

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	3930 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67j11t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block. This mode allows for controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then clear the SCSx bits and execute SLEEP. When the clock source is switched to the INTOSC block, the primary oscillator is shut down and the OSTS bit is cleared.

When a wake event occurs, the peripherals continue to be clocked from the internal oscillator block. After a delay of TCSD following the wake event, the CPU begins executing code being clocked by the INTRC. The IDLEN and SCSx bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

4.5 Exiting Idle and Sleep Modes

An exit from Sleep mode, or any of the Idle modes, is triggered by an interrupt, a Reset or a WDT time-out. This section discusses the triggers that cause exits from power-managed modes. The clocking subsystem actions are discussed in each of the power-managed modes sections (see Section 4.2 "Run Modes", Section 4.3 "Sleep Mode" and Section 4.4 "Idle Modes").

4.5.1 EXIT BY INTERRUPT

Any of the available interrupt sources can cause the device to exit from an Idle mode, or the Sleep mode, to a Run mode. To enable this functionality, an interrupt source must be enabled by setting its enable bit in one of the INTCON or PIE registers. The exit sequence is initiated when the corresponding interrupt flag bit is set.

On all exits from Idle or Sleep modes by interrupt, code execution branches to the interrupt vector if the GIE/GIEH bit (INTCON<7>) is set. Otherwise, code execution continues or resumes without branching (see Section 10.0 "Interrupts").

A fixed delay of interval, TCSD, following the wake event is required when leaving Sleep and Idle modes. This delay is required for the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

4.5.2 EXIT BY WDT TIME-OUT

A WDT time-out will cause different actions depending on which power-managed mode the device is in when the time-out occurs.

If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in an exit from the power-managed mode (see Section 4.2 "Run Modes" and Section 4.3 "Sleep Mode"). If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see Section 25.2 "Watchdog Timer (WDT)").

The Watchdog Timer and postscaler are cleared by one of the following events:

- Executing a SLEEP or CLRWDT instruction
- The loss of a currently selected clock source (if the Fail-Safe Clock Monitor is enabled)

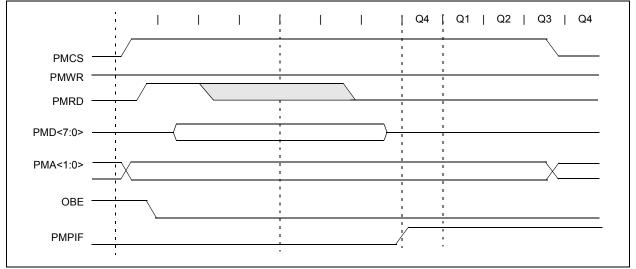
4.5.3 EXIT BY RESET

Exiting an Idle or Sleep mode by Reset automatically forces the device to run from the INTRC.

4.5.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY

Certain exits from power-managed modes do not invoke the OST at all. There are two cases:

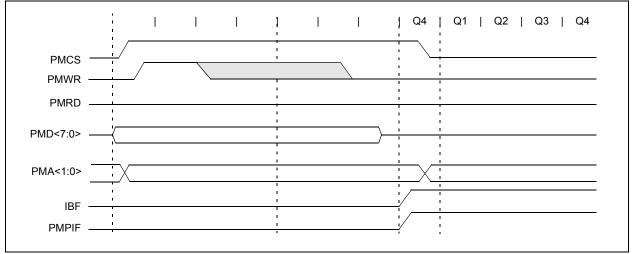
- PRI_IDLE mode, where the primary clock source is not stopped
- The primary clock source is either the EC or ECPLL mode


In these instances, the primary clock source either does not require an oscillator start-up delay, since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (EC). However, a fixed delay of interval, TCSD, following the wake event, is still required when leaving Sleep and Idle modes to allow the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

12.2.3.1 READ FROM SLAVE PORT

When chip select is active and a read strobe occurs (PMCS = 1 and PMRD = 1), the data from one of the four output bytes is presented onto PMD<7:0>. Which byte is read depends on the 2-bit address placed on ADDR<1:0>. Table 12-2 shows the corresponding output registers and their associated address.

When an output buffer is read, the corresponding OBxE bit is set. The OBE flag bit is set when all the buffers are empty. If any buffer is already empty (OBxE = 1), the next read to that buffer will generate an OBUF event.



12.2.3.2 WRITE TO SLAVE PORT

When chip select is active and a write strobe occurs (PMCS = 1 and PMWR = 1), the data from PMD<7:0> is captured into one of the four input buffer bytes. Which byte is written depends on the 2-bit address placed on ADDRL<1:0>. Table 12-2 shows the corresponding input registers and their associated address.

When an input buffer is written, the corresponding IBxF bit is set. The IBF flag bit is set when all the buffers are written. If any buffer is already written (IBxF = 1), the next write strobe to that buffer will generate an OBUF event and the byte will be discarded.

FIGURE 12-8: PARALLEL SLAVE PORT WRITE WAVEFORMS

12.3.11 MASTER MODE TIMING

This section contains a number of timing examples that represent the common Master mode configuration options. These options vary from 8-bit to 16-bit data, fully demultiplexed to fully multiplexed address, as well as Wait states.

FIGURE 12-12: READ AND WRITE TIMING, 8-BIT DATA, DEMULTIPLEXED ADDRESS

Q1 Q2	2 03 04 01 02 03 04 01 02 03 04	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2	Q3 Q4 Q1 Q2 Q3 Q4
PMCS2			
PMCS1 PMD<7:0>	; ; <u>}</u>		
PMA<13:0>			
PMWR PMRD			
PMPIF			
BUSY			

FIGURE 12-13: READ TIMING, 8-BIT DATA, PARTIALLY MULTIPLEXED ADDRESS

	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1	Q2	Q3	Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
PMCS2			1	i	1	1			
PMCS1			 		1 1 1	1 1 1		· · · · · · · · · · · · · · · · · · ·	
PMD<7:0>		Addres	ss<7:0>	<u>)</u> —	1 1 1	(D	ata	<u></u>	
PMA<13:8>		 1 . 1 .	1	i	1	i			
PMWR		1 1 1 1		-	1 1	1			
PMRD						I I		<u> </u>	
PMALL		<u> </u>		1	1	1			
PMPIF		1 1 1 1 1 1			1 1 1				
BUSY			+	<u>'</u>	1	1	l		

16.0 TIMER3 MODULE

The Timer3 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR3H and TMR3L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- · Module Reset on ECCPx Special Event Trigger

A simplified block diagram of the Timer3 module is shown in Figure 16-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 16-2.

The Timer3 module is controlled through the T3CON register (Register 16-1). It also selects the clock source options for the CCP and ECCP modules; see Section 18.1.1 "CCP Modules and Timer Resources" for more information.

REGISTER 16-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

I a superior of the				
Legend:				(O)
R = Readat		W = Writable bit	U = Unimplemented bit	
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	-	6-Bit Read/Write Mode Enable		
		les register read/write of Time les register read/write of Time	•	
bit 6,3	T3CCP<	2:1>: Timer3 and Timer1 to E	CCPx/CCPx Enable bits	
	10 = Tim Tim 01 = Tim Tim	er3 and Timer4 are the clock ler3 and Timer4 are the clock ler1 and Timer2 are the clock ler3 and Timer4 are the clock ler1 and Timer2 are the clock ler1 and Timer2 are the clock	sources for ECCP3, CCP4 a sources for ECCP1 and ECC sources for ECCP2, ECCP3 sources for ECCP1	nd CCP5; CP2 , CCP4 and CCP5;
bit 5-4	T3CKPS	<1:0>: Timer3 Input Clock Pre	escale Select bits	
	10 = 1:4 01 = 1:2	Prescale value Prescale value Prescale value Prescale value		
bit 2	(Not usal	: Timer3 External Clock Input ole if the device clock comes f /IR3CS = 1:	-	
	1 = Does 0 = Sync	not synchronize external cloc hronizes external clock input	ck input	
		<u>IR3CS = 0:</u> s ignored. Timer3 uses the inte	ernal clock when TMR3CS =	0.
bit 1	TMR3CS	: Timer3 Clock Source Select	t bit	
		rnal clock input from Timer1 c g edge)	oscillator or T13CKI (on the ri	sing edge after the first
	0 = Inter	nal clock (Fosc/4)		
bit 0	TMR3ON	I: Timer3 On bit		
	1 = Enab 0 = Stops	les Timer3 s Timer3		

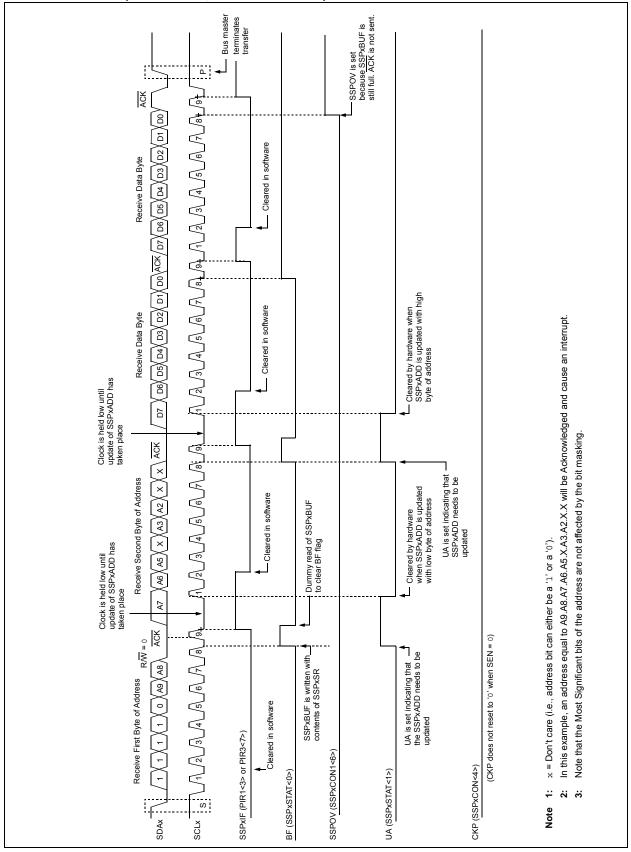
ECCP Mode	CCP2CON Configuration	RB3	RC1	RE7	RE2	RE1	RE0			
	All Devices, CCP2MX = 1, Either Operating mode:									
Compatible CCP	00xx 11xx	RB3/INT3	ECCP2	RE7	RE2	RE1	RE0			
Dual PWM	10xx 11xx	RB3/INT3	P2A	RE7	P2B	RE1	RE0			
Quad PWM	x1xx 11xx	RB3/INT3	P2A	RE7	P2B	P2C	P2D			
	All Devices, CCP2MX = 0, Microcontroller mode:									
Compatible CCP	00xx 11xx	RB3/INT3	RC1/T1OS1	ECCP2	RE2	RE1	RE0			
Dual PWM	10xx 11xx	RB3/INT3	RC1/T1OS1	P2A	P2B	RE1	RE0			
Quad PWM	x1xx 11xx	RB3/INT3	RC1/T10S1	P2A	P2B	P2C	P2D			
	PIC18F8XJ1	IX Devices, C	CP2MX = 0, E	Extended Mic	rocontroller r	node:				
Compatible CCP	00xx 11xx	ECCP2	RC1/T1OS1	RE7/AD15	RE2/CS	RE1/WR	RE0/RD			
Dual PWM	10xx 11xx	P2A	RC1/T1OS1	RE7/AD15	P2B	RE1/WR	RE0/RD			
Quad PWM	x1xx 11xx	P2A	RC1/T1OS1	RE7/AD15	P2B	P2C	P2D			

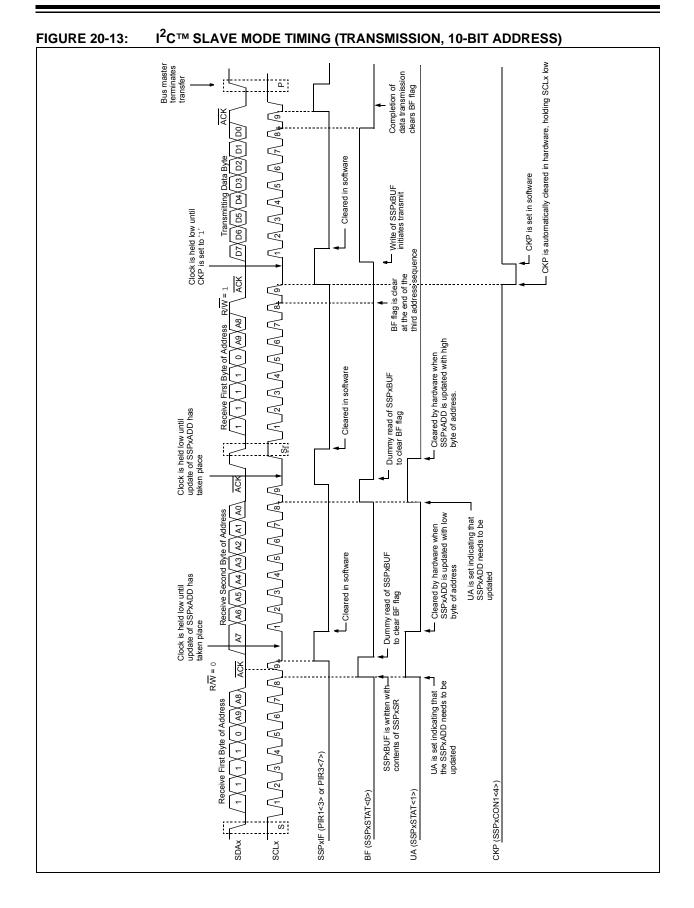
TABLE 19-2: PIN CONFIGURATIONS FOR ECCP2

Legend: x = Don't care. Shaded cells indicate pin assignments not used by ECCP2 in a given mode.

TABLE 19-3: PIN CONFIGURATIONS FOR ECCP3

CCP3CON Configuration	RG0	RE4	RE3	RG3	RH5	RH4			
PIC18F6XJ1X Devices:									
00xx 11xx	ECCP3	RE4	RE3	RG3/CCP4	N/A	N/A			
10xx 11xx	P3A	P3B	RE3	RG3/CCP4	N/A	N/A			
x1xx 11xx	P3A	P3B	P3C	P3D	N/A	N/A			
PIC18F8XJ1X Devices, ECCPMX = 0, Microcontroller mode:									
00xx 11xx	ECCP3	RE6/AD14	RE5/AD13	RG3/CCP4	RH7/AN15	RH6/AN14			
10xx 11xx	P3A	RE6/AD14	RE5/AD13	RG3/CCP4	P3B	RH6/AN14			
x1xx 11xx	P3A	RE6/AD14	RE5/AD13	P3D	P3B	P3C			
X Devices, ECC	PMX = 1, Ext	ended Micro	controller mo	de, 16-Bit or 2	20-Bit Addres	s Width:			
00xx 11xx	ECCP3	RE6/AD14	RE5/AD13	RG3/CCP4	RH7/AN15	RH6/AN14			
licrocontroller r				,	ess Width:				
00xx 11xx	ECCP3	RE4/AD12	RE3/AD11	RG3/CCP4	RH5/AN13	RH4/AN12			
10xx 11xx	P3A	P3B	RE3/AD11	RG3/CCP4	RH5/AN13	RH4/AN12			
x1xx 11xx	P3A	P3B	P3C	P3D	RH5/AN13	RH4/AN12			
	CCP3CON Configuration 00xx 11xx 10xx 11xx 10xx 11xx x1xx 11xx 00xx 11xx 00xx 11xx 10xx 11xx 00xx 11xx 10xx 11xx 00xx 11xx X Devices, ECC 00xx 11xx licrocontroller 0 00xx 11xx 10xx 11xx	CCP3CON ConfigurationRG000xx11xxECCP310xx11xxP3Ax1xx11xxP3Ax1xx11xxP3APIC18F8XJ1X Device00xx11xxECCP310xx11xxP3Ax1xx11xxP3Ax1xx11xxP3Ax1xx11xxECCP300xx11xxECCP3PIC18F8Icrocontroller worde or Externation00xx11xxECCP300xx11xxECCP310xx11xxP3A	CCP3CON ConfigurationRG0RE4ConfigurationRG0RE400xx11xxECCP3RE410xx11xxP3AP3Bx1xx11xxP3AP3Bv1xx11xxP3AP3BPIC18F8XJ1X Devices, ECCPMX00xx11xxECCP3RE6/AD1410xx11xxP3ARE6/AD14x1xx11xxP3ARE6/AD14x1xx11xxP3ARE6/AD14VDEvices, ECCPMX = 1, Extended Microor00xx11xxECCP3RE6/AD14VDC18F8XJ1X DeviceIcrocontroller mode or Extended Microor00xx11xxECCP3RE4/AD1210xx11xxP3AP3B	CCP3CON ConfigurationRG0RE4RE3PIC18F6XJ1X Devices:00xx 11xxECCP3RE4RE310xx 11xxP3AP3BRE3x1xx 11xxP3AP3BP3CPIC18F8XJ1X Devices, ECCPMX = 0, Microcol00xx 11xxECCP3RE6/AD14RE5/AD1310xx 11xxP3ARE6/AD14RE5/AD1310xx 11xxP3ARE6/AD14RE5/AD1310xx 11xxP3ARE6/AD14RE5/AD13x1xx 11xxP3ARE6/AD14RE5/AD13X Devices, ECCPMX = 1, Extended Microcontroller mod00xx 11xxECCP300xx 11xxECCP3RE6/AD14RE5/AD13PIC18F8XJ1X Devices, ECCPMX =Icrocontroller mode or Extended Microcontroller mod00xx 11xxECCP3RE4/AD1200xx 11xxP3AP3BRE3/AD1110xx 11xxP3A	CCP3CON ConfigurationRG0RE4RE3RG3PIC18F6XJ1X Devices:00xx 11xxECCP3RE4RE3RG3/CCP410xx 11xxP3AP3BRE3RG3/CCP410xx 11xxP3AP3BP3CP3DPIC18F8XJ1X Devices, ECCPMX = 0, Microcontroller mode00xx 11xxECCP3RE6/AD14RE5/AD13RG3/CCP410xx 11xxP3ARE6/AD14RE5/AD13RG3/CCP410xx 11xxP3ARE6/AD14RE5/AD13P3DX Devices, ECCPMX = 1, Extended Microcontroller mode, 16-Bit or 200xx 11xxECCP3RE6/AD14RE5/AD13RG3/CCP4IIcrocontroller mode or Extended Microcontroller mode, 12-Bit Addr00xx 11xxECCP3RE4/AD12RE3/AD11RG3/CCP400xx 11xxP3AP3BRE3/AD11RG3/CCP4	CCP3CON ConfigurationRG0RE4RE3RG3RH5PIC18F6XJ1X Devices:00xx 11xxECCP3RE4RE3RG3/CCP4N/A10xx 11xxP3AP3BRE3RG3/CCP4N/Ax1xx 11xxP3AP3BP3CP3DN/APIC18F8XJ1X Devices, ECCPMX = 0, Microcontroller mode:00xx 11xxECCP3RE6/AD14RE5/AD13RG3/CCP4RH7/AN1510xx 11xxP3ARE6/AD14RE5/AD13RG3/CCP4P3Bx1xx 11xxP3ARE6/AD14RE5/AD13P3DP3BX1xx 11xxP3ARE6/AD14RE5/AD13P3DP3BX Devices, ECCPMX = 1, Extended Microcontroller mode, 16-Bit or 20-Bit Address00xx 11xxECCP3RE6/AD14RE5/AD13RG3/CCP4RH7/AN15Incrocontroller mode or Extended Microcontroller mode, 12-Bit Address Width:00xx 11xxECCP3RE4/AD12RE3/AD11RG3/CCP4RH5/AN1310xx 11xxP3AP3BRE3/AD11RG3/CCP4RH5/AN1310xx 11xxP3AP3BRE3/AD11RG3/CCP4RH5/AN13			


Legend: x = Don't care, N/A = Not Available. Shaded cells indicate pin assignments not used by ECCP3 in a given mode.


Note 1: With ECCP3 in Quad PWM mode, the CCP4 module's output is overridden by P1D; otherwise, CCP4 is fully operational.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾
bit 7	-		1		1	11	bit
Legend:							
R = Readab		W = Writable		U = Unimplem			
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7	GCEN: Gene	eral Call Enable	bit				
	Unused in Ma						
bit 6	ACKSTAT: A	cknowledge Sta	atus bit (Master	Transmit mode	e only)		
		edge was not re					
		edge was receiv					
bit 5			bit (Master Re	ceive mode onl	y) ⁽¹⁾		
	1 = Not Ackn	Ų					
L:1 4	0 = Acknowle	•		:(2)			
bit 4		nowledge Sequ			oine and trans	mits ACKDT dat	a hit:
		cally cleared by			uns and trans		a bit,
		edge sequence					
bit 3	RCEN: Rece	ive Enable bit (Master Receive	e mode only) ⁽²⁾			
	1 = Enables I 0 = Receive i	Receive mode f	or I ² C				
bit 2		ondition Enable	bit(2)				
	-			and SCI x pins:	automatically	cleared by hard	ware
	0 = Stop cond		0.1 0.0 027 0.0		aatomaticany		
bit 1	RSEN: Repe	ated Start Cond	lition Enable bi	t <mark>(2)</mark>			
		Repeated Start d Start condition		e SDAx and S	CLx pins; auto	matically cleared	d by hardwar
bit 0	SEN: Start Co	ondition Enable	bit ⁽²⁾				
	1 = Initiates S 0 = Start cond		n the SDAx an	d SCLx pins; a	utomatically cl	eared by hardw	are
Note 1: T	he value that wil	I be transmitted	when the user	initiates an Ack	knowledge seq	uence at the end	d of a receive
2: 1	f the I ² C module	is active, these	bits may not b	e set (no spool	ling) and the S	SPxBUF may n	ot he writter

2: If the I²C module is active, these bits may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

22.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has 11 inputs for the 64-pin devices and 15 for the 80-pin devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

The module has six registers:

- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

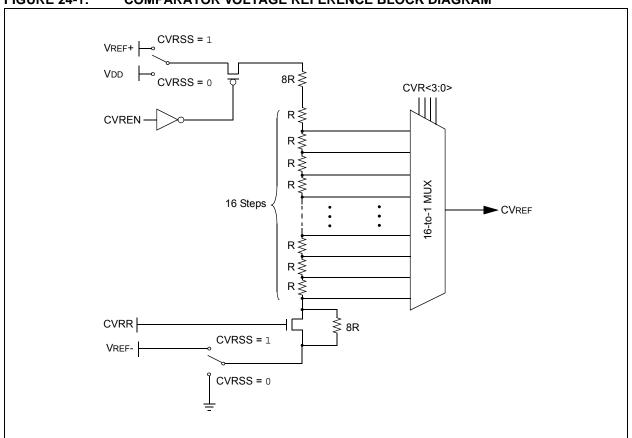
- A/D Port Configuration Register 2 (ANCON0)
- A/D Port Configuration Register 1 (ANCON1)
- A/D Result Registers (ADRESH and ADRESL)

The ADCON0 register, shown in Register 22-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 22-2, configures the A/D clock source, programmed acquisition time and justification.

REGISTER 22-1: ADCON0: A/D CONTROL REGISTER 0⁽¹⁾

R/W-0	R/W-0						
VCFG1	VCFG0	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7	•						bit 0

Legend:				
R = Read	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	VCFG1: 1 = VREF 0 = AVss	. ,	ation bit (VREF- source)	
bit 6	VCFG0: 1 = VREF 0 = AVDD		ation bit (VREF+ source)	
bit 5-2	0000 = 0 0010 = 0 0011 = 0 0100 = 0 0101 = 0 0111 = 0 1000 = 0 1001 = 0 1011 = 0 1011 = 0 1011 = 0 1011 = 0 1101 = 0 1101 = 0	 Analog Channel Select bi Channel 00 (AN0) Channel 01 (AN1) Channel 02 (AN2) Channel 03 (AN3) Channel 04 (AN4) Jnused Channel 06 (AN6) Channel 07 (AN7) Channel 09 (AN9) Channel 10 (AN10) Channel 11 (AN11) Channel 12 (AN12)^(2,3) Channel 14 (AN14)^(2,3) Channel 15 (AN15)^(2,3) 	15	
bit 1	When AI	conversion is in progress	t	
bit 0	1 = A/D (VD On bit Converter module is enabled Converter module is disabled		
Note 1: 2: 3:	These chann	els are not implemented on 6	ilable when WDTCON<4> = 0 64-pin devices. ed channels will return randon	


R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0				
oit 7							bit				
Legend:											
R = Reada	hle hit	W = Writable	hit	U = Unimplem	nented bit rea	d as '0'					
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown				
bit 7	-	arator Enable b	it								
		tor is enabled tor is disabled									
bit 6	•	rator Output E	nablo bit								
			esent on the C								
		tor output is int									
bit 5	•	•	Polarity Select	bit							
	•	1 = Comparator output is inverted									
	•	tor output is no									
bit 4-3	EVPOL<1:0>	: Interrupt Pola	arity Select bits								
			any change of								
				w transition of t							
		t generation on tigeneration is		gh transition of t	ine output						
bit 2	•	•		on-inverting inp	out)						
				I CVREF voltage							
			nects to CxINA								
bit 1-0	CCH<1:0>: (Comparator Cha	annel Select bi	ts							
			arator connect								
				s to CxIND pin							
			arator connect arator connect	s to CxINC pin ⁽² s to CxINB pin	-)						
Note 1:	The CMxIF bit is				ted and must	be cleared by th	e applicatior				
	after the initial co		···· , ···· , ····			,					
-											

REGISTER 23-1: CMxCON: COMPARATORx CONTROL REGISTER

2: Available in 80-pin devices only.

24.0 COMPARATOR VOLTAGE REFERENCE MODULE

The comparator voltage reference is a 16-tap resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it may also be used independently of them. A block diagram of the module is shown in Figure 24-1. The resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference.

FIGURE 24-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

REGISTER 25-4: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

U-1	U-1	U-1	U-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1
—	—	—	—	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0

Legend:			
R = Readable bit	WO = Write-Once bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	Unimplemented: Maintain as '1'
bit 3-0	WDTPS<3:0>: Watchdog Timer Postscale Select bits
	1111 = 1:32,768
	1110 = 1:16,384
	1101 = 1:8,192
	1100 = 1:4,096
	1011 = 1:2,048
	1010 = 1:1,024
	1001 = 1:512
	1000 = 1:256
	0111 = 1:128
	0110 = 1:64
	0101 = 1:32
	0100 = 1:16
	0011 = 1 :8
	0010 = 1 :4
	0001 = 1:2
	0000 = 1:1

R/WO-1 R/WO-1 R/WO-1 R/WO-1 R/WO-1 U-0 U-0 U WAIT ⁽¹⁾ BW ⁽¹⁾ EMB1 ⁽¹⁾ EMB0 ⁽¹⁾ EASHFT ⁽¹⁾ — — — bit 7 Emeadable bit WO = Write-Once bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 WAIT: External Bus Wait Enable bit ⁽¹⁾ 1 = Wait states on the external bus are disabled 0 = Wait states on the external bus are enabled and selected by MEMCON<5:4> bit 6 BW: Data Bus Width Select bit ⁽¹⁾ 1 = 16-Bit Data Width modes 0 = 8-Bit Data Width modes 0 = 8-Bit Data Width modes 0 = 8-Bit Data Width modes 0 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 12-bit address width for external bus 0 = Extended Microcontroller mode, 20-bit address width for external bus 02 = Extended Microcontroller mode, 20-bit address width for external bus 0 = Extended Microcontroller mode, 20-bit address width for external bus 04 = EASHFT: External Address Bus Shift Enable bit ⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value bit 2-0 Unimplemented: Read as '0'								
bit 7 Legend: R = Readable bit WO = Write-Once bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 WAIT: External Bus Wait Enable bit ⁽¹⁾ 1 = Wait states on the external bus are disabled 0 = Wait states on the external bus are enabled and selected by MEMCON<5:4> bit 6 BW: Data Bus Width Select bit ⁽¹⁾ 1 = 16-Bit Data Width modes 0 = 8-Bit Data Width modes bit 5-4 EMB<1:0>: External Memory Bus Configuration bits ⁽¹⁾ 11 = Microcontroller mode, external bus is disabled 10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 20-bit address width for external bus 01 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus 02 = Extended Microcontroller mode, 20-bit address bus is shifted to start at 000000h 0 = Address shifting is enabled - external address bus is shifted to start at 00000h	NO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1	U-0	U-0	U-0
Legend: R = Readable bit WO = Write-Once bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 WAIT: External Bus Wait Enable bit ⁽¹⁾ 1 = Wait states on the external bus are disabled 0' = Bit is cleared x = Bit is unknown bit 7 WAIT: External Bus Wait Enable bit ⁽¹⁾ 1 = Wait states on the external bus are disabled 0 = Wait states on the external bus are enabled and selected by MEMCON<5:4> bit 6 BW: Data Bus Width Select bit ⁽¹⁾ 1 = 16-Bit Data Width modes 0 = 8-Bit Data Width modes bit 5-4 EMB EME 1: = Microcontroller mode, external bus is disabled 10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus bit 3 EASHFT: External Address Bus Shift Enable bit ⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value 0	4IT ⁽¹⁾	BW ⁽¹⁾	EMB1 ⁽¹⁾	EMB0 ⁽¹⁾	EASHFT ⁽¹⁾	_	—	
R = Readable bit WO = Write-Once bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 WAIT: External Bus Wait Enable bit ⁽¹⁾ 1 = Wait states on the external bus are disabled 0 = Wait states on the external bus are enabled and selected by MEMCON<5:4> bit 6 BW: Data Bus Width Select bit ⁽¹⁾ 1 = 16-Bit Data Width modes 0 = 8-Bit Data Width modes bit 5-4 EMB EMB External Memory Bus Configuration bits ⁽¹⁾ 11 = Microcontroller mode, external bus is disabled 10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus bit 3 EASHFT: External Address Bus Shift Enable bit ⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value 000000000000000000000000000000000000								bit 0
R = Readable bit WO = Write-Once bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 WAIT: External Bus Wait Enable bit ⁽¹⁾ 1 = Wait states on the external bus are disabled 0 = Wait states on the external bus are enabled and selected by MEMCON<5:4> bit 6 BW: Data Bus Width Select bit ⁽¹⁾ 1 = 16-Bit Data Width modes 0 = 8-Bit Data Width modes bit 5-4 EMB EMB External Memory Bus Configuration bits ⁽¹⁾ 11 = Microcontroller mode, external bus is disabled 10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus bit 3 EASHFT: External Address Bus Shift Enable bit ⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value 000000000000000000000000000000000000								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 WAIT: External Bus Wait Enable bit ⁽¹⁾ 1 = Wait states on the external bus are disabled 0 = Wait states on the external bus are enabled and selected by MEMCON<5:4> bit 6 BW: Data Bus Width Select bit ⁽¹⁾ 1 = 16-Bit Data Width modes 0 = 8-Bit Data Width modes bit 5-4 EMB<1:0>: External Memory Bus Configuration bits ⁽¹⁾ 11 = Microcontroller mode, external bus is disabled 10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 20-bit address width for external bus bit 3 EASHFT: External Address Bus Shift Enable bit ⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h		,						
bit 7 WAIT: External Bus Wait Enable bit ⁽¹⁾ 1 = Wait states on the external bus are disabled 0 = Wait states on the external bus are enabled and selected by MEMCON<5:4> bit 6 BW: Data Bus Width Select bit ⁽¹⁾ 1 = 16-Bit Data Width modes 0 = 8-Bit Data Width modes bit 5-4 EMB<1:0>: External Memory Bus Configuration bits ⁽¹⁾ 11 = Microcontroller mode, external bus is disabled 10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus bit 3 EASHFT: External Address Bus Shift Enable bit ⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value				ince bit				
 1 = Wait states on the external bus are disabled 0 = Wait states on the external bus are enabled and selected by MEMCON<5:4> bit 6 BW: Data Bus Width Select bit⁽¹⁾ 1 = 16-Bit Data Width modes 0 = 8-Bit Data Width modes 0 = 8-Bit Data Width modes bit 5-4 EMB<1:0>: External Memory Bus Configuration bits⁽¹⁾ 11 = Microcontroller mode, external bus is disabled 10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 16-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus bit 3 EASHFT: External Address Bus Shift Enable bit⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value 	/alue at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
 1 = Wait states on the external bus are disabled 0 = Wait states on the external bus are enabled and selected by MEMCON<5:4> bit 6 BW: Data Bus Width Select bit⁽¹⁾ 1 = 16-Bit Data Width modes 0 = 8-Bit Data Width modes 0 = 8-Bit Data Width modes bit 5-4 EMB<1:0>: External Memory Bus Configuration bits⁽¹⁾ 11 = Microcontroller mode, external bus is disabled 10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 16-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus bit 3 EASHFT: External Address Bus Shift Enable bit⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value 				- hia hit(1)				
 0 = Wait states on the external bus are enabled and selected by MEMCON<5:4> bit 6 BW: Data Bus Width Select bit⁽¹⁾ 1 = 16-Bit Data Width modes 0 = 8-Bit Data Width modes bit 5-4 EMB<1:0>: External Memory Bus Configuration bits⁽¹⁾ 11 = Microcontroller mode, external bus is disabled 10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus bit 3 EASHFT: External Address Bus Shift Enable bit⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value 								
bit 6BW: Data Bus Width Select bit(1) 1 = 16-Bit Data Width modes 0 = 8-Bit Data Width modesbit 5-4EMB<1:0>: External Memory Bus Configuration bits(1) 11 = Microcontroller mode, external bus is disabled 10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 16-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address bus is shifted to start at 000000h 0 = Address shifting is enabled - external address bus is shifted to start at 000000h 0 = Address shifting is disabled - external address bus reflects the PC value								
 1 = 16-Bit Data Width modes 0 = 8-Bit Data Width modes bit 5-4 EMB<1:0>: External Memory Bus Configuration bits⁽¹⁾ 11 = Microcontroller mode, external bus is disabled 10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 16-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus bit 3 EASHFT: External Address Bus Shift Enable bit⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value 					abled and select		JN<5:4>	
 bit 5-4 EMB<1:0>: External Memory Bus Configuration bits⁽¹⁾ 11 = Microcontroller mode, external bus is disabled 10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 16-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus bit 3 EASHFT: External Address Bus Shift Enable bit⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value 								
bit 5-4 EMB<1:0>: External Memory Bus Configuration bits ⁽¹⁾ 11 = Microcontroller mode, external bus is disabled 10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 16-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus 01 = Extended Microcontroller mode, 20-bit address width for external bus 02 = Extended Microcontroller mode, 20-bit address width for external bus 03 = Extended Microcontroller mode, 20-bit address bus is shifted to start at 000000h 04 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value	-			6				
11 = Microcontroller mode, external bus is disabled 10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 16-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus bit 3 EASHFT: External Address Bus Shift Enable bit ⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value								
10 = Extended Microcontroller mode, 12-bit address width for external bus 01 = Extended Microcontroller mode, 16-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus bit 3 EASHFT: External Address Bus Shift Enable bit ⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value	4 I	EMB<1:0>: E	xternal Memor	y Bus Configu	iration bits ⁽¹⁾			
01 = Extended Microcontroller mode, 16-bit address width for external bus 00 = Extended Microcontroller mode, 20-bit address width for external bus bit 3 EASHFT: External Address Bus Shift Enable bit ⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value		11 = Microco	ontroller mode,	external bus i	s disabled			
00 = Extended Microcontroller mode, 20-bit address width for external bus bit 3 EASHFT: External Address Bus Shift Enable bit ⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value	:	10 = Extende	ed Microcontrol	ler mode, 12-	bit address width	n for external b	ous	
bit 3 EASHFT: External Address Bus Shift Enable bit ⁽¹⁾ 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value								
 1 = Address shifting is enabled – external address bus is shifted to start at 000000h 0 = Address shifting is disabled – external address bus reflects the PC value 						n for external b	ous	
0 = Address shifting is disabled – external address bus reflects the PC value	I	EASHFT: Exte	ernal Address E	Bus Shift Enal	ble bit ⁽¹⁾			
-		1 = Address s	shifting is enable	ed – external	address bus is s	hifted to start a	at 000000h	
bit 2-0 Unimplemented: Read as '0'	(0 = Address s	shifting is disabl	ed – external	address bus ref	lects the PC va	alue	
	0 1	Unimplemen	ted: Read as 'o)'				
Note 1: These bits are implemented on 80-pin devices only.	1: The	se bits are im	plemented on 8	0-pin devices	only.			

REGISTER 25-5: CONFIG3L: CONFIGURATION REGISTER 3 LOW (BYTE ADDRESS 300004h)

26.0 INSTRUCTION SET SUMMARY

The PIC18F87J11 family of devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of 8 new instructions for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

26.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC[®] instruction sets, while maintaining an easy migration from these instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- · Byte-oriented operations
- **Bit-oriented** operations
- · Literal operations
- Control operations

The PIC18 instruction set summary in Table 26-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 26-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator, 'f', specifies which file register is to be used by the instruction. The destination designator, 'd', specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the WREG register. If 'd' is '1', the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator, 'f', represents the number of the file in which the bit is located. The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the Program Counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 26-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The instruction set summary, shown in Table 26-2, lists the standard instructions recognized by the Microchip MPASM[™] Assembler.

Section 26.1.1 "Standard Instruction Set" provides a description of each instruction.

SUB	WFB	Subtract	W from f	with Borr	ow	
Synta	ax:	SUBWFB	f {,d {,a}	}		
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Oper	ation:	(f) – (W) –	$(\overline{C}) \rightarrow de$	st		
Statu	is Affected:	N, OV, C,	DC, Z			
Enco	oding:	0101	10da	ffff	ffff	
Desc	ription:	Subtract W and the Carry flag (borrow) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.				
		If 'a' is '0', If 'a' is '1', GPR bank	the BSR i			
		If 'a' is '0' set is enal in Indexed mode whe Section 2 Bit-Orient Literal Of	bled, this i I Literal O enever f ≤ 6.2.3 "By ted Instru	nstruction ffset Addre 95 (5Fh). te-Oriente ctions in	operates essing See ed and Indexed	
Word	ls:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q		Q4	
	Decode	Read register 'f'	Proce Dat		Write to estination	
Fyan	nple 1:	SUBWFB			Jounduon	
	Before Instruct		NEG, 1	L, U		
	REG W C	= 19h = 0Dh = 1	(000 (000			
	After Instructio REG W C	= 0Ch = 0Dh = 1	(000 (000	0 1011) 0 1101)		
	Z N	= 0 = 0	; resu	It is positi	ve	
<u>Exa</u> r	nple 2:	SUBWFB	REG, 0			
	Before Instruct					
	REG W C	= 1Bh = 1Ah = 0	(000 (000	1 1011) 1 1010)		
	After Instructio REG W C	n = 1Bh = 00h = 1	(000	1 1011)		
	Z	= 1	; resu	lt is zero		
	N nalo 2:	= 0	552			
<u>⊨xan</u>	n <u>ple 3:</u> Before Instruct	SUBWFB	REG, 1	L, U		
	REG W C	= 03h = 0Eh = 1		0 0011) 0 1101)		
	After Instructio REG W	n = F5h = 0Eh	; [2's	1 0100) comp]		
	C Z N	= 0En = 0 = 0 = 1		0 1101) It is negat	ive	

SWAPF	Swap f		
Syntax:	SWAPF f{	,d {,a}}	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$		
Operation:	$(f<3:0>) \rightarrow (f<7:4>) \rightarrow (f<7:4>)$		
Status Affected:	None		
Encoding:	0011	10da f	fff ffff
Description:	'f' are excha	anged. If 'd' i W. If 'd' is '1	obles of register is '0', the result L', the result is
	lf 'a' is '0', tl If 'a' is '1', tl GPR bank.	ne Access B ne BSR is us	ank is selected. sed to select the
	set is enable in Indexed I mode when Section 26 Bit-Oriente	ed, this instr _iteral Offset ever f ≤ 95 (.2.3 "Byte-C	Driented and ons in Indexed
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination
Example: Before Instruc REG After Instructio REG	tion = 53h	EG, 1, 0	

27.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

27.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

27.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

27.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

27.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

TABLE 28-31: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
130	Tad	A/D Clock Period	0.7	25.0 ⁽¹⁾	μS	Tosc based, VREF \geq 3.0V
			_	1	μS	A/D RC mode
131	TCNV	Conversion Time (not including acquisition time) (Note 2)	11	12	Tad	
132	TACQ	Acquisition Time (Note 3)	1.4		μS	-40°C to +85°C
135	Tswc	Switching Time from Convert \rightarrow Sample	_	(Note 4)		
136	TDIS	Discharge Time	0.2	_	μS	

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

2: The ADRES registers may be read on the following TCY cycle.

3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD). The source impedance (Rs) on the input channels is 50Ω.

4: On the following cycle of the device clock.

F

Fail-Safe Clock Monitor	331, 343
Exiting	
Interrupts in Power-Managed Modes	
POR or Wake-up From Sleep	
WDT During Oscillator Failure	
Fast Register Stack	73
Firmware Instructions	
Flash Configuration Words	
Flash Program Memory	
Associated Registers	
Control Registers	
EECON1 and EECON2	
TABLAT (Table Latch) Register	
TBLPTR (Table Pointer) Register	
Erase Sequence	100
Erasing	
Operation During Code-Protect	104
Reading	
Table Pointer	
Boundaries Based on Operation	
Table Pointer Boundaries	
Table Reads and Table Writes	
Write Sequence	101
Write Sequence (Word Programming)	103
Writing	
Unexpected Termination	
Write Verify	104
FSCM. See Fail-Safe Clock Monitor.	
G	

G

GOTO	3
------	---

н

Hardware Multiplier	
8 x 8 Multiplication Algorithms	
Operation	117
Performance Comparison (table)	117

I

I/O Ports	135
Input Pull-up Configuration	136
Open-Drain Outputs	137
Pin Capabilities	135
I ² C Mode (MSSP)	
Acknowledge Sequence Timing	277
Associated Registers	283
Baud Rate Generator	270
Bus Collision	
During a Repeated Start Condition	281
During a Stop Condition	282
Clock Arbitration	271
Clock Stretching	263
10-Bit Slave Receive Mode (SEN = 1)	263
10-Bit Slave Transmit Mode	263
7-Bit Slave Receive Mode (SEN = 1)	263
7-Bit Slave Transmit Mode	263
Clock Synchronization and the CKP bit	264
Effects of a Reset	278
General Call Address Support	267
I ² C Clock Rate w/BRG	270

•• • •• •	
Master Mode	
Operation	
Reception	
Repeated Start Condition Timing	
Start Condition Timing	272
Transmission	
Multi-Master Communication, Bus Collision	
	070
and Arbitration	
Multi-Master Mode	278
Operation	253
Read/Write Bit Information (R/W Bit)	252 256
Registers	
Serial Clock (RC3/SCKx/SCLx)	256
Slave Mode	
Address Masking Modes	
5-Bit	
7-Bit	
Addressing	
Reception	
Transmission	256
Sleep Operation	278
Stop Condition Timing	
INCF	
INCFSZ	
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	331, 345
Indexed Literal Offset Addressing	
and Standard PIC18 Instructions	204
Indexed Literal Offset Mode	394
	00
Indirect Addressing	
Indirect Addressing	
INFSNZ	
INFSNZ Initialization Conditions for all Registers	369 61–66
INFSNZ Initialization Conditions for all Registers	369 61–66
INFSNZ Initialization Conditions for all Registers Instruction Cycle	369 61–66 74
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme	369 61–66 74 74
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining	369 61–66 74 74 74 347
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode)	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW ANDWF	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW ANDWF BC	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW ANDWF	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW ANDWF BC	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDLW BC BCF BN	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BC BCF BN BN BNC	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDLW BC BCF BN	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BC BCF BN BN BN BNC BN	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BC BCF BN BN BNC BNN BNOV	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW BC BC BC BN BNC BNN BNOV BNZ	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BC BCF BN BN BNC BNN BNOV	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWF C ANDLW ANDLW BC BC BC BN BNC BNN BNOV BNZ	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDLW BC BC BC BN BNC BNN BNOV BNOV BNZ BOV BRA	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNN BNC BNN BNOV BNZ BOV BNZ BOV BRA BSF	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDLW BC BC BC BN BNC BNN BNC BNN BNOV BNZ BOV BSF BSF (Indexed Literal Offset Mode)	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNC BNN BNC BNN BNOV BNZ BOV BNZ BOV BRA BSF	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNC BNN BNC BNN BNC BNN BNOV BNZ BNZ BOV BNZ BSF BSF (Indexed Literal Offset Mode) BTFSC	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDLW BC BC BC BN BNC BNN BNN BNOV BNN BNOV BNZ BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNN BNC BNN BNOV BNZ BOV BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ	
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNN BNC BNN BNOV BNZ BOV BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTFSS BTG BZ CALL	369 61–66 74 75
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNN BNN BNN BNOV BNZ BOV BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF	369 61–66 74 74 74 74
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNN BNN BNOV BNZ BOV BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTFSS BTG BZ CALL CLRWDT	369 61–66 74 74 74 74
INFSNZ Initialization Conditions for all Registers Instruction Cycle Clocking Scheme Flow/Pipelining Instruction Set ADDLW ADDWF (Indexed Literal Offset Mode) ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNN BNN BNN BNOV BNZ BOV BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF	

Write, 8-Bit Data, Demultiplexed Address1 Write, 8-Bit Data, Fully Multiplexed	
16-Bit Address1	
Write, 8-Bit Data, Partially Multiplexed Address 1	84
Write, 8-Bit Data, Partially Multiplexed Address,	
Enable Strobe1	85
Write, 8-Bit Data, Wait States Enabled, Partially	
Multiplexed Address1	84
Timing Diagrams and Specifications	
Capture/Compare/PWM Requirements (Including	
ECCP Modules)4	29
CLKO and I/O Requirements4	20
EUSARTx Synchronous Receive Requirements 4	
EUSARTx Synchronous Transmission	
Requirements4	38
Example SPI Mode Requirements	
(Master Mode, CKE = 0)	30
Example SPI Mode Requirements	00
(Master Mode, CKE = 1)	31
Example SPI Mode Requirements	51
(Slave Mode, CKE = 0)4	22
Example SPI Slave Mode Requirements	32
(CKE = 1)4	22
External Clock Requirements	
I ² C Bus Data Requirements (Slave Mode)	35
I ² C Bus Start/Stop Bits Requirements	
(Slave Mode)4	34
Internal RC Accuracy (INTOSC,	
INTRC Sources)4	19
MSSPx I ² C Bus Data Requirements	
MSSPx I ² C Bus Start/Stop Bits Requirements 4	
Parallel Master Port Read Requirements4	
Parallel Master Port Write4	
Parallel Slave Port Requirements4	26
PLL Clock4	19
Program Memory Fetch Requirements (8-Bit)4	21
Program Memory Read Requirements 4	
Program Memory Write Requirements4	23
Reset, Watchdog Timer (WDT), Oscillator	
Start-up Timer (OST), Power-up Timer (PWRT)	
and Brown-out Reset4	24
Timer0 and Timer1 External Clock	
Requirements4	25
TSTFSZ	
Two-Speed Start-up	
Two-Word Instructions	·-
Example Cases	75
TXSTAx Register	
BRGH Bit	89

۷

VDDCORE/VCAP Pin	
Voltage Reference Specifications	415
Voltage Regulator (On-Chip)	
Operation in Sleep Mode	
Power-up Requirements	
W	
Watchdog Timer (WDT)	
Associated Registers	
Control Register	
During Oscillator Failure	
Programming Considerations	
WCOL	272, 273, 274, 277
WCOL Status Flag	272, 273, 274, 277
WWW Address	
WWW On-Line Support	

Х

		387
XONLW		507
XORWE		388
7.01.001	•••••••••••••••••••••••••••••••••••••••	000

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X <u>/XX XXX</u> Temperature Package Pattern Range	 Examples: a) PIC18F87J11-I/PT 301 = Industrial temp., TQFP package, QTP pattern #301. b) PIC18F66J16T-I/PT = Tape and reel, Industrial temp., TQFP package.
Device	PIC18F66J11/66J16/67J11 ⁽¹⁾ , PIC18F86J11/86J16/87J11 ⁽¹⁾ , PIC18F66J11/66J16/67J111 ⁽²⁾ , PIC18F86J11/86J16/87J111 ⁽²⁾ ,	
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)	
Package	PT = TQFP (Thin Quad Flatpack)	
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	Note 1: F = Standard Voltage Range 2: T = in tape and reel