'f Data destination ADDWF REG, 0, 0 ruction = 17h = 0C2h ction 0D9h = = 0C2h

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

PIC18F87J11 FAMILY

XOR	WF	Exclusive	Exclusive OR W with f							
Synta	ax:	XORWF	f {,d {,a}}	•						
Oper	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Oper	ration:	(W) .XOR.	$(f) \rightarrow des$	st						
Statu	is Affected:	N, Z								
Enco	oding:	0001	10da	ffff	ffff					
Desc	cription:	Exclusive (register 'f'. in W. If 'd' i in the regis	OR the co If 'd' is '0' s '1', the i ster 'f'.	ontents of , the resul result is st	W with It is stored ored back					
		If 'a' is '0', If 'a' is '1', GPR bank	the Acces the BSR i	ss Bank is s used to	selected. select the					
If 'a' is '0' and the extended instruct set is enabled, this instruction oper in Indexed Literal Offset Addressin mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented an Bit-Oriented Instructions in Inde										
Word	ds:	1	1							
Cycle	es:	1	1							
QC	ycle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	Read register 'f'	Proce Data	ss V a de	Vrite to stination					
Example:		XORWF	REG, 1,	0						
	Before Instruc	tion								
	REG	= AFh = B5h								
	After Instruction REG W	on = 1Ah = B5h								

Operating Conditions: 3.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)								
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments	
D300	VIOFF	Input Offset Voltage	_	±5.0	±25	mV		
D301	VICM	Input Common-Mode Voltage	0	_	AVDD - 1.5	V		
D302	CMRR	Common-Mode Rejection Ratio	55	_	_	dB		
D303	TRESP	Response Time ⁽¹⁾	_	150	400	ns		
D304	Тмс2оv	Comparator Mode Change to Output Valid	—	-	10	μS		
D305	Virv	Internal Reference Voltage	_	1.2 ⁽²⁾		V	±1.2%	

TABLE 28-2: COMPARATOR SPECIFICATIONS

Note 1: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

2: The tolerance is $\pm 1.2\%$.

TABLE 28-3: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: $3.0V < VDD < 3.6V$, $-40^{\circ}C < TA < +85^{\circ}C$ (unless otherwise stated)									
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments		
D310	VRES	Resolution	VDD/24	_	VDD/32	LSb			
D311	VRAA	Absolute Accuracy	—	—	1/2	LSb			
D312	VRur	Unit Resistor Value (R)	—	2k	—	Ω			
D313	TSET	Settling Time ⁽¹⁾	_	_	10	μS			

Note 1: Settling time is measured while CVRR = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

TABLE 28-4: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operatir	Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)									
Param No.	aram No. Sym Characteristics		Min	Тур	Max	Units	Comments			
	VRGOUT	Regulator Output Voltage	_	2.5		V				
	CF	External Filter Capacitor Value	4.7	10	_	μF	Capacitor must be low series resistance (<5 Ohms)			

PIC18F87J11 FAMILY

TABLE 28-15:	: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREME	ENTS
--------------	--	------

Param No.	Symbol	Characteristic			Min	Max	Units	Conditions
40	T⊤0H	T0CKI High Pulse Width		No prescaler	0.5 Tcy + 20		ns	
				With prescaler	10		ns	
41	T⊤0L	T0CKI Low Pulse Width		No prescaler	0.5 Tcy + 20		ns	
				With prescaler	10		ns	
42	TT0P	T0CKI Period		No prescaler	Tcy + 10		ns	
				With prescaler	Greater of: 20 ns or (TcY + 40)/N	_	ns	N = prescale value (1, 2, 4,, 256)
45	T⊤1H	T13CKI High Time	Synchronous, no prescaler		0.5 Tcy + 20		ns	
			Synchronous, with prescaler		10		ns	
			Asynchronous		30		ns	
46	TT1L	T13CKI Low Time	Synchronous, no prescaler		0.5 Tcy + 5		ns	
			Synchronous, with prescaler		10		ns	
			Asynchronous		30		ns	
47	T⊤1P	T13CKI Input Period	Synchronous		Greater of: 20 ns or (Tcy + 40)/N	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60		ns	
	F⊤1	T13CKI Oscillator Input Frequency Range			DC	50	kHz	
48	TCKE2TMRI	Delay from External T13CKI Clock Edge to Timer Increment			2 Tosc	7 Tosc		

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support