

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3930 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f66j16t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-4:PIC18F8XJ1X PINOUT I/O DESCRIPTIONS

Din Nama	Pin Number	Pin	Buffer	Description				
Pin Name	80-TQFP	Туре	Туре	Description				
MCLR	9	—	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.				
OSC1/CLKI/RA7 OSC1	49	Ι	ST	Oscillator crystal or external clock input. Available only in External Oscillator modes (EC/ECPLL and HS/HSPLL). Main oscillator input connection.				
		_		Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; CMOS otherwise.				
CLKI		Ι	CMOS	Main clock input connection. External clock source input. Always associated with pin function, OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)				
RA7		I/O	TTL	General purpose I/O pin. Available only in INTIO2 and INTPLL2 Oscillator modes.				
OSC2/CLKO/RA6	50			Oscillator crystal or clock output. Available only in External				
OSC2		0	_	Oscillator modes (EC/ECPLL and HS/HSPLL). Main oscillator feedback output connection. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.				
CLKO		0	_	System cycle clock output (Fosc/4). In EC, ECPLL, INTIO1 and INTPLL1 Oscillator modes, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.				
RA6		I/O	TTL	General purpose I/O pin. Available only in INTIO and INTPLL Oscillator modes.				
Legend: TTL = TTL compati			•	CMOS = CMOS compatible input or output				
ST = Schmitt Trigg	ger input with CN	MOS leve	els	Analog = Analog input				
I = Input P = Power				O = Output OD = Open-Drain (no P diode to VDD)				
$I^2C = ST with I^2C^3$	™ or SMB level	s						
			onfigurati	ion bit, CCP2MX, is cleared (Extended Microcontroller mode).				
2. Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set)								

2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).

3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).

4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).

5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).

6: Default assignment for PMP data and control pins when PMPMX Configuration bit is set.

7: Alternate assignment for PMP data and control pins when PMPMX Configuration bit is cleared (programmed).

Pin Name	Pin Number	Pin	Buffer	Description		
Fin Name	80-TQFP	Туре	Туре	Description		
				PORTD is a bidirectional I/O port.		
RD0/AD0/PMD0 RD0 AD0 PMD0 ⁽⁶⁾	72	1/0 1/0 1/0	ST TTL TTL	Digital I/O. External Memory Address/Data 0. Parallel Master Port data.		
RD1/AD1/PMD1 RD1 AD1 PMD1 ⁽⁶⁾	69	I/O I/O I/O	ST TTL TTL	Digital I/O. External Memory Address/Data 1. Parallel Master Port data.		
RD2/AD2/PMD2 RD2 AD2 PMD2 ⁽⁶⁾	68	1/0 1/0 1/0	ST TTL TTL	Digital I/O. External Memory Address/Data 2. Parallel Master Port data.		
RD3/AD3/PMD3 RD3 AD3 PMD3 ⁽⁶⁾	67	I/O I/O I/O	ST TTL TTL	Digital I/O. External Memory Address/Data 3. Parallel Master Port data.		
RD4/AD4/PMD4/SDO2 RD4 AD4 PMD4 ⁽⁶⁾ SDO2	66	I/O I/O I/O O	ST TTL TTL —	Digital I/O. External Memory Address/Data 4. Parallel Master Port data. SPI data out.		
RD5/AD5/PMD5/ SDI2/SDA2 RD5 AD5 PMD5 ⁽⁶⁾ SDI2 SDA2	65	I/O I/O I/O I	ST TTL TTL ST ST	Digital I/O. External Memory Address/Data 5. Parallel Master Port data. SPI data in. I ² C data I/O.		
RD6/AD6/PMD6/ SCK2/SCL2 RD6 AD6 PMD6 ⁽⁶⁾ SCK2 SCL2	64	I/O I/O I/O I/O	ST TTL TTL ST ST	Digital I/O. External Memory Address/Data 6. Parallel Master Port data. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.		
RD7/AD7/PMD7/ SS2 RD7 AD7 PMD7 ⁽⁶⁾ SS2	63	1/0 1/0 1/0 1	ST TTL TTL TTL	Digital I/O. External Memory Address/Data 7. Parallel Master Port data. SPI slave select input.		

0

Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).

7: Alternate assignment for PMP data and control pins when PMPMX Configuration bit is cleared (programmed).

2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).

Befault assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).
 Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).
 Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).
 Default assignment for PMP data and control pins when PMPMX Configuration bit is set.

OD

= Output

= Open-Drain (no P diode to VDD)

TABLE 1-4: PIC18F8XJ1X PINOUT I/O DESCRIPTIONS (CONTINUED)

= Input

= Power

 $I^2C = ST$ with I^2C^{TM} or SMB levels

Т

Р

6.1.6.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit in Configuration Register 1L. When STVREN is set, a full or underflow condition will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

6.1.7 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers to provide a "fast return" option for interrupts. This stack is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the Stack registers. The values in the registers are then loaded back into the working registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the Stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the Stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 6-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR
•	;SAVED IN FAST REGISTER
SUB1 •	;STACK
RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

6.1.8 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

6.1.8.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the Program Counter. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value, 'nn', to the calling function.

The offset value (in WREG) specifies the number of bytes that the Program Counter should advance and should be multiples of 2 (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 6-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF	OFFSET, W
	CALL	TABLE
ORG	nn00h	
TABLE	ADDWF	PCL
	RETLW	nnh
	RETLW	nnh
	RETLW	nnh

6.1.8.2 Table Reads

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored, two bytes per program word, while programming. The Table Pointer (TBLPTR) specifies the byte address and the Table Latch (TABLAT) contains the data that is read from the program memory. Data is transferred from program memory, one byte at a time.

Table read operation is discussed further in **Section 7.1 "Table Reads and Table Writes**".

REGISTER 6-3: WDTCON: WATCHDOG TIMER CONTROL REGISTER

R/W-0	R-x	U-0	R/W-0	U-0	U-0	U-0	U-0	
REGSLP	LVDSTAT	—	ADSHR	—	—	—	SWDTEN	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 7 REGSLP: Voltage Regulator Low-Power Operation Enable bit For details of bit operation, see Register 25-9. bit 6 LVDSTAT: LVD Status bit 1 = VDDCORE > 2.45V 0 = VDDCORE < 2.45V								
bit 5	Unimplemen	ted: Read as '0	3					
bit 4	ADSHR: Shared Address SFR Select bit 1 = Alternate SFR is selected 0 = Default (Legacy) SFR is selected							
bit 3-1	Unimplemented: Read as '0'							
bit 0	SWDTEN: Software Controlled Watchdog Timer Enable bit For details of bit operation, see Register 25-9.							

7.5.2 FLASH PROGRAM MEMORY WRITE SEQUENCE (WORD PROGRAMMING).

The PIC18F87J11 family of devices have a feature that allows programming a single word (two bytes). This feature is enable when the WPROG bit is set. If the memory location is already erased, the following sequence is required to enable this feature:

- 1. Load the Table Pointer register with the address of the data to be written
- 2. Write the 2 bytes into the holding registers and perform a table write

- 3. Set the WREN bit (EECON1<2>) to enable byte writes.
- 4. Disable interrupts.
- 5. Write H'55' to EECON2.
- 6. Write H'AA' to EECON2.
- 7. Set the WR bit. This will begin the write cycle.
- 8. The CPU will stall for duration of the write for Tiw (see Parameter D133A).
- 9. Re-enable interrupts.

EXAMPLE 7-4: SINGLE-WORD WRITE TO FLASH PROGRAM MEMORY

	MOVLW MOVWF MOVLW MOVWF MOVLW	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL	;	Load TBLPTR with the base address
	MOVLW MOVWF TBLWT*+ MOVLW MOVWF TBLWT*	DATAO TABLAT DATA1 TABLAT		
PROGRAM_MEMORY	BSF BSF BCF	EECON1, WPROG EECON1, WREN INTCON, GIE	;	enable single word write enable write to memory disable interrupts
Required Sequence	MOVWF	H'55' EECON2 H'AA' EECON2	;	write H'55' write H'AA'
	BSF BSF BCF BCF	EECON1, WR INTCON, GIE EECON1, WPROG EECON1, WREN	; ;	start program (CPU stall) re-enable interrupts disable single word write disable write to memory

8.6.3 16-BIT BYTE SELECT MODE

Figure 8-3 shows an example of 16-Bit Byte Select mode. This mode allows table write operations to word-wide external memories with byte selection capability. This generally includes both word-wide Flash and SRAM devices.

During a TBLWT cycle, the TABLAT data is presented on the upper and lower byte of the AD<15:0> bus. The WRH signal is strobed for each write cycle; the WRL pin is not used. The BA0 or UB/LB signals are used to select the byte to be written, based on the Least Significant bit of the TBLPTR register. Flash and SRAM devices use different control signal combinations to implement Byte Select mode. JEDEC standard Flash memories require that a controller I/O port pin be connected to the memory's BYTE/WORD pin to provide the select signal. They also use the BA0 signal from the controller as a byte address. JEDEC standard static RAM memories, on the other hand, use the UB or LB signals to select the byte.

10.3 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Enable registers (PIE1, PIE2, PIE3). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 10-7: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMPIE	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PMPIE: Parallel Master Port Read/Write Interrupt Enable bit 1 = Enables the PM read/write interrupt
	0 = Disables the PM read/write interrupt
bit 6	ADIE: A/D Converter Interrupt Enable bit
	1 = Enables the A/D interrupt0 = Disables the A/D interrupt
bit 5	RC1IE: EUSART1 Receive Interrupt Enable bit
	 1 = Enables the EUSART1 receive interrupt 0 = Disables the EUSART1 receive interrupt
bit 4	TX1IE: EUSART1 Transmit Interrupt Enable bit
	1 = Enables the EUSART1 transmit interrupt0 = Disables the EUSART1 transmit interrupt
bit 3	SSP1IE: MSSP1 Interrupt Enable bit
	1 = Enables the MSSP1 interrupt0 = Disables the MSSP1 interrupt
bit 2	CCP1IE: ECCP1 Interrupt Enable bit
	 1 = Enables the ECCP1 interrupt 0 = Disables the ECCP1 interrupt
bit 1	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
	 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt
bit 0	TMR1IE: TMR1 Overflow Interrupt Enable bit
	1 = Enables the TMR1 overflow interrupt0 = Disables the TMR1 overflow interrupt

TABLE 11-8:	PORT	<u>C FUNC</u>	TION	S	
Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RC0/T1OSO/	RC0	0	0	DIG	LATC<0> data output.
T13CKI		1	I	ST	PORTC<0> data input.
	T10SO	x	0	ANA	Timer1 oscillator output; enabled when Timer1 oscillator is enabled. Disables digital I/O.
	T13CKI	1	Ι	ST	Timer1/Timer3 counter input.
RC1/T1OSI/	RC1	0	0	DIG	LATC<1> data output.
ECCP2/P2A		1	Ι	ST	PORTC<1> data input.
	T10SI	x	I	ANA	Timer1 oscillator input; enabled when Timer1 oscillator is enabled. Disables digital I/O.
	ECCP2 ⁽¹⁾	0	0	DIG	ECCP2 compare output and ECCP2 PWM output; takes priority over port data.
		1	Ι	ST	ECCP2 capture input.
	P2A ⁽¹⁾	0	0	DIG	ECCP2 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.
RC2/ECCP1/	RC2	0	0	DIG	LATC<2> data output.
P1A		1	Ι	ST	PORTC<2> data input.
	ECCP1	0	0	DIG	ECCP1 compare output and ECCP1 PWM output; takes priority over port data.
		1	Ι	ST	ECCP1 capture input.
	P1A	0	0	DIG	ECCP1 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.
RC3/SCK1/	RC3	0	0	DIG	LATC<3> data output.
SCL1		1	Ι	ST	PORTC<3> data input.
	SCK1	0	0	DIG	SPI clock output (MSSP1 module); takes priority over port data.
		1	Ι	ST	SPI clock input (MSSP1 module).
	SCL1	0	0	DIG	I ² C [™] clock output (MSSP1 module); takes priority over port data.
		1	Ι	ST	I ² C clock input (MSSP1 module); input type depends on module setting.
RC4/SDI1/	RC4	0	0	DIG	LATC<4> data output.
SDA1		1		ST	PORTC<4> data input.
	SDI1	1		ST	SPI data input (MSSP1 module).
	SDA1	1	0	DIG	I ² C data output (MSSP1 module); takes priority over port data.
		1	Ι	ST	I ² C data input (MSSP1 module); input type depends on module setting.
RC5/SDO1	RC5	0	0	DIG	LATC<5> data output.
		1	Ι	ST	PORTC<5> data input.
	SDO1	0	0	DIG	SPI data output (MSSP1 module); takes priority over port data.
RC6/TX1/CK1	RC6	0	0	DIG	LATC<6> data output.
		1	Ι	ST	PORTC<6> data input.
	TX1	1	0	DIG	Synchronous serial data output (EUSART1 module); takes priority over port data.
	CK1	1	0	DIG	Synchronous serial data input (EUSART1 module). User must configure as an input.
		1	Ι	ST	Synchronous serial clock input (EUSART1 module).
RC7/RX1/DT1	RC7	0	0	DIG	LATC<7> data output.
		1	I	ST	PORTC<7> data input.
	RX1	1	I	ST	Asynchronous serial receive data input (EUSART1 module).
	DT1	1	0	DIG	Synchronous serial data output (EUSART1 module); takes priority over port data.
		1	Ι	ST	Synchronous serial data input (EUSART1 module). User must configure as an input.

TABLE 11-8: PORTC FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,

TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignment for ECCP2/P2A when the CCP2MX Configuration bit is set.

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description			
RG0/PMA8/	RG0	0	0	DIG	LATG<0> data output.			
ECCP3/P3A		1	I	ST	PORTG<0> data input.			
PMA8		x	0	DIG	Parallel Master Port address.			
	ECCP3		0	DIG	ECCP3 compare and PWM output; takes priority over port data.			
			I	ST	ECCP3 capture input.			
	P3A	0	0	DIG	ECCP3 Enhanced PWM output, Channel A; takes priority over port and PMP data. May be configured for tri-state during Enhanced PWM shutdown events.			
RG1/PMA7/	RG1	0	0	DIG	LATG<1> data output.			
TX2/CK2		1	I	ST	PORTG<1> data input.			
	PMA7	x	0	DIG	Parallel Master Port address.			
	TX2	1	0	DIG	Synchronous serial data output (EUSART2 module); takes priority over port data.			
	CK2	1	0	DIG	Synchronous serial data input (EUSART2 module). User must configure as an input.			
		1	I	ST	Synchronous serial clock input (EUSART2 module).			
RG2/PMA6/	RG2	0	0	DIG	LATG<2> data output.			
RX2/DT2		1	I	ST	PORTG<2> data input.			
	PMA6	х	0	DIG	Parallel Master Port address.			
	RX2	1	I	ST	Asynchronous serial receive data input (EUSART2 module).			
	DT2	1	0	DIG	Synchronous serial data output (EUSART2 module); takes priority over port data.			
		1	I	ST	Synchronous serial data input (EUSART2 module). User must configure as an input.			
RG3/PMCS1/	RG3	0	0	DIG	LATG<3> data output.			
CCP4/P3D		1	I	ST	PORTG<3> data input.			
	PMCS1	х	0	DIG	Parallel Master Port Address Chip Select 1			
		х	I	TTL	Parallel Master Port Address Chip Select 1.			
	CCP4	0	0	DIG	CCP4 compare output and CCP4 PWM output; takes priority over port data.			
		1	I	ST	CCP4 capture input.			
	P3D	0	0	DIG	ECCP3 Enhanced PWM output, Channel D; takes priority over port and PMP data. May be configured for tri-state during Enhanced PWM shutdown events.			
RG4/PMCS2/	RG4	0	0	DIG	LATG<4> data output.			
CCP5/P1D		1	I	ST	PORTG<4> data input.			
	PMCS2	x	0	DIG	Parallel Master Port Address Chip Select 2			
	CCP5	0	0	DIG	CCP5 compare output and CCP5 PWM output; takes priority over port data.			
		1	I	ST	CCP5 capture input.			
	P1D	0	0	DIG	ECCP1 Enhanced PWM output, Channel D; takes priority over port and PMP data. May be configured for tri-state during Enhanced PWM shutdown events.			

TABLE 11-16: PORTG FUNCTIONS

Legend: O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

12.3.11 MASTER MODE TIMING

This section contains a number of timing examples that represent the common Master mode configuration options. These options vary from 8-bit to 16-bit data, fully demultiplexed to fully multiplexed address, as well as Wait states.

FIGURE 12-12: READ AND WRITE TIMING, 8-BIT DATA, DEMULTIPLEXED ADDRESS

Q1 Q2	2 03 04 01 02 03 04 01 02 03 04	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2	Q3 Q4 Q1 Q2 Q3 Q4
PMCS2			
PMCS1 PMD<7:0>	; ; <u>}</u>		
PMA<13:0>			
PMWR PMRD			
PMPIF			
BUSY			

FIGURE 12-13: READ TIMING, 8-BIT DATA, PARTIALLY MULTIPLEXED ADDRESS

	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1	Q2	Q3	Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
PMCS2			1	i	1	1			
PMCS1			 		1 1 1	1 1 1		· · · · · · · · · · · · · · · · · · ·	
PMD<7:0>		Addres	ss<7:0>	<u>)</u> —	1 1 1	(D	ata	<u></u>	
PMA<13:8>		 1 . 1 .	1	i	1	i			
PMWR		1 1 1 1		-	1 1	1			
PMRD						I I		<u> </u>	
PMALL		<u> </u>		1	1	1			
PMPIF		1 1 1 1 1 1			1 1 1				
BUSY			+	<u>'</u>	1	1	l		

FIGURE 12-20: WRITE TIMING, 8-BIT DATA, FULLY MULTIPLEXED 16-BIT ADDRESS

FIGURE 12-21: READ TIMING, 16-BIT DATA, DEMULTIPLEXED ADDRESS

FIGURE 12-22: WRITE TIMING, 16-BIT DATA, DEMULTIPLEXED ADDRESS

17.2 Timer4 Interrupt

The Timer4 module has an 8-bit period register, PR4, which is both readable and writable. Timer4 increments from 00h until it matches PR4 and then resets to 00h on the next increment cycle. The PR4 register is initialized to FFh upon Reset.

FIGURE 17-1: TIMER4 BLOCK DIAGRAM

17.3 Output of TMR4

The output of TMR4 (before the postscaler) is used only as a PWM time base for the ECCPx/CCPx modules. It is not used as a baud rate clock for the MSSP modules as is the Timer2 output.

TABLE 17-1: REGISTERS ASSOCIATED WITH TIMER4 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	61
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CCP5IP	CCP4IP	CCP3IP	64
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	64
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CCP5IE	CCP4IE	CCP3IE	64
TMR4	Timer4 Reg	gister							65
T4CON	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	65
PR4	Timer4 Per	iod Register							65

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer4 module.

					SYN	IC = 0, BRGH	l = 0, BRG1	6 = 0				
Baud	Fos	c = 40.000	MHz	Fos	c = 20.000	MHz	Fos	c = 10.000	MHz	Fosc = 8.000 MHz		
Rate (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)
0.3	_	_	_		_	_		_	_			_
1.2	—	_	_	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—		_
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	_	_	_

TABLE 21-3: BAUD RATES FOR ASYNCHRONOUS MODES

				SYNC = 0, I	BRGH = 0	, BRG16 = 0				
Baud	Fos	SC = 4.000	MHz	Fos	ic = 2.000	MHz	Fosc = 1.000 MHz			
Rate (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51	
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12	
2.4	2.404	0.16	25	2.403	-0.16	12	_	_	_	
9.6	8.929	-6.99	6	—	—	—	—	—	—	
19.2	20.833	8.51	2	_	_	_	_	_	_	
57.6	62.500	8.51	0	—	_	—	—	_	_	
115.2	62.500	-45.75	0	_	—	_	_	—	—	

					SYN	IC = 0, BRGH	l = 1, BRG1	6 = 0				
Baud	Fost	= 40.000	MHz	Fos	c = 20.000	MHz	Fos	c = 10.000	MHz	Fosc = 8.000 MHz		
Rate (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)			Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)
0.3	_		_	_		_	_			_		
1.2	—	_	_	—	_	_	—	_	_	—	—	—
2.4	—	_	_	—	_	_	2.441	1.73	255	2.403	-0.16	207
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_

				SYNC = 0, I	BRGH = 1	, BRG16 = 0				
Baud	Fos	c = 4.000	MHz	Fos	ic = 2.000	MHz	Fosc = 1.000 MHz			
Rate (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	
0.3	_		_				0.300	-0.16	207	
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51	
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25	
9.6	9.615	0.16	25	9.615	-0.16	12	—	—	—	
19.2	19.231	0.16	12	—	—	—	—	—	—	
57.6	62.500	8.51	3	_		_	_	_	—	
115.2	125.000	8.51	1	_	—		_	—	—	

© 2007-2012 Microchip Technology Inc.

					SYN	IC = 0, BRGH	l = 0, BRG1	6 = 1				
Baud	Fost	; = 40.000	MHz	Fos	c = 20.000	MHz	Fost	c = 10.000	MHz	Fosc = 8.000 MHz		
Rate (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)									
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	_	_	_

TABLE 21-3:	BAUD RATES FOR	ASYNCHRONOUS MODES	(CONTINUED)
-------------	----------------	---------------------------	-------------

				SYNC = 0, I	BRGH = 0	, BRG16 = 1				
Baud	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz			
Rate (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207	
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51	
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25	
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_	
19.2	19.231	0.16	12	_	_	_	_	_	_	
57.6	62.500	8.51	3	—	_	_	—	_	_	
115.2	125.000	8.51	1	—	_	_	—	_	_	

				SYNC :	= 0, BRGH	H = 1, BRG16	= 1 or SYN	C = 1, BR	G16 = 1			
Baud	Fos	c = 40.000	MHz	Fos	c = 20.000	MHz	Fos	c = 10.000	MHz	Fosc = 8.000 MHz		
Rate (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)									
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16

			SYNC = 0, B	RGH = 1, B	RG16 = 1	or SYNC = 1	, BRG16 = 1	L		
Baud	Fos	c = 4.000	MHz	Fos	SC = 2.000	MHz	Fosc = 1.000 MHz			
Rate (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832	
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207	
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103	
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25	
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12	
57.6	58.824	2.12	16	55.555	3.55	8	—	_	_	
115.2	111.111	-3.55	8	_	_	_	—	_	—	

25.0 SPECIAL FEATURES OF THE CPU

PIC18F87J11 family devices include several features intended to maximize reliability and minimize cost through elimination of external components. These are:

- · Oscillator Selection
- Resets:
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- · Fail-Safe Clock Monitor
- Two-Speed Start-up
- Code Protection
- In-Circuit Serial Programming

The oscillator can be configured for the application depending on frequency, power, accuracy and cost. All of the options are discussed in detail in Section 3.0 "Oscillator Configurations".

A complete discussion of device Resets and interrupts is available in previous sections of this data sheet. In addition to their Power-up and Oscillator Start-up Timers provided for Resets, the PIC18F87J11 family of devices have a configurable Watchdog Timer which is controlled in software.

The inclusion of an internal RC oscillator also provides the additional benefits of a Fail-Safe Clock Monitor (FSCM) and Two-Speed Start-up. FSCM provides for background monitoring of the peripheral clock and automatic switchover in the event of its failure. Two-Speed Start-up enables code to be executed almost immediately on start-up, while the primary clock source completes its start-up delays.

All of these features are enabled and configured by setting the appropriate Configuration register bits.

25.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped starting at program memory location 300000h. A complete list is shown in Table 25-2. A detailed explanation of the various bit functions is provided in Register 25-1 through Register 25-6.

25.1.1 CONSIDERATIONS FOR CONFIGURING THE PIC18F87J11 FAMILY DEVICES

Unlike previous PIC18 microcontrollers, devices of the PIC18F87J11 family do not use persistent memory registers to store configuration information. The configuration bytes are implemented as volatile memory which means that configuration data must be programmed each time the device is powered up.

Configuration data is stored in the four words at the top of the on-chip program memory space, known as the Flash Configuration Words. It is stored in program memory in the same order shown in Table 25-2, with CONFIG1L at the lowest address and CONFIG3H at the highest. The data is automatically loaded in the proper Configuration registers during device power-up or after any device Reset.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The four Most Significant bits of CONFIG1H, CONFIG2H and CONFIG3H in program memory should also be '1111'. This makes these Configuration Words appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written to again. Changing a device configuration requires that power to the device be cycled.

25.5.2 EXITING FAIL-SAFE OPERATION

The fail-safe condition is terminated by either a device Reset or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 2H (with any required start-up delays that are required for the oscillator mode, such as OST or PLL timer). The INTRC oscillator provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTRC oscillator. The OSCCON register will remain in its Reset state until a power-managed mode is entered.

25.5.3 FSCM INTERRUPTS IN POWER-MANAGED MODES

By entering a power-managed mode, the clock multiplexor selects the clock source selected by the OSCCON register. Fail-Safe Clock Monitoring of the power-managed clock source resumes in the power-managed mode.

If an oscillator failure occurs during power-managed operation, the subsequent events depend on whether or not the oscillator failure interrupt is enabled. If enabled (OSCFIF = 1), code execution will be clocked by the INTRC multiplexor. An automatic transition back to the failed clock source will not occur.

If the interrupt is disabled, subsequent interrupts while in Idle mode will cause the CPU to begin executing instructions while being clocked by the INTRC source.

25.5.4 POR OR WAKE-UP FROM SLEEP

The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary device clock is either the EC or INTRC modes, monitoring can begin immediately following these events.

For HS or HSPLL modes, the situation is somewhat different. Since the oscillator may require a start-up time considerably longer than the FSCM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the device clock and functions until the primary clock is stable (the OST and PLL timers have timed out). This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTRC returns to its role as the FSCM source.

Note:	The same logic that prevents false oscillator failure interrupts on POR, or wake from Sleep, will also prevent the detection of the oscillator's failure to start
	at all following these events. This can be avoided by monitoring the OSTS bit and using a timing routine to determine if the oscillator is taking too long to start. Even so, no oscillator failure interrupt will be flagged.

As noted in Section 25.4.1 "Special Considerations for Using Two-Speed Start-up", it is also possible to select another clock configuration and enter an alternate power-managed mode while waiting for the primary clock to become stable. When the new power-managed mode is selected, the primary clock is disabled.

RCA	LL	Relative C	all					
Synta	ax:	RCALL n						
Oper	ands:	-1024 ≤ n ≤	1023					
Oper	ation:	· · ·	$(PC) + 2 \rightarrow TOS,$ (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None						
Enco	ding:	1101	1nnn	nnnr	n nnnn			
Description: Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC w have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a two-cycle instruction.								
Word	ls:	1						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'n'	Proce Data		Write to PC			
		PUSH PC to stack						
	No	No	No		No			

operation

RES	ET	Reset					
Synta	ax:	RESET					
Oper	ands:	None					
Operation:			Reset all registers and flags that are affected by a MCLR Reset.				
Statu	s Affected:	All					
Enco	ding:	0000	0000	0000 1111 11			
Description:			This instruction provides a way to execute a MCLR Reset in software.				
Word	ls:	1	1				
Cycle	es:	1					
Q Cycle Activity:							
	Q1	Q2	Q3	Q3		Q4	
	Decode	Start	No			No	
		reset	operat	ion	ор	eration	

Example:

•	Inetri	iction	

After Instruction	
Registers =	Reset Value
Flags* =	Reset Value

RESET

Example: HERE RCALL Jump

operation

operation

Before Instruction

operation

PC = Address (HERE) After Instruction PC = TOS = Address (Jump) Address (HERE + 2)

SUBLW	s	Subtract W from Literal					
Syntax:		SUBLW k					
Operands:	0	$0 \leq k \leq 255$					
Operation:	k	– (W)	\rightarrow	W			
Status Affected:	Ν	I, OV, (C, I	DC, Z			
Encoding:		0000		1000	kkk	ck	kkkk
Description:				acted from			
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1		Q2		Q3			Q4
Decode		Read eral 'k'		Proce: Data		V	Vrite to W
Example 1:	S	UBLW	C)2h			
Before Instruc	tion						
W C	=	01h ?					
After Instruction	on	•					
W C	=	01h 1 ; result is positive					
Z	=	0	,	iesuit is p	JUSILIV	e	
N Everente 2:	=	0					
Example 2:		UBLW	C)2h			
Before Instruc W	tion =	02h					
C	=	?					
After Instructio W	on =	00h					
С	=	1 ; result is zero					
Z N	=	1 0					
Example 3:	S	UBLW	C)2h			
Before Instruc	tion						
W C	=	03h ?					
After Instruction	_	÷					
W	=	FFh		(2's comp			
C Z	=	0 0	,	result is r	legati	ve	
Ν	=	1					

SUBWF	Subtract V	V from f								
Syntax:	SUBWF	f {,d {,a}}								
Operands:		$0 \le f \le 255$								
	d ∈ [0,1]									
	$a \in [0,1]$									
Operation:	$(f) - (W) \rightarrow dest$									
Status Affected:	N, OV, C, E	DC, Z								
Encoding:	0101	11da fff:	f ffff							
Description:	compleme	/ from register 'f' nt method). If 'd' pred in W. If 'd' is	is '0', the							
		ack in register 'f'								
	,	the Access Bank the BSR is used								
	set is enab	and the extended led, this instructi Literal Offset Ad	on operates							
		never f \leq 95 (5Fr	,							
		5.2.3 "Byte-Orie ed Instructions								
		set Mode" for d								
Words:	1									
Cycles:	1									
Q Cycle Activity:	·									
Q1	Q2	Q3	Q4							
Decode	Read	Process	Write to							
	register 'f'	Data	destination							
Example 1:	SUBWF	REG, 1, 0								
Before Instruc										
REG W	= 3 = 2									
C	= 2 = ?									
After Instructio REG	on = 1									
W	= 2									
C Z	= 1 = 0	; result is positiv	e							
N	= 0									
Example 2:	SUBWF	REG, 0, 0								
Before Instruc REG										
W C	= 2 = 2 = ?									
After Instructio										
REG	= 2									
W C	= 0 = 1	; result is zero								
ZN	= 1 = 0									
Example 3:	- U SUBWF	REG, 1, 0								
Before Instruc		REG, I, U								
REG	= 1									
W C	= 2 = ?									
After Instructio	•									
REG	= FFh	;(2's complemer	nt)							
W C	= 2 = 0	; result is negativ	/e							
Z N	= 0 = 1	-								

28.2 DC Characteristics: Power-Down and Supply Current PIC18F87J11 Family (Industrial)

PIC18F87J11 Family (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param No.	Device	Тур	Max	Units	Conditions			
	Power-Down Current (IPD) ⁽¹⁾							
	All devices	0.5	1.4	μA	-40°C			
		0.5	1.4	μA	+25°C	VDD = 2.0V ⁽⁴⁾ (Sleep mode)		
		5.5	10.2	μA	+85°C	(Oleep mode)		
	All devices	0.6	1.5	μA	-40°C			
		0.6	1.5	μA	+25°C	VDD = 2.5V ⁽⁴⁾ (Sleep mode)		
		6.8	12.6	μA	+85°C	(Cleep mode)		
	All devices	2.9	7	μA	-40°C			
		3.6	7	μA	+25°C	VDD = 3.3V ⁽⁵⁾ (Sleep mode)		
		9.6	19	μA	+85°C			

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT is enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: Voltage regulator is disabled (ENVREG = 0, tied to Vss).

5: Voltage regulator is enabled (ENVREG = 1, tied to VDD, REGSLP = 1).

28.2 DC Characteristics: Power-Down and Supply Current PIC18F87J11 Family (Industrial) (Continued)

PIC18F8 (Indu		rd Oper ng temp	-	•	ess otherwise stated) TA ≤ +85°C for industria	al	
Param No.	Device		Max	Units		Conditions	5
	Supply Current (IDD) Cont. ^(2,3))					
	All devices	3	9.4	μA	-40°C		
		3.3	9.4	μA	+25°C	$VDD = 2.0V,$ $VDDCORE = 2.0V^{(4)}$	
		8.5	17.2	μA	+85°C		
	All devices	4	10.5	μA	-40°C		Fosc = 31 kHz
		4.3	10.5	μA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾	(RC_IDLE mode,
		10.3	19.5	μA	+85°C		internal oscillator source
	All devices	34	82	μA	-40°C		
		48	82	μA	+25°C	VDD = 3.3V ⁽⁵⁾	
		69	105	μA	+85°C		
	All devices	0.33	0.75	mA	-40°C		Fosc = 1 MHz (RC_IDLE mode,
		0.37	0.75	mA	+25°C	$VDD = 2.0V,$ $VDDCORE = 2.0V^{(4)}$	
		0.41	0.84	mA	+85°C		
	All devices	0.39	0.78	mA	-40°C		
		0.42	0.78	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾	
		0.47	0.91	mA	+85°C	VBBOOKE 2.0V	internal oscillator source
	All devices	0.43	0.82	mA	-40°C		
		0.48	0.82	mA	+25°C	VDD = 3.3V ⁽⁵⁾	
		0.54	0.95	mA	+85°C		
	All devices	0.53	0.98	mA	-40°C		
		0.57	0.98	mA	+25°C	$VDD = 2.0V,$ $VDDCORE = 2.0V^{(4)}$	
		0.61	1.12	mA	+85°C	VBBOOKE 2.0V	Fosc = 4 MHz (RC_IDLE mode, internal oscillator source)
	All devices	0.63	1.14	mA	-40°C	$\lambda (nn - 0.5)$	
		0.67	1.14	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾	
		0.72	1.25	mA	+85°C	VDDCONE - 2.0V. /	
	All devices	0.7	1.27	mA	-40°C		-
		0.76	1.27	mA	+25°C	VDD = 3.3V ⁽⁵⁾	
		0.82	1.45	mA	+85°C		

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, Timer1 oscillator, BOR, etc.).

- 2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.
 - The test conditions for all $\ensuremath{\mathsf{IDD}}$ measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
 - MCLR = VDD; WDT is enabled/disabled as specified.
- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator is disabled (ENVREG = 0, tied to Vss).
- 5: Voltage regulator is enabled (ENVREG = 1, tied to VDD, REGSLP = 1).